Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The rise of computational biology


The year 2001 saw a remarkable burst of interest in biological simulation, with several international meetings on the subject, and the inclusion, by journals, of web site references from which published models can be downloaded. So, why has all this happened so suddenly?

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Levels of modelling.
Figure 2: A model of the human torso used to reconstruct the electrical field changes that create the electrocardiogram (ECG).
Figure 3: Towards a theoretical biology?


  1. Dawkins, R. The Selfish Gene (Oxford Univ. Press, Oxford and New York, 1976).

    Google Scholar 

  2. Hamilton, W. The genetical evolution of social behaviour. J. Theor. Biol. 7, 1–16; 17–52 (1964).

    Article  CAS  Google Scholar 

  3. Carson, J. H., Cowan, A. & Loew, L. M. Computational cell biologists snowed in at Cranwell. Trends Cell Biol. 11, 236–238 (2001).

    Article  CAS  Google Scholar 

  4. Bock, G. & Goode, J. (eds) In Silico Simulation of Biological Processes. Novartis Foundation Symposium Vol. 247 (Wiley, London, 2002).

    Book  Google Scholar 

  5. Garny, A., Noble, P. J., Kohl, P. & Noble, D. Comparative study of rabbit sino-atrial node cell models. Chaos Solitons Fractals 13, 1623–1630 (2002).

    Article  CAS  Google Scholar 

  6. Gerstein, M., Lan, N. & Jansen, R. Proteomics. Integrating interactomes. Science 295, 284–287 (2002).

    Article  CAS  Google Scholar 

  7. Hollon, T. Human genes: how many? Scientist 15 October 2001. Available at

  8. Chen, Q. et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296 (1998).

    Article  CAS  Google Scholar 

  9. Clancy, C. E. & Rudy, Y. Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 400, 566–569 (1999).

    Article  CAS  Google Scholar 

  10. Noble, P. J. & Noble, D. Reconstruction of the cellular mechanisms of cardiac arrhythmias triggered by early after-depolarizations. Jpn. J. Electrocardiol. 20, 15–19 (2000).

    Article  Google Scholar 

  11. Wehrens, X. H. T., Abriel, H., Cabo, C., Benhorin, M. D. & Kass, R. S. Arrhythmogenic mechanism of an LQT-3 mutation of the human heart Na+ channel α-subunit. Circulation 102, 584–590 (2000).

    Article  CAS  Google Scholar 

  12. Bock, G. R. & Goode, J. A. (eds) Complexity in Biological Information Processing. Novartis Foundation Symposium Vol. 239 (Wiley, London, 2001).

    Book  Google Scholar 

  13. Kohl, P., Noble, D., Winslow, R. L. & Hunter, P. Computational modelling of biological systems: tools and visions. Phil. Trans. R. Soc. Lond. A 358, 579–610 (2000).

    Article  CAS  Google Scholar 

  14. Noble, D. & Rudy, Y. Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. Phil. Trans. R. Soc. Lond. A 359, 1127–1142 (2001).

    Article  Google Scholar 

  15. Antzelevitch, C. & Dumaine, R. in Handbook of Physiology 2: The Cardiovascular System: The Heart (eds Page, E., Fozzard, A. A. & Solaro, R. J.) 654–692 (Oxford Univ. Press, New York, 2001).

    Google Scholar 

  16. Antzelevich, C. et al. Influence of transmural repolarization gradients on the electrophysiology and pharmacology of ventricular myocardium. Cellular basis for the Brugada and long-QT syndromes. Phil. Trans. R. Soc. Lond. A 359, 1201–1216 (2001).

    Article  Google Scholar 

  17. Muzikant, A. L. & Penland, R. C. Models for profiling the potential QT prolongation risk of drugs. Curr. Opin. Drug Discov. Dev. 5, 127–135 (2002).

    CAS  Google Scholar 

  18. Nielsen, P. M. F., Le Grice, I. J., Smaill, B. H. & Hunter, P. J. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. Heart Circ. Physiol. 260, H1365–H1378 (1991).

    Article  CAS  Google Scholar 

  19. Winslow, R. L., Kimball, A. L., Noble, D. & Denyer, J. C. Computational models of the mammalian cardiac sinus node implemented on a Connection Machine CM-2. Med. Biol. Eng. Comput. 29, 832 (1991).

    Google Scholar 

  20. Winslow, R. L., Varghese, A., Noble, D., Adlakha, C. & Hoythya, A. Generation and propagation of triggered activity induced by spatially localised Na–K pump inhibition in atrial network models. Proc. R. Soc. Lond. B 254, 55–61 (1993).

    Article  CAS  Google Scholar 

  21. Hunter, P. J. in Molecular and Subcellular Cardiology (eds Sideman, S. & Beyar, R.) 303–318 (Plenum, New York, 1995).

    Book  Google Scholar 

  22. Costa, K. D. et al. A three-dimensional finite element method for large elastic deformations of ventricular myocardium. 2. Prolate spheroidal coordinates. J. Biol. Chem. 118, 464–472 (1996).

    CAS  Google Scholar 

  23. Hunter, P. J., Nash, M. P. & Sands, G. B. in Computational Biology of the Heart (eds Panfilov, A. & Holden, A.) 345–407 (Wiley, Chichester, UK, 1997).

    Google Scholar 

  24. Holden, A. V. & Panfilov, A. V. in Computational Biology of the Heart (eds Panfilov, A. & Holden, A.) 65–69 (Wiley, Chichester, UK, 1997).

    Google Scholar 

  25. Smith, N. P., Pullan, A. J. & Hunter, P. J. Generation of an anatomically based geometric coronary model. Ann. Biomed. Eng. 28, 14–25 (2000).

    Article  CAS  Google Scholar 

  26. Smith, N. P., Pullan, A. J. & Hunter, P. J. An anatomically based model of coronary blood flow and myocardial mechanics. SIAM J. Appl. Math. 62, 990–1018 (2002).

    Article  Google Scholar 

  27. Bradley, C. P., Pullan, A. J. & Hunter, P. J. Geometric modeling of the human torso using cubic Hermite elements. Ann. Biomed. Eng. 25, 96–111 (1997).

    Article  CAS  Google Scholar 

  28. Edwards, J. S. & Palsson, B. O. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. 274, 17410–17416 (1999).

    Article  CAS  Google Scholar 

  29. Edwards, J. S. & Palsson, B. O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature Biotechnol. 19, 125–130 (2001).

    Article  CAS  Google Scholar 

  30. Howatson, M., Pullan, A. J. & Hunter, P. J. Generation of an anatomically based three-dimensional model of the conducting airways. Ann. Biomed. Eng. 28, 793–802 (2000).

    Article  Google Scholar 

  31. Noble, D. Transcript, 80th Meeting of Cardiovascular and Renal Drugs Advisory Committee: NDA 20–689. NIH, new drug application hearing (1997).

  32. Watanabe, Y. & Kimura, J. Inhibitory effect of amiodarone on Na+/Ca2+ exchange current in guinea-pig cardiac myocytes. Br. J. Pharmacol. 131, 80–84 (2000).

    Article  CAS  Google Scholar 

  33. Noble, D. & Colatsky, T. J. A return to rational drug discovery: computer-based models of cells, organs and systems in drug target identification. Emerging Therapeutic Targets 4, 39–49 (2000).

    Article  CAS  Google Scholar 

  34. Noble, D., Levin, J. & Scott, W. Biological simulations in drug discovery. Drug Discov. Today 4, 10–16 (1999).

    Article  CAS  Google Scholar 

  35. Murray, J. Mathematical Biology (Springer, New York, 1983).

    Google Scholar 

  36. Keener, J. & Sneyd, J. Mathematical Physiology (Springer, New York, 1998).

    Google Scholar 

  37. Bray, D. Reasoning for results. Nature 412, 863 (2001).

    Article  CAS  Google Scholar 

  38. Jack, J. J. B., Noble, D. & Tsien, R. W. Electric Current Flow in Excitable Cells (Oxford Univ. Press, Oxford, 1975).

    Google Scholar 

  39. Boyd, C. A. R. & Noble, D. (eds) The Logic of Life (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  40. Noble, D. & Noble, P. J. Reconstruction of cellular mechanisms of genetically-based arrythmias. J. Physiol. 518, P2–P3 (1999).

    Google Scholar 

Download references


Work in the author's laboratory is supported by the British Heart Foundation, Medical Research Council, Wellcome Trust and Physiome Sciences. D.N. was a scientific founder of Physiome Sciences, Inc.; however, the company's contibution to the funding of research in his laboratory is less than 5%. Most of the laboratory's funds come from the British Heart Foundation, the Medical Research Council, the Royal Society and the Wellcome Trust. The work of D.N.'s research group is all in the public domain.

Author information

Authors and Affiliations


Related links

Related links



Brugada syndrome





Alliance for Cellular Signaling

Cardiac Mechanics Research Group


Entelos, Inc.

Gene Ontology Consortium

IBM's Blue Gene Project

Luo-Rudy dynamics model of the mammalian ventricular action potential

Pharsight Corporation

Physiome Sciences, Inc.

Simulations Plus, Inc.

Systems Biology

The Human Physiome Project

The Physiome Markup Languages

The Physiome Project

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Noble, D. The rise of computational biology. Nat Rev Mol Cell Biol 3, 459–463 (2002).

Download citation

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing