Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ribosome profiling reveals the what, when, where and how of protein synthesis

Key Points

  • Ribosome profiling is a deep-sequencing-based tool that allows the detailed measurement of translation globally and in vivo.

  • The method provides quantification of levels of new protein synthesis, as well as information about ribosome positions that can be used to infer details about translation mechanism or to identify translated open reading frames (ORFs).

  • Ribosome profiling enables instantaneous rather than steady-state measurement and is thus a particularly valuable tool for the study of gene expression over dynamic processes.

  • Proximity-specific ribosome profiling is based on localized labelling of ribosome populations within cells and enables in vivo measurement of translation at specific organelles or subcellular structures.

  • Ribosome profiling is the first tool available for the experimental annotation of translated ORFs and has enabled the discovery of a wide range of new translation products. These include novel short peptides and alternative isoforms of characterized proteins, the vast majority of which are currently of unknown function.

Abstract

Ribosome profiling, which involves the deep sequencing of ribosome-protected mRNA fragments, is a powerful tool for globally monitoring translation in vivo. The method has facilitated discovery of the regulation of gene expression underlying diverse and complex biological processes, of important aspects of the mechanism of protein synthesis, and even of new proteins, by providing a systematic approach for experimental annotation of coding regions. Here, we introduce the methodology of ribosome profiling and discuss examples in which this approach has been a key factor in guiding biological discovery, including its prominent role in identifying thousands of novel translated short open reading frames and alternative translation products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of ribosome profiling.
Figure 2: Qualitative and quantitative data provided by ribosome profiling.
Figure 3: Ribosome profiling facilitates quantitative proteomic discovery in diverse systems.
Figure 4: Dom34 facilitates the release of 80S ribosomes from a subset of 3β€² untranslated regions (UTRs).
Figure 5: Proximity-specific ribosome profiling at the endoplasmic reticulum (ER).
Figure 6: Proposed cellular roles for the peptide products of translated short open reading frames (sORFs) identified by ribosome profiling.

Similar content being viewed by others

References

  1. McCann, K. L. & Baserga, S. J. Mysterious ribosomopathies. Science 341, 849–850 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cleary, J. D. & Ranum, L. P. W. Repeat-associated non-ATG (RAN) translation in neurological disease. Hum. Mol. Genet. 22, R45–R51 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ellis, S. R. Nucleolar stress in Diamond Blackfan anemia pathophysiology. Biochim. Biophys. Acta 1842, 765–768 (2014).

    CAS  PubMed  Google Scholar 

  4. Trainor, P. A. & Merrill, A. E. Ribosome biogenesis in skeletal development and the pathogenesis of skeletal disorders. Biochim. Biophys. Acta 1842, 769–778 (2014).

    CAS  PubMed  Google Scholar 

  5. Bolze, A. et al. Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. Science 340, 976–978 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kondrashov, N. et al. Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145, 383–397 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009). This work defines the ribosome profiling method and details its specificity, precision and utility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wolin, S. L. & Walter, P. Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J. 7, 3559–3569 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Steitz, J. A. Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature 224, 957–964 (1969).

    CAS  PubMed  Google Scholar 

  10. Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Stern-Ginossar, N. et al. Decoding human cytomegalovirus. Science 338, 1088–1093 (2012).

    CAS  PubMed  Google Scholar 

  12. Brar, G. A. et al. High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335, 552–557 (2012). References 11 and 12 describe the application of ribosome profiling to physiological dynamic cellular processes, the HCMV infection cycle in human cells and meiosis in budding yeast, respectively. In these disparate systems, both studies identified many new examples of translational control, uORF translation and the translation of many sORFs and alternative ORFs in genomic regions that were thought to be non-coding.

    CAS  PubMed  Google Scholar 

  13. Bazzini, A. A. et al. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J. 33, 981–993 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pauli, A. et al. Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science 343, 1248636 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Dunn, J. G., Foo, C. K., Belletier, N. G., Gavis, E. R. & Weissman, J. S. Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife 2, e01179 (2013).

    PubMed  PubMed Central  Google Scholar 

  16. Aspden, J. L. et al. Extensive translation of small open reading frames revealed by Poly-Ribo-Seq. eLife 3, e03528 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Smith, J. E. et al. Translation of small open reading frames within unannotated RNA transcripts in Saccharomyces cerevisiae. Cell Rep. 7, 1858–1866 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, S. et al. Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc. Natl Acad. Sci. USA 109, E2424–E2432 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Andreev, D. E. et al. Translation of 5β€² leaders is pervasive in genes resistant to eIF2 repression. eLife 4, e03971 (2014).

    Google Scholar 

  20. Van Dijk, E. L., Auger, H., Jaszczyszyn, Y. & Thermes, C. Ten years of next-generation sequencing technology. Trends Genet. 30, 418–426 (2014).

    CAS  PubMed  Google Scholar 

  21. Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuersten, S., Radek, A., Vogel, C. & Penalva, L. O. Translation regulation gets its 'omics' moment. Wiley Interdiscip. Rev. RNA 4, 617–630 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Oh, E. et al. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147, 1295–1308 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Arias, C. et al. KSHV 2.0: a comprehensive annotation of the Kaposi's sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog. 10, e1003847 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Stadler, M. & Fire, A. Wobble base-pairing slows in vivo translation elongation in metazoans. RNA 17, 2063–2073 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bazzini, A. A., Lee, M. T. & Giraldez, A. J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Juntawong, P., Girke, T., Bazin, J. & Bailey-Serres, J. Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc. Natl Acad. Sci. USA 111, E203–E212 (2014).

    CAS  PubMed  Google Scholar 

  28. Jensen, B. C. et al. Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics 15, 911 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Caro, F., Ahyong, V., Betegon, M. & DeRisi, J. L. Genome-wide regulatory dynamics of translation in the Plasmodium falciparum asexual blood stages. eLife 3, e04106 (2014).

    PubMed Central  Google Scholar 

  30. Schafer, S. et al. Translational regulation shapes the molecular landscape of complex disease phenotypes. Nat. Commun. 6, 7200 (2015).

    PubMed  Google Scholar 

  31. Rooijers, K., Loayza-Puch, F., Nijtmans, L. G. & Agami, R. Ribosome profiling reveals features of normal and disease-associated mitochondrial translation. Nat. Commun. 4, 2886 (2013).

    PubMed  Google Scholar 

  32. Zoschke, R., Watkins, K. P. & Barkan, A. A rapid ribosome profiling method elucidates chloroplast ribosome behavior in vivo. Plant Cell 25, 2265–2275 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Michel, A. M. et al. GWIPS-viz: development of a ribo-seq genome browser. Nucleic Acids Res. 42, D859–D864 (2014).

    CAS  PubMed  Google Scholar 

  34. Liu, X., Jiang, H., Gu, Z. & Roberts, J. W. High-resolution view of bacteriophage lambda gene expression by ribosome profiling. Proc. Natl Acad. Sci. USA 110, 11928–11933 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gerashchenko, M. V., Lobanov, A. V. & Gladyshev, V. N. Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proc. Natl Acad. Sci. USA 109, 17394–17399 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, G.-W., Oh, E. & Weissman, J. S. The anti-Shine–Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484, 538–541 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Woolstenhulme, C. J., Guydosh, N. R., Green, R. & Buskirk, A. R. High-precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP. Cell Rep. 11, 13–21 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chew, G.-L. et al. Ribosome profiling reveals resemblance between long non-coding RNAs and 5β€² leaders of coding RNAs. Development 140, 2828–2834 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ingolia, N. T. et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep. 8, 1365–1379 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Andreev, D. E. et al. Oxygen and glucose deprivation induces widespread alterations in mRNA translation within 20 minutes. Genome Biol. 16, 90 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Guydosh, N. R. & Green, R. Dom34 rescues ribosomes in 3β€² untranslated regions. Cell 156, 950–962 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shalgi, R. et al. Widespread regulation of translation by elongation pausing in heat shock. Mol. Cell 49, 439–452 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Han, Y. et al. Ribosome profiling reveals sequence-independent post-initiation pausing as a signature of translation. Cell Res. 24, 842–851 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, B., Han, Y. & Qian, S.-B. Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol. Cell 49, 453–463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Subramaniam, A. R., Zid, B. M. & O'Shea, E. K. An integrated approach reveals regulatory controls on bacterial translation elongation. Cell 159, 1200–1211 (2014). This work probes position-specific changes in ribosome distribution among various cellular conditions, concluding that tRNA abundances do not account for elongation rates for most codons, and that pausing of ribosomes during starvation may result in translation abortion.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lareau, L. F., Hite, D. H., Hogan, G. J. & Brown, P. O. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. eLife 3, e01257 (2014). This work identifies a class of short ribosome footprints that may be enriched by treatment with translation elongation inhibitors and that are likely to represent a distinct conformation of the ribosome at a specific stage of the elongation cycle.

    PubMed  PubMed Central  Google Scholar 

  47. Siegel, A. F., van den Engh, G., Hood, L., Trask, B. & Roach, J. C. Modeling the feasibility of whole genome shotgun sequencing using a pairwise end strategy. Genomics 68, 237–246 (2000).

    CAS  PubMed  Google Scholar 

  48. Roberts, A., Schaeffer, L. & Pachter, L. Updating RNA-Seq analyses after re-annotation. Bioinformatics 29, 1631–1637 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Saliba, A.-E., Westermann, A. J., Gorski, S. A. & Vogel, J. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845–8860 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Green, R. & Noller, H. F. Ribosomes and translation. Annu. Rev. Biochem. 66, 679–716 (1997).

    CAS  PubMed  Google Scholar 

  51. Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Aris, J. P., Klionsky, D. J. & Simoni, R. D. The Fo subunits of the Escherichia coli F1Fo-ATP synthase are sufficient to form a functional proton pore. J. Biol. Chem. 260, 11207–11215 (1985).

    CAS  PubMed  Google Scholar 

  53. Humphryes, N. et al. The Ecm11–Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast. PLoS Genet. 9, e1003194 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, M. T. et al. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503, 360–364 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kronja, I. et al. Widespread changes in the posttranscriptional landscape at the Drosophila oocyte-to-embryo transition. Cell Rep. 7, 1495–1508 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Vasquez, J.-J., Hon, C.-C., Vanselow, J. T., Schlosser, A. & Siegel, T. N. Comparative ribosome profiling reveals extensive translational complexity in different Trypanosoma brucei life cycle stages. Nucleic Acids Res. 42, 3623–3637 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Stumpf, C. R., Moreno, M. V., Olshen, A. B., Taylor, B. S. & Ruggero, D. The translational landscape of the mammalian cell cycle. Mol. Cell 52, 574–582 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Stadler, M. & Fire, A. Conserved translatome remodeling in nematode species executing a shared developmental transition. PLoS Genet. 9, e1003739 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. Liu, B. & Qian, S.-B. Translational reprogramming in cellular stress response. Wiley Interdiscip. Rev. RNA 5, 301–305 (2014).

    CAS  PubMed  Google Scholar 

  60. Ingolia, N. T. Ribosome profiling: new views of translation, from single codons to genome scale. Nat. Rev. Genet. 15, 205–213 (2014).

    CAS  PubMed  Google Scholar 

  61. Michel, A. M. & Baranov, P. V. Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale. Wiley Interdiscip. Rev. RNA 4, 473–490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cox, J. S. & Walter, P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87, 391–404 (1996).

    CAS  PubMed  Google Scholar 

  63. Kannan, K. et al. The general mode of translation inhibition by macrolide antibiotics. Proc. Natl Acad. Sci. USA 111, 15958–15963 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kannan, K., VΓ‘zquez-Laslop, N. & Mankin, A. S. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell 151, 508–520 (2012).

    CAS  PubMed  Google Scholar 

  65. Davis, A. R., Gohara, D. W. & Yap, M.-N. F. Sequence selectivity of macrolide-induced translational attenuation. Proc. Natl Acad. Sci. USA 111, 15379–15384 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jung, H., Gkogkas, C. G., Sonenberg, N. & Holt, C. E. Remote control of gene function by local translation. Cell 157, 26–40 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Williams, C. C., Jan, C. H. & Weissman, J. S. Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling. Science 346, 748–751 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jan, C. H., Williams, C. C. & Weissman, J. S. Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346, 1257521 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. Arava, Y. et al. Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 100, 3889–3894 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Heiman, M., Kulicke, R., Fenster, R. J., Greengard, P. & Heintz, N. Cell type-specific mRNA purification by translating ribosome affinity purification (TRAP). Nat. Protoc. 9, 1282–1291 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Inada, T. et al. One-step affinity purification of the yeast ribosome and its associated proteins and mRNAs. RNA 8, 948–958 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zanetti, M. E., Chang, I.-F., Gong, F., Galbraith, D. W. & Bailey-Serres, J. Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol. 138, 624–635 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mustroph, A., Zanetti, M. E., Girke, T. & Bailey-Serres, J. Isolation and analysis of mRNAs from specific cell types of plants by ribosome immunopurification. Methods Mol. Biol. 959, 277–302 (2013).

    CAS  PubMed  Google Scholar 

  75. Thomas, A. et al. A versatile method for cell-specific profiling of translated mRNAs in Drosophila. PLoS ONE 7, e40276 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Housley, M. P. et al. Translational profiling through biotinylation of tagged ribosomes in zebrafish. Development 141, 3988–3993 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Reinhardt, J. A. & Jones, C. D. Two rapidly evolving genes contribute to male fitness in Drosophila. J. Mol. Evol. 77, 246–259 (2013).

    CAS  PubMed  Google Scholar 

  78. Starck, S. R. et al. Leucine-tRNA initiates at CUG start codons for protein synthesis and presentation by MHC class I. Science 336, 1719–1723 (2012).

    CAS  PubMed  Google Scholar 

  79. Rebbapragada, I. & Lykke-Andersen, J. Execution of nonsense-mediated mRNA decay: what defines a substrate? Curr. Opin. Cell Biol. 21, 394–402 (2009).

    CAS  PubMed  Google Scholar 

  80. Pauli, A., Valen, E. & Schier, A. F. Identifying (non-)coding RNAs and small peptides: challenges and opportunities. BioEssays 37, 103–112 (2015).

    CAS  PubMed  Google Scholar 

  81. Ulitsky, I. & Bartel, D. P. lincRNAs: genomics, evolution, and mechanisms. Cell 154, 26–46 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kondo, T. et al. Small peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis. Science 329, 336–339 (2010). This paper identifies key roles in fly development for several short peptides (from 11 to 32 amino acids) translated from sORFs on a transcript that was previously thought to be non-coding.

    CAS  PubMed  Google Scholar 

  83. Magny, E. G. et al. Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science 341, 1116–1120 (2013).

    CAS  PubMed  Google Scholar 

  84. Anderson, D. M. et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160, 595–606 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ruiz-Orera, J., Messeguer, X., Subirana, J. A. & Alba, M. M. Long non-coding RNAs as a source of new peptides. eLife 3, e03523 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. Xu, Y. & Ganem, D. Making sense of antisense: seemingly noncoding RNAs antisense to the master regulator of Kaposi's sarcoma-associated herpesvirus lytic replication do not regulate that transcript but serve as mRNAs encoding small peptides. J. Virol. 84, 5465–5475 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Guttman, M., Russell, P., Ingolia, N. T., Weissman, J. S. & Lander, E. S. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154, 240–251 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Carvunis, A.-R. et al. Proto-genes and de novo gene birth. Nature 487, 370–374 (2012). In this work, the authors present evidence to support the protogene hypothesis, according to which new proteins can evolve through the selection and elongation of ORFs encoding peptides translated from putative intergenic transcripts.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Brubaker, S. W., Gauthier, A. E., Mills, E. W., Ingolia, N. T. & Kagan, J. C. A bicistronic MAVS transcript highlights a class of truncated variants in antiviral immunity. Cell 156, 800–811 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Michel, A. M. et al. Observation of dually decoded regions of the human genome using ribosome profiling data. Genome Res. 22, 2219–2229 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Noderer, W. L. et al. Quantitative analysis of mammalian translation initiation sites by FACS-seq. Mol. Syst. Biol. 10, 748 (2014).

    PubMed  PubMed Central  Google Scholar 

  92. Schwaid, A. G. et al. Chemoproteomic discovery of cysteine-containing human short open reading frames. J. Am. Chem. Soc. 135, 16750–16753 (2013).

    CAS  PubMed  Google Scholar 

  93. Slavoff, S. A. et al. Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat. Chem. Biol. 9, 59–64 (2013).

    CAS  PubMed  Google Scholar 

  94. Ma, J. et al. Discovery of human sORF-encoded polypeptides (SEPs) in cell lines and tissue. J. Proteome Res. 13, 1757–1765 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. CrappΓ©, J. et al. Combining in silico prediction and ribosome profiling in a genome-wide search for novel putatively coding sORFs. BMC Genomics 14, 648 (2013).

    PubMed  PubMed Central  Google Scholar 

  96. Menschaert, G. et al. Deep proteome coverage based on ribosome profiling aids mass spectrometry-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events. Mol. Cell. Proteomics 12, 1780–1790 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Vanderperre, B. et al. Direct detection of alternative open reading frames translation products in human significantly expands the proteome. PLoS ONE 8, e70698 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lin, M. F., Jungreis, I. & Kellis, M. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 27, i275–i282 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang, H.-Y., Tang, H.-L., Chao, H.-Y., Yeh, L.-S. & Wang, C.-C. An unusual pattern of protein expression and localization of yeast alanyl-tRNA synthetase isoforms. Mol. Microbiol. 60, 189–198 (2006).

    CAS  PubMed  Google Scholar 

  100. Chang, K.-J. & Wang, C.-C. Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J. Biol. Chem. 279, 13778–13785 (2004).

    CAS  PubMed  Google Scholar 

  101. Wan, J. & Qian, S.-B. TISdb: a database for alternative translation initiation in mammalian cells. Nucleic Acids Res. 42, D845–D850 (2014). This work presents a database of alternative translation initiation sites that have been identified by ribosome profiling in mammalian cells.

    CAS  PubMed  Google Scholar 

  102. Artieri, C. G. & Fraser, H. B. Evolution at two levels of gene expression in yeast. Genome Res. 24, 411–421 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Jungreis, I. et al. Evidence of abundant stop codon readthrough in Drosophila and other metazoa. Genome Res. 21, 2096–2113 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Schueren, F. et al. Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. eLife 3, e03640 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zalatan, J. G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339–350 (2015).

    CAS  PubMed  Google Scholar 

  107. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank C. Jan and E. Ünal for helpful comments on this manuscript and N. Ingolia for development of the original ribosome profiling protocol and helpful discussions. This work was partially supported by the Winkler Family Biological Sciences Award to G.A.B. and Howard Hughes Medical Institute and Center for RNA Systems Biology funding to J.S.W.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gloria A. Brar or Jonathan S. Weissman.

Ethics declarations

Competing interests

J.S.W. is an inventor on a patent application for ribosome profiling.

Supplementary information

Supplementary information S1 (Figure)

FLOSS analysis enables post-hoc curation of ribosome profiling data. (PDF 197 kb)

PowerPoint slides

Glossary

Ribosome footprints

mRNA fragments of ∼30 nucleotides that result from nuclease treatment of translating ribosomes. These are mRNA regions that are protected by the ribosome as the mRNA is decoded to a protein sequence.

Upstream open reading frames

(uORFs). ORFs in the 5β€² leader region of a characterized mRNA transcript. Translation of uORFs may regulate translation of a downstream ORF. Ribosome profiling allows for the empirical identification of all translated uORFs in vivo under a condition of interest. Although uORFs are short, here we do not include them in the class of 'short ORFs', which are on an mRNA that was not previously thought to encode a protein.

Polysome gradients

A method for fractionating ribosomes that are bound to mRNAs by velocity centrifugation of cell extract on sucrose gradients, allowing for the separation of mRNAs that are associated with one ribosome (monosome) from those being translated by multiple ribosomes (polysome). Sucrose gradient fractionation facilitates qualitative analysis of the translation status of cells.

Ribosome P site

The site within an actively translating ribosome that is usually associated with the tRNA attached to the growing peptide chain.

Codon periodicity

The three-nucleotide pattern of ribosome occupancy, reflecting mRNA translocation in the ribosome by codon as translation occurs.

Fragment length organization similarity score (FLOSS) analysis

A metric for determining the probability that ribosome footprints over a given region (or set of regions) result from translation. This analysis involves comparing size distributions of footprints over a query region and over validated coding regions and is based on the concept that the biophysical properties of translating ribosomes result in characteristic signatures in ribosome footprint sizes.

Translocon

The proteinaceous tunnel through which nascent proteins cross the endoplasmic reticulum membrane.

Translating ribosome affinity capture

(TRAP). A method that allows identification of translated mRNAs on the basis of their in vivo association with a tagged ribosomal subunit that is expressed in a cell type-specific manner. This method is a valuable tool for assaying tissue-specific translation in animal and plant systems.

Nonsense-mediated decay

mRNA degradation, which has traditionally been thought to result from stop codons that terminate translation more 5β€² than is usual on an mRNA.

Short ORFs

(sORFs). Open reading frames of fewer than 100 codons on mRNAs that are not known to encode a canonical (long) protein. sORFs are a class of ORF that have not traditionally been thought to be frequently translated, although ribosome profiling and other approaches have recently validated the translation of thousands of sORFs in a range of organisms.

ORFs encoding alternative isoforms of known proteins

Open reading frames (ORFs) that differ from another ORF at the same locus in either the start codon or the stop codon position but share the same reading frame. Translation of these ORFs may result in, for example, different subcellular targeting for a similar protein.

Signatures of protein-coding conservation

Purifying evolutionary selection results in higher levels of synonymous than nonsynonymous substitutions, specifically among homologous coding sequences. The pattern of nonsynonymous to synonymous differences among homologous regions compared in a phylogenetic group can be used to predict the likelihood that a genomic locus encodes a translated open reading frame (ORF).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brar, G., Weissman, J. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 16, 651–664 (2015). https://doi.org/10.1038/nrm4069

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4069

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter β€” top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research