Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The discovery of modular binding domains: building blocks of cell signalling

Abstract

Cell signalling — the ability of a cell to process information from the environment and change its behaviour in response — is a central property of life. Signalling depends on proteins that are assembled from a toolkit of modular domains, each of which confers a specific activity or function. The discovery of modular protein- and lipid-binding domains was a crucial turning point in understanding the logic and evolution of signalling mechanisms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Modular domains timeline.
Figure 2: GRB2 mediates receptor Tyr kinase (RTK)-induced RAS activation.
Figure 3: Enzyme regulation by modular binding domains.

References

  1. 1

    Cui, Q. & Karplus, M. Allostery and cooperativity revisited. Protein Sci. 17, 1295–1307 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    CAS  Google Scholar 

  3. 3

    Bourne, H. R. Signals past, present, and future. Cold Spring Harb. Symp. Quant. Biol. 53, 1019–1031 (1988).

    CAS  PubMed  Google Scholar 

  4. 4

    Eckhart, W., Hutchinson, M. A. & Hunter, T. An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell 18, 925–933 (1979).

    CAS  PubMed  Google Scholar 

  5. 5

    Hunter, T. & Sefton, B. M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl Acad. Sci. USA 77, 1311–1315 (1980).

    CAS  PubMed  Google Scholar 

  6. 6

    Ebina, Y. et al. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40, 747–758 (1985).

    CAS  PubMed  Google Scholar 

  7. 7

    Ullrich, A. et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313, 756–761 (1985).

    CAS  PubMed  Google Scholar 

  8. 8

    Ullrich, A. et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309, 418–425 (1984).

    CAS  PubMed  Google Scholar 

  9. 9

    Downward, J. et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307, 521–527 (1984).

    CAS  PubMed  Google Scholar 

  10. 10

    Iba, H., Cross, F. R., Garber, E. A. & Hanafusa, H. Low level of cellular protein phosphorylation by nontransforming overproduced p60c-src. Mol. Cell. Biol. 5, 1058–1066 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Coussens, P. M., Cooper, J. A., Hunter, T. & Shalloway, D. Restriction of the in vitro and in vivo tyrosine protein kinase activities of pp60c-src relative to pp60v-src. Mol. Cell. Biol. 5, 2753–2763 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Brugge, J. S. & Darrow, D. Analysis of the catalytic domain of phosphotransferase activity of two avian sarcoma virus-transforming proteins. J. Biol. Chem. 259, 4550–4557 (1984).

    CAS  PubMed  Google Scholar 

  13. 13

    Levinson, A. D., Courtneidge, S. A. & Bishop, J. M. Structural and functional domains of the Rous sarcoma virus transforming protein (pp60src). Proc. Natl Acad. Sci. USA 78, 1624–1628 (1981).

    CAS  PubMed  Google Scholar 

  14. 14

    Bryant, D. & Parsons, J. T. Site-directed mutagenesis of the src gene of Rous sarcoma virus: construction and characterization of a deletion mutant temperature sensitive for transformation. J. Virol. 44, 683–691 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    DeClue, J. E. & Martin, G. S. Linker insertion-deletion mutagenesis of the v-src gene: isolation of host- and temperature-dependent mutants. J. Virol. 63, 542–554 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    DeClue, J. E., Sadowski, I., Martin, G. S. & Pawson, T. A conserved domain regulates interactions of the v-fps protein-tyrosine kinase with the host cell. Proc. Natl Acad. Sci. USA 84, 9064–9068 (1987).

    CAS  PubMed  Google Scholar 

  17. 17

    Verderame, M. F., Kaplan, J. M. & Varmus, H. E. A mutation in v-src that removes a single conserved residue in the SH-2 domain of pp60v-src restricts transformation in a host-dependent manner. J. Virol. 63, 338–348 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Iwashita, S., Kitamura, N. & Yoshida, M. Molecular events leading to fusiform morphological transformation by partial src deletion mutant of Rous sarcoma virus. Virology 125, 419–431 (1983).

    CAS  PubMed  Google Scholar 

  19. 19

    Sadowski, I., Stone, J. C. & Pawson, T. A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag−fps. Mol. Cell. Biol. 6, 4396–4408 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Glenney, J. R., Zokas, L. & Kamps, M. P. Monoclonal antibodies to phosphotyrosine. J. Immunol. Methods 109, 277–285 (1988).

    CAS  PubMed  Google Scholar 

  21. 21

    Frackelton, A. R. J., Ross, A. H. & Eisen, H. N. Characterization and use of monoclonal antibodies for isolation of phosphotyrosyl proteins from retrovirus-transformed cells and growth factor-stimulated cells. Mol. Cell. Biol. 3, 1343–1352 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Kaplan, D. R., Morrison, D. K., Wong, G., McKormick, F. & Williams, L. T. PDGF β-receptor stimulates tyrosine phosphorylation of GAP and association of GAP with signalling complex. Cell 61, 125–133 (1990).

    CAS  PubMed  Google Scholar 

  23. 23

    Kazlauskas, A. & Cooper, J. Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell 58, 1121–1133 (1989).

    CAS  PubMed  Google Scholar 

  24. 24

    Meisenhelder, J., Suh, P.-G., Rhee, S. G. & Hunter, T. Phospholipase C-gamma is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell 57, 1109–1122 (1989).

    CAS  PubMed  Google Scholar 

  25. 25

    Margolis, B. et al. EGF induces tyrosine phosphorylation of phospholipase C-II: a potential mechanism for EGF receptor signaling. Cell 57, 1101–1107 (1989).

    CAS  PubMed  Google Scholar 

  26. 26

    Mayer, B. J., Hamaguchi, M. & Hanafusa, H. A novel viral oncogene with structural similarity to phospholipase C. Nature 332, 272–275 (1988).

    CAS  PubMed  Google Scholar 

  27. 27

    Stahl, M. L., Ferenz, C. R., Kelleher, K. L., Kriz, R. W. & Knopf, J. L. Sequence similarity of phospholipase C with the non-catalytic region of src. Nature 332, 269–272 (1988).

    CAS  PubMed  Google Scholar 

  28. 28

    Trahey, M. et al. Molecular cloning of two types of GAP cDNA from human placenta. Science 242, 1697–1700 (1988).

    CAS  PubMed  Google Scholar 

  29. 29

    Anderson, D. et al. Binding of SH2 domains of phospholipase Cg1, GAP, and src to activated growth factor receptors. Science 250, 979–982 (1990).

    CAS  PubMed  Google Scholar 

  30. 30

    Margolis, B. et al. The tyrosine-phosphorylated carboxyterminus of the EGF receptor is a binding site for GAP and PLC-γ. EMBO J. 9, 4375–4380 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Matsuda, M., Mayer, B. J. & Hanafusa, H. Identification of domains of the v-crk oncogene product sufficient for association with phosphotyrosine-containing proteins. Mol. Cell. Biol. 11, 1607–1613 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Mayer, B. J., Jackson, P. K. & Baltimore, D. The noncatalytic src homology region 2 segment of abl tyrosine kinase binds to tyrosine-phosphorylated cellular proteins with high affinity. Proc. Natl Acad. Sci. USA 88, 627–631 (1991).

    CAS  PubMed  Google Scholar 

  33. 33

    Moran, M. F. et al. Src homology region 2 domains direct protein–protein interactions in signal transduction. Proc. Natl Acad. Sci. USA 87, 8622–8626 (1990).

    CAS  PubMed  Google Scholar 

  34. 34

    Eck, M. J., Shoelson, S. E. & Harrison, S. C. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology 2 domain of p59lck. Nature 362, 87–91 (1993).

    CAS  PubMed  Google Scholar 

  35. 35

    Waksman, G. et al. Crystal structure of the phosphotyrosine recognition domain (SH2) of the v-src tyrosine kinase complexed with tyrosine phosphorylated peptides. Nature 358, 646–653 (1992).

    CAS  PubMed  Google Scholar 

  36. 36

    Waksman, G., Shoelson, S. E., Pant, N., Cowburn, D. & Kuriyan, D. Binding of a high affinity phosphotyrosyl psptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72, 779–790 (1993).

    CAS  PubMed  Google Scholar 

  37. 37

    Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    CAS  Google Scholar 

  38. 38

    Songyang, Z. et al. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol. Cell. Biol. 14, 2777–2785 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Overduin, M., Rios, C. B., Mayer, B. J., Baltimore, D. & Cowburn, D. Three dimensional solution structure of the src homology 2 domain of c-abl. Cell 70, 697–704 (1992).

    CAS  PubMed  Google Scholar 

  40. 40

    Liu, B. A. et al. The human and mouse complement of SH2 domain proteins — establishing the boundaries of phosphotyrosine signaling. Mol. Cell 22, 851–868 (2006).

    PubMed  Google Scholar 

  41. 41

    Seet, B. T., Dikic, I., Zhou, M. M. & Pawson, T. Reading protein modifications with interaction domains. Nat. Rev. Mol. Cell Biol. 7, 473–483 (2006).

    CAS  Google Scholar 

  42. 42

    Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    CAS  Google Scholar 

  43. 43

    Dikic, I., Wakatsuki, S. & Walters, K. J. Ubiquitin-binding domains — from structures to functions. Nat. Rev. Mol. Cell Biol. 10, 659–671 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Harlan, J. E., Hajduk, P. J., Yoon, H. S. & Fesik, S. W. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371, 168–170 (1994).

    CAS  PubMed  Google Scholar 

  46. 46

    Lemmon, M. A., Ferguson, K. M., Sigler, P. B. & Schlessinger, J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc. Natl Acad. Sci. USA 92, 10472–10476 (1995).

    CAS  PubMed  Google Scholar 

  47. 47

    Yu, J. W. et al. Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol. Cell 13, 677–688 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Park, W. S. et al. Comprehensive identification of PIP3-regulated PH domains from C. elegans to H. sapiens by model prediction and live imaging. Mol. Cell 30, 381–392 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Gallego, O. et al. A systematic screen for protein–lipid interactions in Saccharomyces cerevisiae. Mol. Syst. Biol. 6, 430 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Cicchetti, P., Mayer, B. J., Thiel, G. & Baltimore, D. Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Science 257, 803–806 (1992).

    CAS  PubMed  Google Scholar 

  51. 51

    Ren, R., Mayer, B. J., Cicchetti, P. & Baltimore, D. Identification of a 10-amino acid proline-rich SH3 binding site. Science 259, 1157–1161 (1993).

    CAS  PubMed  Google Scholar 

  52. 52

    Kay, B. K., Williamson, M. P. & Sudol, M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 14, 231–241 (2000).

    CAS  PubMed  Google Scholar 

  53. 53

    Zarrinpar, A., Bhattacharyya, R. P. & Lim, W. A. The structure and function of proline recognition domains. Sci. STKE 2003, RE8 (2003).

    PubMed  Google Scholar 

  54. 54

    Kärkkäinen, S. et al. Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome. EMBO Rep. 7, 186–191 (2006).

    PubMed  Google Scholar 

  55. 55

    Feng, S., Chen, J. K., Yu, H., Simon, J. A. & Schreiber, S. L. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266, 1241–1247 (1994).

    CAS  PubMed  Google Scholar 

  56. 56

    Lim, W. A., Richards, F. M. & Fox, R. O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372, 375–379 (1994).

    CAS  PubMed  Google Scholar 

  57. 57

    Kennedy, M. B. Origin of PDZ (DHR, GLGF) domains. Trends Biochem. Sci. 20, 350 (1995).

    CAS  PubMed  Google Scholar 

  58. 58

    Ponting, C. P. & Phillips, C. DHR domains in syntrophins, neuronal NO synthases and other intracellular proteins. Trends Biochem. Sci. 20, 102–103 (1995).

    CAS  PubMed  Google Scholar 

  59. 59

    Sheng, M. & Sala, C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24, 1–29 (2001).

    CAS  PubMed  Google Scholar 

  60. 60

    Rubin, G. M. Signal transduction and the fate of the R7 photoreceptor in Drosophila. Trends Genet. 7, 372–377 (1990).

    Google Scholar 

  61. 61

    Horvitz, H. R. & Sternberg, P. W. Multiple intercellular signalling systems control the development of the Caenorhabditis elegans vulva. Nature 351, 535–541 (1991).

    CAS  PubMed  Google Scholar 

  62. 62

    Clark, S. G., Stern, M. J. & Horvitz, H. R. C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356, 340–344 (1992).

    CAS  PubMed  Google Scholar 

  63. 63

    Bonfini, L., Karlovich, C. A., Dasgupta, C. & Bannerjee, U. The Son of sevenless gene product: a putative activator of Ras. Science 255, 603–606 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Simon, M. A., Bowtell, D. D., Dodson, G. S., Laverty, T. R. & Rubin, G. M. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67, 701–716 (1991).

    CAS  PubMed  Google Scholar 

  65. 65

    Cox, A. D. & Der, C. J. Ras history: the saga continues. Small GTPases 1, 2–27 (2010).

    PubMed  PubMed Central  Google Scholar 

  66. 66

    McCormick, F. How receptors turn Ras on. Nature 363, 15–16 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Aronheim, A. et al. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78, 949–961 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Quilliam, L. A. et al. Membrane-targeting potentiates guanine nucleotide exchange factor CDC25 and SOS1 activation of Ras transforming activity. Proc. Natl Acad. Sci. USA 91, 8512–8516 (1994).

    CAS  PubMed  Google Scholar 

  69. 69

    Cheng, A. M. et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95, 793–803 (1998).

    CAS  PubMed  Google Scholar 

  70. 70

    Sicheri, F., Moarefi, I. & Kuriyan, J. Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–609 (1997).

    CAS  PubMed  Google Scholar 

  71. 71

    Xu, W., Harrison, S. C. & Eck, M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

    CAS  Google Scholar 

  72. 72

    Lim, W. A. The modular logic of signaling proteins: building allosteric switches from simple binding domains. Curr. Opin. Struct. Biol. 12, 61–68 (2002).

    CAS  PubMed  Google Scholar 

  73. 73

    Dueber, J. E., Yeh, B. J., Chak, K. & Lim, W. A. Reprogramming control of an allosteric signaling switch through modular recombination. Science 301, 1904–1908 (2003).

    CAS  PubMed  Google Scholar 

  74. 74

    Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003).

    CAS  PubMed  Google Scholar 

  75. 75

    Mayer, B. J., Blinov, M. L. & Loew, L. M. Molecular machines or pleiomorphic ensembles: signaling complexes revisited. J. Biol. 8, 81 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. 76

    Gibson, T. J. Cell regulation: determined to signal discrete cooperation. Trends Biochem. Sci. 34, 471–482 (2009).

    CAS  Google Scholar 

  77. 77

    Li, P. et al. Phase transitions in the assembly of multi-valent signaling proteins. Nature 483, 336–340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Toomre, D. & Bewersdorf, J. A new wave of cellular imaging. Annu. Rev. Cell Dev. Biol. 26, 285–314 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Zhou, X., Herbst-Robinson, K. J. & Zhang, J. Visualizing dynamic activities of signaling enzymes using genetically encodable FRET-based biosensors from designs to applications. Methods Enzymol. 504, 317–340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Findlay, G. M. et al. Interaction domains of Sos1/Grb2 are finely tuned for cooperative control of embryonic stem cell fate. Cell 152, 1008–1020 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Zheng, Y. et al. Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature 499, 166–171 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Jadwin, J. A., Ogiue-Ikeda, M. & Machida, K. The application of modular protein domains in proteomics. FEBS Lett. 586, 2586–2596 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Hu, H. et al. A map of WW domain family interactions. Proteomics 4, 643–655 (2004).

    CAS  PubMed  Google Scholar 

  84. 84

    Hesselberth, J. R. et al. Comparative analysis of Saccharomyces cerevisiae WW domains and their interacting proteins. Genome Biol. 7, R30 (2006).

    PubMed  PubMed Central  Google Scholar 

  85. 85

    Huang, H. et al. Defining the specificity space of the human SRC homology 2 domain. Mol. Cell. Proteomics 7, 768–784 (2008).

    CAS  PubMed  Google Scholar 

  86. 86

    Jones, R. B., Gordus, A., Krall, J. A. & MacBeath, G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439, 168–174 (2006).

    CAS  Google Scholar 

  87. 87

    Stiffler, M. A. et al. PDZ domain binding selectivity is optimized across the mouse proteome. Science 317, 364–369 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Tinti, M. et al. The human SH2 interaction landscape. Cell Rep. 3, 1293–1305 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Tonikian, R. et al. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins. PLoS Biol. 7, e1000218 (2009).

    PubMed  PubMed Central  Google Scholar 

  90. 90

    Tonikian, R. et al. A specificity map for the PDZ domain family. PLoS Biol. 6, 239 (2008).

    Google Scholar 

  91. 91

    Schneider, T. D. & Stephens, R. M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Czernilofsky, A. P. et al. Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for gene product. Nature 287, 198–203 (1980).

    CAS  PubMed  Google Scholar 

  93. 93

    Muslin, A. J., Tanner, J. W., Allen, P. M. & Shaw, A. S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889–897 (1996).

    CAS  PubMed  Google Scholar 

  94. 94

    Yaffe, M. B. et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961–971 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Many, many investigators were involved in the discoveries described in this article, and I sincerely apologize to those whose work was not explicitly mentioned or cited. For the sake of narrative clarity, I chose to focus on a few specific examples, but it was not my intent to minimize the many important contributions made by others. I am very grateful to Tony Hunter and Mike Yaffe for critically reading this manuscript, Michele Tinti and Gianni Cesareni for providing figures, and Kalle Saksela and Marius Sudol for helpful discussions. The author was supported by grant U01 CA154966 from the US National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bruce J. Mayer.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Related links

Related links

FURTHER INFORMATION

SMART

The Pawson Lab

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mayer, B. The discovery of modular binding domains: building blocks of cell signalling. Nat Rev Mol Cell Biol 16, 691–698 (2015). https://doi.org/10.1038/nrm4068

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing