Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The subcellular destinations of apc proteins

Key Points

  • APC proteins are well-conserved antagonists of canonical Wnt signalling with crucial functions in normal and malignant development.

  • The classical function of APC proteins is to promote the destabilization of β-catenin–Armadillo in the cytoplasm, probably by binding to the Axin destruction complex.

  • A highly conserved nuclear-export function of APC proteins seems to be crucial for their ability to downregulate the activity of nuclear β-catenin–Armadillo.

  • APC proteins are also associated with the plasma membrane of epithelial cells where they ensure the maintainance of adherens junctions and, perhaps indirectly, the orientation of mitotic spindles in the epithelial plane.

  • The ability of APC to cluster at growing microtubule plus ends might affect the migratory behaviour of motile cells.

  • Chromosomal non-disjunction might result from a failure of mutant APC to bind to microtubule plus ends of mitotic spindles which, in turn, might cause a failure of microtubule capture by kinetochores or by the cell cortex.

  • The shuttling of APC between the different subcellular compartments and its control vary between different cell types and states.

  • The ultimate question is whether APC proteins have a single molecular function that underlies its many cellular functions — which are apparently disparate from each other — and manifest themselves in various biological contexts.

Abstract

Adenomatous polyposis coli (APC) is an important tumour suppressor in the human colon, and is conserved in various organisms. Its best understood function is the destabilization of β-catenin, a key effector of the Wnt signalling pathway. APC proteins are highly motile, and shuttle between several subcellular destinations. These destinations have prompted the discovery of new functions for the APC proteins, and this multitasking of APC might explain why its loss often leads to cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: APC proteins and the mutation cluster region.
Figure 2: The Wnt signalling pathway.
Figure 3: The different subcellular pools of APC proteins.
Figure 4: APC and the cortical capture of microtubules.

Similar content being viewed by others

References

  1. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    CAS  PubMed  Google Scholar 

  2. Nagase, H. & Nakamura, Y. Mutations of the APC (adenomatous polyposis coli) gene. Hum. Mutat. 2, 425–434 (1993).

    CAS  PubMed  Google Scholar 

  3. Lal, G. & Gallinger, S. Familial adenomatous polyposis. Semin. Surg. Oncol. 18, 314–323 (2000).

    CAS  PubMed  Google Scholar 

  4. Groden, J. et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589–600 (1991).

    CAS  PubMed  Google Scholar 

  5. Kinzler, K. W. et al. Identification of FAP locus genes from chromosome 5q21. Science 253, 661–665 (1991).

    CAS  PubMed  Google Scholar 

  6. Miyoshi, Y. et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum. Mol. Genet. 1, 229–233 (1992).

    CAS  PubMed  Google Scholar 

  7. Miyaki, M. et al. Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res. 54, 3011–3020 (1994).

    CAS  PubMed  Google Scholar 

  8. Lamlum, H. et al. The type of somatic mutation at 107 in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's 'two-hit' hypothesis. Nature Med. 5, 1071–1075 (1999).

    CAS  PubMed  Google Scholar 

  9. Fodde, R., Smits, R. & Clevers, H. APC, signal transduction and genetic instability in colorectal cancer. Nature Rev. Cancer 1, 55–67 (2001).

    CAS  Google Scholar 

  10. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  11. Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B. & Polakis, P. Regulation of intracellular β-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc. Natl Acad. Sci. USA 92, 3046–3050 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).A luciferase gene that was linked to TCF-binding sites (TOPFLASH) was devised to show that APC -mutant colorectal cancer cells have high levels of TCF-mediated transcription.

    CAS  PubMed  Google Scholar 

  13. Nakagawa, H. et al. Identification of a brain-specific APC homologue, APCL, and its interaction with β-catenin. Cancer Res. 58, 5176–5181 (1998).

    CAS  PubMed  Google Scholar 

  14. Van Es, J. H. et al. Identification of APC2, a homologue of the adenomatous polyposis coli tumour suppressor. Curr. Biol. 9, 105–108 (1999).

    CAS  PubMed  Google Scholar 

  15. Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    CAS  PubMed  Google Scholar 

  16. Oshima, M. et al. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc. Natl Acad. Sci. USA 92, 4482–4486 (1995).A detailed analysis of nascent intestinal polyps in Apc /+ mice, which showed that the primary defect in tumorigenesis is an outpocketing of the intestinal epithelium rather than an increase in proliferation.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Oshima, H., Oshima, M., Kobayashi, M., Tsutsumi, M. & Taketo, M. M. Morphological and molecular processes of polyp formation in ApcΔ716 knockout mice. Cancer Res. 57, 1644–1649 (1997).

    CAS  PubMed  Google Scholar 

  18. Shih, I. M. et al. Top-down morphogenesis of colorectal tumors. Proc. Natl Acad. Sci. USA 98, 2640–2645 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hayashi, S. et al. A Drosophila homolog of the tumor suppressor gene adenomatous polyposis coli down-regulates β-catenin but its zygotic expression is not essential for the regulation of Armadillo. Proc. Natl Acad. Sci. USA 94, 242–247 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hamada, F. et al. Identification and characterization of E-APC, a novel Drosophila homologue of the tumour suppressor APC. Genes Cells 4, 465–474 (1999).

    CAS  PubMed  Google Scholar 

  21. Hamada, F. & Bienz, M. A Drosophila APC tumour suppressor homologue functions in cellular adhesion. Nature Cell Biol. 4, 208–213 (2002).Loss-of-function evidence that a membrane-associated APC protein has a function in cellular adhesion.

    CAS  PubMed  Google Scholar 

  22. Ahmed, Y., Nouri, A. & Wieschaus, E. Drosophila Apc1 and Apc2 regulate Wingless transduction throughout development. Development 129, 1571–1762 (2002).

    Google Scholar 

  23. Ahmed, Y., Hayashi, S., Levine, A. & Wieschaus, E. Regulation of armadillo by a Drosophila APC inhibits neuronal apoptosis during retinal development. Cell 93, 1171–1182 (1998).

    CAS  PubMed  Google Scholar 

  24. Yu, X., Waltzer, L. & Bienz, M. A new Drosophila APC homologue associated with adhesive zones of epithelial cells. Nature Cell Biol. 3, 144–151 (1999).

    Google Scholar 

  25. McCartney, B. M. et al. Drosophila APC2 is a cytoskeletally-associated protein that regulates wingless signaling in the embryonic epidermis. J. Cell Biol. 146, 1303–1318 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rocheleau, C. E. et al. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90, 707–716 (1997).

    CAS  PubMed  Google Scholar 

  27. Smith, K. J. et al. The APC gene product in normal and tumor cells. Proc. Natl Acad. Sci. USA 90, 2846–2850 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Miyashiro, I. et al. Subcellular localization of the APC protein: immunoelectron microscopic study of the association of the APC protein with catenin. Oncogene 11, 89–96 (1995).

    CAS  PubMed  Google Scholar 

  29. Su, L. K., Vogelstein, B. & Kinzler, K. W. Association of the APC tumor suppressor protein with catenins. Science 262, 1734–1737 (1993).

    CAS  PubMed  Google Scholar 

  30. Rubinfeld, B. et al. Association of the APC gene product with β-catenin. Science 262, 1731–1734 (1993).

    CAS  PubMed  Google Scholar 

  31. Kemler, R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet. 9, 317–321 (1993).

    CAS  PubMed  Google Scholar 

  32. Perrimon, N. The genetic basis of patterned baldness in Drosophila. Cell 76, 781–784 (1994).

    CAS  PubMed  Google Scholar 

  33. Miller, J. R. & Moon, R. T. Signal transduction through β-catenin and specification of cell fate during embryogenesis. Genes Dev. 10, 2527–2539 (1996).

    CAS  PubMed  Google Scholar 

  34. Behrens, J. et al. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 280, 596–599 (1998).

    CAS  PubMed  Google Scholar 

  35. Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B. & Polakis, P. Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β. Curr. Biol. 8, 573–581 (1998).

    CAS  PubMed  Google Scholar 

  36. Ikeda, S. et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 17, 1371–1384 (1998).The discovery that Axin facilitates phosphorylation of β-catenin by GSK-3β.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Smits, R. et al. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev. 13, 1309–1321 (1999).Evidence that the ability of APC to bind to Axin is crucial for its tumour-suppressor function, and that the carboxyl terminus of APC is dispensable for this function.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Von Kries, J. P. et al. Hot spots in β-catenin for interactions with LEF-1, conductin and APC. Nature Struct. Biol. 7, 800–807 (2000).

    CAS  PubMed  Google Scholar 

  39. Rubinfeld, B., Tice, D. A. & Polakis, P. Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1ɛ. J. Biol. Chem. 276, 39037–39045 (2001).

    CAS  PubMed  Google Scholar 

  40. Salic, A., Lee, E., Mayer, L. & Kirschner, M. W. Control of β-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol. Cell 5, 523–532 (2000).

    CAS  PubMed  Google Scholar 

  41. Bienz, M. APC: the plot thickens. Curr. Opin. Genet. Dev. 9, 595–603 (1999).

    CAS  PubMed  Google Scholar 

  42. Zeng, L. et al. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90, 181–192 (1997).The discovery of Axin as a new Wnt signalling antagonist.

    CAS  PubMed  Google Scholar 

  43. Fagotto, F. et al. Domains of axin involved in protein–protein interactions, wnt pathway inhibition, and intracellular localization. J. Cell Biol. 145, 741–756 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kishida, S. et al. DIX domains of Dvl and Axin are necessary for protein interactions and their ability to regulate β-catenin stability. Mol. Cell. Biol. 19, 4414–4422 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kishida, M. et al. Axin prevents Wnt-3a-induced accumulation of β-catenin. Oncogene 18, 979–985 (1999).

    CAS  PubMed  Google Scholar 

  46. Boutros, M., Mihaly, J., Bouwmeester, T. & Mlodzik, M. Signaling specificity by Frizzled receptors in Drosophila. Science 288, 1825–1828 (2000).

    CAS  PubMed  Google Scholar 

  47. Axelrod, J. D. Unipolar membrane association of Dishevelled mediates Frizzled planar cell polarity signaling. Genes Dev. 15, 1182–1187 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mao, J. et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol. Cell 7, 801–809 (2001).

    CAS  PubMed  Google Scholar 

  49. Wehrli, M. et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527–530 (2000).

    CAS  PubMed  Google Scholar 

  50. Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535 (2000).

    CAS  PubMed  Google Scholar 

  51. Neufeld, K. L. & White, R. L. Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. Proc. Natl Acad. Sci. USA 94, 3034–3039 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, F., White, R. L. & Neufeld, K. L. Cell density and phosphorylation control the subcellular localization of adenomatous polyposis coli protein. Mol. Cell. Biol. 21, 8143–8156 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Näthke, I. S., Adams, C. L., Polakis, P., Sellin, J. H. & Nelson, W. J. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J. Cell Biol. 134, 165–179 (1996).The discovery that APC clusters at microtubule tips in actively migrating mammalian cells.

    PubMed  Google Scholar 

  54. Midgley, C. A. et al. APC expression in normal human tissues. J. Pathol. 181, 426–433 (1997).

    CAS  PubMed  Google Scholar 

  55. Rosin-Arbesfeld, R., Ihrke, G. & Bienz, M. Actin-dependent membrane association of the APC tumour suppressor in polarized mammalian epithelial cells. EMBO J. 20, 5929–5939 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rosin-Arbesfeld, R., Townsley, F. & Bienz, M. The APC tumour suppressor has a nuclear export function. Nature 406, 1009–1012 (2000).The discovery — together with references 57 and 58 — of a nuclear-export function of APC, and evidence for its importance in tumour suppression.

    CAS  PubMed  Google Scholar 

  57. Henderson, B. R. Nuclear–cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover. Nature Cell Biol. 2, 653–660 (2000).

    CAS  PubMed  Google Scholar 

  58. Neufeld, K. L. et al. Adenomatous polyposis coli protein contains two nuclear export signals and shuttles between the nucleus and cytoplasm. Proc. Natl Acad. Sci. USA 97, 12085–12090 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Neufeld, K. L., Zhang, F., Cullen, B. R. & White, R. L. APC-mediated downregulation of β-catenin activity involves nuclear sequestration and nuclear export. EMBO Rep. 1, 519–523 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242, 540–547 (1998).

    CAS  PubMed  Google Scholar 

  61. Galea, M., Eleftheriou, A. & Henderson, B. R. ARM domain-dependent nuclear import of Adenomatous polyposis coli protein is stimulated by the B56α sub-unit of protein phosphatase 2A. J. Biol. Chem. 3, 45833–45839 (2001).

    Google Scholar 

  62. Zhang, F., White, R. L. & Neufeld, K. L. Phosphorylation near nuclear localization signal regulates nuclear import of adenomatous polyposis coli protein. Proc. Natl Acad. Sci. USA 97, 12577–12582 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Fagotto, F., Gluck, U. & Gumbiner, B. M. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin. Curr. Biol. 8, 181–190 (1998).

    CAS  PubMed  Google Scholar 

  64. Yokoya, F., Imamoto, N., Tachibana, T. & Yoneda, Y. β-catenin can be transported into the nucleus in a Ran-unassisted manner. Mol. Biol. Cell 10, 1119–1131 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bayliss, R., Littlewood, T. & Stewart, M. Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell 102, 99–108 (2000).

    CAS  PubMed  Google Scholar 

  66. Wiechens, N. & Fagotto, F. CRM1- and Ran-independent nuclear export of β-catenin. Curr. Biol. 11, 18–27 (2001).

    CAS  PubMed  Google Scholar 

  67. Eleftheriou, A., Yoshida, M. & Henderson, B. R. Nuclear export of human β-catenin can occur independent of CRM1 and the adenomatous polyposis coli tumor suppressor. J. Biol. Chem. 276, 25883–25888 (2001).

    CAS  PubMed  Google Scholar 

  68. Tighe, A., Johnson, V. L., Albertella, M. & Taylor, S. S. Aneuploid colon cancer cells have a robust spindle checkpoint. EMBO Rep. 2, 609–614 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Morin, P. J. et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    CAS  PubMed  Google Scholar 

  70. Peifer, M., Sweeton, D., Casey, M. & Wieschaus, E. wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Development 120, 369–380 (1994).The discovery that Wingless signalling, or loss of GSK-3β activity, increases the cytoplasmic rather than the junctional pool of Armadillo.

    CAS  PubMed  Google Scholar 

  71. Hamada, F. et al. Negative regulation of Wingless signaling by D-axin, a Drosophila homolog of axin. Science 283, 1739–1742 (1999).

    CAS  PubMed  Google Scholar 

  72. Reinacher-Schick, A. & Gumbiner, B. M. Apical membrane localization of the adenomatous polyposis coli tumor suppressor protein and subcellular distribution of the β-catenin destruction complex in polarized epithelial cells. J. Cell Biol. 152, 491–502 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Senda, T. et al. The tumor suppressor protein APC colocalizes with β-catenin in the colon epithelial cells. Biochem. Biophys. Res. Commun. 223, 329–334 (1996).

    CAS  PubMed  Google Scholar 

  74. Townsley, F. M. & Bienz, M. Actin-dependent membrane association of a Drosophila epithelial APC protein and its effect on junctional Armadillo. Curr. Biol. 10, 1339–1348 (2000).

    CAS  PubMed  Google Scholar 

  75. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin-α. Cell 94, 193–204 (1998).

    CAS  PubMed  Google Scholar 

  76. Hoier, E. F., Mohler, W. A., Kim, S. K. & Hajnal, A. The Caenorhabditis elegans APC-related gene apr-1 is required for epithelial cell migration and Hox gene expression. Genes Dev. 14, 874–886 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. McCartney, B. M. et al. Drosophila APC2 and Armadillo participate in tethering mitotic spindles to cortical actin. Nature Cell Biol. 3, 933–938 (2001).

    CAS  PubMed  Google Scholar 

  78. Yu, X. & Bienz, M. Ubiquitous expression of a Drosophila adenomatous polyposis coli homolog and its localisation in cortical actin caps. Mech. Develop. 84, 69–73 (1999).

    CAS  Google Scholar 

  79. Lu, B., Roegiers, F., Jan, L. Y. & Jan, Y. N. Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409, 522–525 (2001).The discovery of a function of Drosophila APC in keeping mitotic spindles of dividing epithelial cells oriented in the epithelial plane.

    CAS  PubMed  Google Scholar 

  80. Reinsch, S. & Karsenti, E. Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J. Cell Biol. 126, 1509–1526 (1994).

    CAS  PubMed  Google Scholar 

  81. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J. Cell Biol. 148, 505–518 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Munemitsu, S. et al. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res. 54, 3676–3681 (1994).

    CAS  PubMed  Google Scholar 

  83. Zumbrunn, J., Kinoshita, K., Hyman, A. A. & Näthke, I. S. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Curr. Biol. 11, 44–49 (2001).

    CAS  PubMed  Google Scholar 

  84. Smith, K. J. et al. Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res. 54, 3672–3675 (1994).

    CAS  PubMed  Google Scholar 

  85. Schuyler, S. C. & Pellman, D. Microtubule 'plus-end-tracking proteins': the end is just the beginning. Cell 105, 421–424 (2001).

    CAS  PubMed  Google Scholar 

  86. Nakamura, M., Zhou, X. Z. & Lu, K. P. Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization. Curr. Biol. 11, 1062–1067 (2001).

    CAS  PubMed  Google Scholar 

  87. Barth, A. I., Pollack, A. L., Altschuler, Y., Mostov, K. E. & Nelson, W. J. NH2-terminal deletion of β-catenin results in stable colocalization of mutant β-catenin with adenomatous polyposis coli protein and altered MDCK cell adhesion. J. Cell Biol. 136, 693–706 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kaverina, I., Rottner, K. & Small, J. V. Targeting, capture, and stabilization of microtubules at early focal adhesions. J. Cell Biol. 142, 181–190 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kaverina, I. et al. Enforced polarisation and locomotion of fibroblasts lacking microtubules. Curr. Biol. 10, 739–742 (2000).

    CAS  PubMed  Google Scholar 

  90. Kawasaki, Y. et al. Asef, a link between the tumor suppressor APC and G-protein signaling. Science 289, 1194–1197 (2000).

    CAS  PubMed  Google Scholar 

  91. Su, L. K. et al. APC binds to the novel protein EB1. Cancer Res. 55, 2972–2977 (1995).

    CAS  PubMed  Google Scholar 

  92. Berrueta, L. et al. The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules. Proc. Natl Acad. Sci. USA 95, 10596–10601 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Morrison, E. E., Wardleworth, B. N., Askham, J. M., Markham, A. F. & Meredith, D. M. EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle. Oncogene 17, 3471–3477 (1998).

    CAS  PubMed  Google Scholar 

  94. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865–868 (2000).

    CAS  PubMed  Google Scholar 

  95. Schwartz, K., Richards, K. & Botstein, D. BIM1 encodes a microtubule-binding protein in yeast. Mol. Biol. Cell 8, 2677–2691 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Beinhauer, J. D., Hagan, I. M., Hegemann, J. H. & Fleig, U. Mal3, the fission yeast homologue of the human APC-interacting protein EB-1 is required for microtubule integrity and the maintenance of cell form. J. Cell Biol. 139, 717–728 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Korinek, W. S., Copeland, M. J., Chaudhuri, A. & Chant, J. Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science 287, 2257–2259 (2000).

    CAS  PubMed  Google Scholar 

  98. Lee, L. et al. Positioning of the mitotic spindle by a cortical–microtubule capture mechanism. Science 287, 2260–2262 (2000).

    CAS  PubMed  Google Scholar 

  99. Miller, R. K., Cheng, S. C. & Rose, M. D. Bim1p/Yeb1p mediates the Kar9p-dependent cortical attachment of cytoplasmic microtubules. Mol. Biol. Cell 11, 2949–2959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Miller, R. K. & Rose, M. D. Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J. Cell Biol. 140, 377–390 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bienz, M. Spindles cotton on to junctions, APC and EB1. Nature Cell Biol. 3, E67–E68 (2001).

    CAS  PubMed  Google Scholar 

  102. Kaplan, K. B. et al. A role for the adenomatous polyposis coli protein in chromosome segregation. Nature Cell Biol. 3, 429–432 (2001).Together with reference 101 , this study provides evidence for a role of APC in safeguarding the fidelity of chromosomal segregation.

    CAS  PubMed  Google Scholar 

  103. Fodde, R. et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biol. 3, 433–438 (2001).

    CAS  PubMed  Google Scholar 

  104. Dutrillaux, B. Pathways of chromosome alteration in human epithelial cancers. Adv. Cancer Res. 67, 59–82 (1995).

    CAS  PubMed  Google Scholar 

  105. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    CAS  PubMed  Google Scholar 

  106. Taylor, S. S. & McKeon, F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 89, 727–735 (1997).

    CAS  PubMed  Google Scholar 

  107. Rowan, A. J. et al. APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'. Proc. Natl Acad. Sci. USA 97, 3352–3357 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sparks, A. B., Morin, P. J., Vogelstein, B. & Kinzler, K. W. Mutational analysis of the APC/ β-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58, 1130–1134 (1998).

    CAS  PubMed  Google Scholar 

  109. Eshleman, J. R. et al. Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53. Oncogene 17, 719–725 (1998).

    CAS  PubMed  Google Scholar 

  110. Abdel-Rahman, W. M. et al. Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement. Proc. Natl Acad. Sci. USA 98, 2538–2543 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Shih, I. M. et al. Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res. 61, 818–822 (2001).

    CAS  PubMed  Google Scholar 

  112. Rubinfeld, B. et al. Binding of GSK3β to the APC–β-catenin complex and regulation of complex assembly. Science 272, 1023–1026 (1996).

    CAS  PubMed  Google Scholar 

  113. Yanagawa, S.-I. et al. Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. EMBO J. 21, 1733–1742 (2002).Loss-of-function evidence that casein kinase I (CKI) is a negative regulator of Wnt signalling, rather than a positive one as previously thought, and that it phosphorylates the same target sites in Armadillo as GSK-3β.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Peters, J. M., McKay, R. M., McKay, J. P. & Graff, J. M. Casein kinase I transduces Wnt signals. Nature 401, 345–350 (1999).

    CAS  PubMed  Google Scholar 

  115. Sakanaka, C., Leong, P., Xu, L., Harrison, S. D. & Williams, L. T. Casein kinase ɛ in the wnt pathway: regulation of β-catenin function. Proc. Natl Acad. Sci. USA 96, 12548–12552 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Askham, J. M., Moncur, P., Markham, A. F. & Morrison, E. E. Regulation and function of the interaction between the APC tumour suppressor protein and EB1. Oncogene 19, 1950–1958 (2000).

    CAS  PubMed  Google Scholar 

  117. Spink, K. E., Polakis, P. & Weis, W. I. Structural basis of the Axin–adenomatous polyposis coli interaction. EMBO J. 19, 2270–2279 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Eklof Spink, K., Fridman, S. G. & Weis, W. I. Molecular mechanisms of β-catenin recognition by adenomatous polyposis coli revealed by the structure of an APC–β-catenin complex. EMBO J. 20, 6203–6212 (2001).

    CAS  PubMed  Google Scholar 

  119. Mimori-Kiyosue, Y. & Tsukita, S. Where is APC going? J. Cell Biol. 154, 1105–1109 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Morin, P. J., Vogelstein, B. & Kinzler, K. W. Apoptosis and APC in colorectal tumorigenesis. Proc. Natl Acad. Sci. USA 93, 7950–7954 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell 103, 311–320 (2000).

    CAS  PubMed  Google Scholar 

  122. Birchmeier, W. & Behrens, J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim. Biophys. Acta 1198, 11–26 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank R. Rosin-Arbesfeld and A. Cliffe for providing images and supplementary material. I am also grateful to many colleagues for stimulating discussions, in particular I. Näthke, A. Venkitaraman, P. Edwards and S. Taylor. Finally, I apologize to colleagues to whose work I have not referred due to space constraints.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Flybase

dAPC

APC2

Armadillo

Arrow

CRM1

dEB1

Frizzled

Interpro

ARD

LocusLink

Axin

Bub1

Conductin

OMIM

familial adenomatous polyposis

<i>Saccharomyces</i> Genome Database

Bim1

Kar9

Swiss-Prot

APC

APCL

Asef

β-catenin

Bub3

Cdc2

CKIɛ

GFP

GSK-3β

p53

TCF

FURTHER INFORMATION

Wnt web site

APC mutation database

Glossary

CRYPT

Stem-cell compartment in the mammalian intestinal epithelium.

CADHERIN

Calcium-dependent adhesion molecules that mediate homophilic adhesions. There are several subfamilies of cadherin.

PROTEASOME

A large multisubunit protease complex that selectively degrades intracellular proteins. Targeting to proteasomes most often occurs through attachment of polyubiquitin tags.

FRIZZLED

A protein family of seven-transmembrane receptors. Its founding member, frizzled, was identified as a so-called tissue-polarity mutation in Drosophila that causes defects in the orientation of bristles and hairs. Frizzled proteins function as receptors for Wingless and its vertebrate homologues, the Wnt proteins.

PLANAR POLARITY

The polarity of cells in the plane of an epithelium.

FRET

A technique in which a fluorophore donor molecule is excited and transfers the energy of an adsorbed photon to an acceptor molecule. This technique can be used to study protein–protein interactions.

ARMADILLO REPEAT DOMAIN

(ARD) A sequence of 42 amino acids repeated in tandem, which was first identified in the Drosophila segment-polarity gene armadillo. The structure of this domain is known.

NUCLEOPORINS

Proteins that mediate nuclear transport in cooperation with karyopherins, a GTPase and Ran.

INTERPHASE

The period between two mitotic divisions.

ADHERENS JUNCTION

A cell–cell adhesion complex that is composed of cadherins that are attached to cytoplasmic actin filaments by catenins.

ASTRAL MICROTUBULES

The microtubules of mitotic spindles that do not attach to chromosomes, but point to the cell cortex. In yeast, these are called cytoplasmic microtubules.

FOCAL ADHESIONS

Cellular structures that link the extracellular matrix on the outside of the cell, by integrin receptors, to the actin cytoskeleton inside the cell.

GEF

All members of the Ras superfamily of GTPases cycle between a GTP- and a GDP-bound state. After GTP hydrolysis (usually facilitated by a GTPase-activating protein or GAP), exchange factors (GEFs) facilitate release of the GDP and binding of the more abundant GTP.

LAMELLIPODIA

Thin sheet-like cell extensions found at the leading edge of crawling cells or growth cones.

CENTROSOMES

The main microtubule-organizing centre of animal cells. In yeast, this is known as the spindle-pole body.

KINETOCHORE

A structure that connects each chromatid to the spindle microtubules, which shorten as pairs of chromatids are separated to opposite poles.

ANEUPLOID

The ploidy of a cell refers to the number of sets of chromosomes that it contains. Aneuploid karyotypes are those in which the chromosome complements are not a simple multiple of the haploid set.

SPINDLE CHECKPOINT

A highly conserved surveillance mechanism in mitosis and meiosis that minimizes chromosome loss by preventing chromosomes from initiating anaphase until all kinetochores have successfully captured spindle microtubules.

ALLELIC IMBALANCE

Refers to local aneuploidy, whereby the number of a given gene or allele deviates from 2n (diploidy).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bienz, M. The subcellular destinations of apc proteins. Nat Rev Mol Cell Biol 3, 328–338 (2002). https://doi.org/10.1038/nrm806

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing