Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

DNA N6-methyladenine: a new epigenetic mark in eukaryotes?

Subjects

Abstract

DNA N6-adenine methylation (N6-methyladenine; 6mA) in prokaryotes functions primarily in the host defence system. The prevalence and significance of this modification in eukaryotes had been unclear until recently. Here, we discuss recent publications documenting the presence of 6mA in Chlamydomonas reinhardtii, Drosophila melanogaster and Caenorhabditis elegans; consider possible roles for this DNA modification in regulating transcription, the activity of transposable elements and transgenerational epigenetic inheritance; and propose 6mA as a new epigenetic mark in eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methods to detect N6-methyladenine (6mA) in genomic DNA.
Figure 2: DNA methyltransferases and demethylases.
Figure 3: N6-methyladenine (6mA) genomic distribution and function.

Similar content being viewed by others

References

  1. Vanyushin, B. F., Tkacheva, S. G. & Belozersky, A. N. Rare bases in animal DNA. Nature 225, 948–949 (1970).

    Article  CAS  PubMed  Google Scholar 

  2. Dunn, D. B. & Smith, J. D. Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli. Nature 175, 336–337 (1955).

    Article  CAS  PubMed  Google Scholar 

  3. Vanyushin, B. F., Belozersky, A. N., Kokurina, N. A. & Kadirova, D. X. 5-methylcytosine and 6-methylamino-purine in bacterial DNA. Nature 218, 1066–1067 (1968).

    Article  CAS  PubMed  Google Scholar 

  4. Unger, G. & Venner, H. Remarks on minor bases in spermatic desoxyribonucleic acid. Hoppe Seylers Z. Physiol. Chem. 344, 280–283 (1966).

    Article  CAS  PubMed  Google Scholar 

  5. Hattman, S., Kenny, C., Berger, L. & Pratt, K. Comparative study of DNA methylation in three unicellular eucaryotes. J. Bacteriol. 135, 1156–1157 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Feng, S. H. et al. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl Acad. Sci. USA 107, 8689–8694 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Jones, P. A. & Takai, D. The role of DNA methylation in mammalian epigenetics. Science 293, 1068–1070 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Naito, T., Kusano, K. & Kobayashi, I. Selfish behavior of restriction–modification systems. Science 267, 897–899 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Wion, D. & Casadesus, J. N6-methyl-adenine: an epigenetic signal for DNA–protein interactions. Nat. Rev. Microbiol. 4, 183–192 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vasu, K. & Nagaraja, V. Diverse functions of restriction–modification systems in addition to cellular defense. Microbiol. Mol. Biol. Rev. 77, 53–72 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Urieli-Shoval, S., Gruenbaum, Y. & Razin, A. Sequence and substrate specificity of isolated DNA methylases from Escherichia coli C. J. Bacteriol. 153, 274–280 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wright, R., Stephens, C. & Shapiro, L. The CcrM DNA methyltransferase is widespread in the alpha subdivision of proteobacteria, and its essential functions are conserved in Rhizobium meliloti and Caulobacter crescentus. J. Bacteriol. 179, 5869–5877 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Greer, E. L. et al. DNA methylation on N6-adenine in C. elegans. Cell 161, 868–878 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, G. et al. N6-methyladenine DNA modification in Drosophila. Cell 161, 893–906 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Fu, Y. et al. N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161, 879–892 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gorovsky, M. A., Hattman, S. & Pleger, G. L. [6N]methyl adenine in the nuclear DNA of a eucaryote, Tetrahymena pyriformis. J. Cell Biol. 56, 697–701 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cummings, D. J., Tait, A. & Goddard, J. M. Methylated bases in DNA from Paramecium aurelia. Biochim. Biophys. Acta 374, 1–11 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. Hattman, S. DNA-[adenine] methylation in lower eukaryotes. Biochemistry 70, 550–558 (2005).

    CAS  PubMed  Google Scholar 

  21. Ratel, D., Ravanat, J. L., Berger, F. & Wion, D. N6-methyladenine: the other methylated base of DNA. Bioessays 28, 309–315 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Adams, R. L., McKay, E. L., Craig, L. M. & Burdon, R. H. Methylation of mosquito DNA. Biochim. Biophys. Acta 563, 72–81 (1979).

    Article  CAS  PubMed  Google Scholar 

  24. Ashapkin, V. V., Kutueva, L. I. & Vanyushin, B. F. The gene for domains rearranged methyltransferase (DRM2) in Arabidopsis thaliana plants is methylated at both cytosine and adenine residues. FEBS Lett. 532, 367–372 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Vanyushin, B. F., Alexandrushkina, N. I. & Kirnos, M. D. N6-methyladenine in mitochondrial-DNA of higher-plants. Febs Lett. 233, 397–399 (1988).

    Article  CAS  Google Scholar 

  26. Kay, P. H. et al. Evidence for adenine methylation within the mouse myogenic gene Myo-D1. Gene 151, 89–95 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, W. et al. Determination of DNA adenine methylation in genomes of mammals and plants by liquid chromatography/mass spectrometry. RSC Adv. 5, 64046–64054 (2015).

    Article  CAS  Google Scholar 

  28. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Luo, G. Z. et al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat. Commun. 5, 5630 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Frelon, S. et al. High-performance liquid chromatography—tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA. Chem. Res. Toxicol. 13, 1002–1010 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Roberts, R. J. & Macelis, D. REBASE — restriction enzymes and methylases. Nucleic Acids Res. 29, 268–269 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lacks, S. & Greenberg, B. Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. J. Mol. Biol. 114, 153–168 (1977).

    Article  CAS  PubMed  Google Scholar 

  34. Laird, P. W. Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet. 11, 191–203 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7, 461–465 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schadt, E. E. et al. Modeling kinetic rate variation in third generation DNA sequencing data to detect putative modifications to DNA bases. Genome Res. 23, 129–141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fang, G. et al. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat. Biotechnol. 30, 1232–1239 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19, 187–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Touzain, F., Petit, M. A., Schbath, S. & El Karoui, M. DNA motifs that sculpt the bacterial chromosome. Nat. Rev. Microbiol. 9, 15–26 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Karrer, K. M. & VanNuland, T. A. Methylation of adenine in the nuclear DNA of Tetrahymena is internucleosomal and independent of histone H1. Nucleic Acids Res. 30, 1364–1370 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bromberg, S., Pratt, K. & Hattman, S. Sequence specificity of DNA adenine methylase in the protozoan Tetrahymena thermophila. J. Bacteriol. 150, 993–996 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fu, Y., Dominissini, D., Rechavi, G. & He, C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet. 15, 293–306 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Jia, G. F. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, J. et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Zheng, G. Q. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Iyer, L. M., Abhiman, S. & Aravind, L. Natural history of eukaryotic DNA methylation systems. Prog. Mol. Biol. Transl. Sci. 101, 25–104 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Song, J., Rechkoblit, O., Bestor, T. H. & Patel, D. J. Structure of DNMT1–DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331, 1036–1040 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Bokar, J. A., Shambaugh, M. E., Polayes, D., Matera, A. G. & Rottman, F. M. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3, 1233–1247 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Trewick, S. C., Henshaw, T. F., Hausinger, R. P., Lindahl, T. & Sedgwick, B. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419, 174–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, C. G. et al. Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature 452, 961–965 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu, L. et al. Crystal structure of TET2–DNA complex: insight into TET-mediated 5mC oxidation. Cell 155, 1545–1555 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Bang, J., Bae, S. H., Park, C. J., Lee, J. H. & Choi, B. S. Structural and dynamics study of DNA dodecamer duplexes that contain un-, hemi-, or fully methylated GATC sites. J. Am. Chem. Soc. 130, 17688–17696 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Tronche, F., Rollier, A., Bach, I., Weiss, M. C. & Yaniv, M. The rat albumin promoter: cooperation with upstream elements is required when binding of APF/HNF1 to the proximal element is partially impaired by mutation or bacterial methylation. Mol. Cell. Biol. 9, 4759–4766 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sugimoto, K., Takeda, S. & Hirochika, H. Transcriptional activation mediated by binding of a plant GATA-type zinc finger protein AGP1 to the AG-motif (AGATCCAA) of the wound-inducible Myb gene NtMyb2. Plant J. 36, 550–564 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Lichtsteiner, S. & Schibler, U. A glycosylated liver-specific transcription factor stimulates transcription of the albumin gene. Cell 57, 1179–1187 (1989).

    Article  CAS  PubMed  Google Scholar 

  57. Ratel, D. et al. The bacterial nucleoside N6-methyldeoxyadenosine induces the differentiation of mammalian tumor cells. Biochem. Biophys. Res. Commun. 285, 800–805 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. van Blokland, R., Ross, S., Corrado, G., Scollan, C. & Meyer, P. Developmental abnormalities associated with deoxyadenosine methylation in transgenic tobacco. Plant J. 15, 543–551 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Roberts, D., Hoopes, B. C., Mcclure, W. R. & Kleckner, N. Is10 transposition is regulated by DNA adenine methylation. Cell 43, 117–130 (1985).

    Article  CAS  PubMed  Google Scholar 

  60. Hernday, A., Krabbe, M., Braaten, B. & Low, D. Self-perpetuating epigenetic pili switches in bacteria. Proc. Natl Acad. Sci. USA 99, 16470–16476 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rogers, J. C. & Rogers, S. W. Comparison of the effects of N6-methyldeoxyadenosine and N5-methyldeoxycytosine on transcription from nuclear gene promoters in barley. Plant J. 7, 221–233 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Pratt, K. & Hattman, S. Deoxyribonucleic-acid methylation and chromatin organization in Tetrahymena thermophila. Mol. Cell. Biol. 1, 600–608 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huff, J. T. & Zilberman, D. Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes. Cell 156, 1286–1297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Katz, D. J., Edwards, T. M., Reinke, V. & Kelly, W. G. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137, 308–320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Greer, E. L. et al. A histone methylation network regulates transgenerational epigenetic memory in C. elegans. Cell Rep. 7, 113–126 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Poole, A., Penny, D. & Sjoberg, B. M. Confounded cytosine! Tinkering and the evolution of DNA. Nat. Rev. Mol. Cell Biol. 2, 147–151 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Kierzek, E. & Kierzek, R. The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. Nucleic Acids Res. 31, 4472–4480 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roost, C. et al. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc. 137, 2107–2115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518, 560–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fu, Y. et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat. Commun. 4, 1798 (2013).

    Article  PubMed  Google Scholar 

  71. Capuano, F., Mulleder, M., Kok, R., Blom, H. J. & Ralser, M. Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal. Chem. 86, 3697–3702 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work was not cited owing to space limitations. C.H. is supported by the US National Institutes of Health (NIH) grant HG006827 and is an investigator of Howard Hughes Medical Institute. M.A.B. is a Special Fellow of the Leukemia & Lymphoma Society. Work in the Greer lab is supported by a National Institute on Aging of the NIH grant (AG043550). Work in the Shi laboratory is supported by grants from the NIH (CA118487 and MH096066), the Ellison Medical Foundation and the Samuel Waxman Cancer Research Foundation. Y.S. is an American Cancer Society Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan He or Yang Shi.

Ethics declarations

Competing interests

Y.S. is a co-founder of Constellation Pharmaceuticals, Inc. and a member of its scientific advisory board. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, GZ., Blanco, M., Greer, E. et al. DNA N6-methyladenine: a new epigenetic mark in eukaryotes?. Nat Rev Mol Cell Biol 16, 705–710 (2015). https://doi.org/10.1038/nrm4076

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing