Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes

Subjects

Key Points

  • Nonsense-mediated mRNA decay (NMD) degrades mRNAs with translation termination codons in abnormal contexts.

  • NMD targets mRNAs encoding truncated proteins with no or undesired functions, thereby preventing the accumulation of such transcripts and of the potentially aberrant proteins that they encode.

  • NMD targets some mRNAs with intact open reading frames, thereby directly affecting gene expression programmes.

  • NMD reduces the levels of mRNAs related to various normal cellular processes, through its interplay with programmed DNA rearrangements, changes in pre-mRNA processing or reprogramming of mRNA translation.

  • NMD is essential for embryogenesis and other developmental processes.

  • Upregulation and downregulation of NMD are essential for an efficient cellular response to stress and for its subsequent alleviation, respectively.

Abstract

Nonsense-mediated mRNA decay (NMD) is probably the best characterized eukaryotic RNA degradation pathway. Through intricate steps, a set of NMD factors recognize and degrade mRNAs with translation termination codons that are positioned in abnormal contexts. However, NMD is not only part of a general cellular quality control system that prevents the production of aberrant proteins. Mammalian cells also depend on NMD to dynamically adjust their transcriptomes and their proteomes to varying physiological conditions. In this Review, we discuss how NMD targets mRNAs, the types of mRNAs that are targeted, and the roles of NMD in cellular stress, differentiation and maturation processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normal and nonsense-mediated mRNA decay (NMD)-activating translation termination.
Figure 2: Nonsense-mediated mRNA decay (NMD) in heterozygous carriers of premature termination codons (PTCs).
Figure 3: Importance of nonsense-mediated mRNA decay (NMD) for T cell maturation.
Figure 4: Regulating the expression homeostasis of splicing activators and splicing repressors.
Figure 5: Translation of alternative open reading frames (ORFs) can activate nonsense-mediated mRNA decay (NMD).
Figure 6: Global and local modulation of nonsense-mediated mRNA decay (NMD) activity.

Similar content being viewed by others

References

  1. Lykke-Andersen, J. & Bennett, E. J. Protecting the proteome: eukaryotic cotranslational quality control pathways. J. Cell Biol. 204, 467–476 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Muhlemann, O. & Jensen, T. H. mRNP quality control goes regulatory. Trends Genet. 28, 70–77 (2012).

    PubMed  Google Scholar 

  3. Kervestin, S. & Jacobson, A. NMD: a multifaceted response to premature translational termination. Nat. Rev. Mol. Cell Biol. 13, 700–712 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schweingruber, C., Rufener, S. C., Zund, D., Yamashita, A. & Muhlemann, O. Nonsense-mediated mRNA decay — mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim. Biophys. Acta 1829, 612–623 (2013).

    CAS  PubMed  Google Scholar 

  5. Popp, M. W. & Maquat, L. E. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu. Rev. Genet. 47, 139–165 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith, J. E. & Baker, K. E. Nonsense-mediated RNA decay — a switch and dial for regulating gene expression. Bioessays 37, 612–623 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Siwaszek, A., Ukleja, M. & Dziembowski, A. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. RNA Biol. 11, 1122–1136 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Weng, Y., Czaplinski, K. & Peltz, S. W. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol. Cell. Biol. 16, 5477–5490 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kashima, I. et al. Binding of a novel SMG-1–Upf1–eRF1–eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev. 20, 355–367 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Franks, T. M., Singh, G. & Lykke-Andersen, J. Upf1 ATPase-dependent mRNP disassembly is required for completion of nonsense-mediated mRNA decay. Cell 143, 938–950 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kurosaki, T. et al. A post-translational regulatory switch on UPF1 controls targeted mRNA degradation. Genes Dev. 28, 1900–1916 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamashita, A., Ohnishi, T., Kashima, I., Taya, Y. & Ohno, S. Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev. 15, 2215–2228 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ohnishi, T. et al. Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol. Cell 12, 1187–1200 (2003).

    CAS  PubMed  Google Scholar 

  14. Lykke-Andersen, J., Shu, M. D. & Steitz, J. A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121–1131 (2000).

    CAS  PubMed  Google Scholar 

  15. Serin, G., Gersappe, A., Black, J. D., Aronoff, R. & Maquat, L. E. Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol. Cell. Biol. 21, 209–223 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Melero, R. et al. The cryo-EM structure of the UPF–EJC complex shows UPF1 poised toward the RNA 3′ end. Nat. Struct. Mol. Biol. 19, 498–505 (2012).

    CAS  PubMed  Google Scholar 

  17. Gehring, N. H. et al. Exon–junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol. Cell 20, 65–75 (2005).

    CAS  PubMed  Google Scholar 

  18. Chan, W. K. et al. An alternative branch of the nonsense-mediated decay pathway. EMBO J. 26, 1820–1830 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ivanov, P. V., Gehring, N. H., Kunz, J. B., Hentze, M. W. & Kulozik, A. E. Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. EMBO J. 27, 736–747 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, L. et al. RNA homeostasis governed by cell type-specific and branched feedback loops acting on NMD. Mol. Cell 43, 950–961 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Metze, S., Herzog, V. A., Ruepp, M. D. & Muhlemann, O. Comparison of EJC-enhanced and EJC-independent NMD in human cells reveals two partially redundant degradation pathways. RNA 19, 1432–1448 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Boehm, V., Haberman, N., Ottens, F., Ule, J. & Gehring, N. H. 3′ UTR length and messenger ribonucleoprotein composition determine endocleavage efficiencies at termination codons. Cell Rep. 9, 555–568 (2014).

    CAS  PubMed  Google Scholar 

  23. Hogg, J. R. & Goff, S. P. Upf1 senses 3′ UTR length to potentiate mRNA decay. Cell 143, 379–389 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kurosaki, T. & Maquat, L. E. Rules that govern UPF1 binding to mRNA 3′ UTRs. Proc. Natl Acad. Sci. USA 110, 3357–3362 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hurt, J. A., Robertson, A. D. & Burge, C. B. Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res. 23, 1636–1650 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zund, D., Gruber, A. R., Zavolan, M. & Muhlemann, O. Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3′ UTRs. Nat. Struct. Mol. Biol. 20, 936–943 (2013).

    PubMed  Google Scholar 

  27. Gregersen, L. H. et al. MOV10 is a 5′ to 3′ RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3′ UTRs. Mol. Cell 54, 573–585 (2014). References 11 and 23–27 suggest that UPF1 binding to RNA is non-specific and does not discriminate NMD from non-NMD substrates, but that it becomes specific following NMD activation.

    CAS  PubMed  Google Scholar 

  28. Czaplinski, K. et al. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12, 1665–1677 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, W., Czaplinski, K., Rao, Y. & Peltz, S. W. The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J. 20, 880–890 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Amrani, N. et al. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432, 112–118 (2004).

    CAS  PubMed  Google Scholar 

  31. Hug, N. & Caceres, J. F. The RNA helicase DHX34 activates NMD by promoting a transition from the surveillance to the decay-inducing complex. Cell Rep. 8, 1845–1856 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dever, T. E. & Green, R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb. Perspect. Biol. 4, a013706 (2012).

    PubMed  PubMed Central  Google Scholar 

  33. Behm-Ansmant, I., Gatfield, D., Rehwinkel, J., Hilgers, V. & Izaurralde, E. A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay. EMBO J. 26, 1591–1601 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Eberle, A. B., Stalder, L., Mathys, H., Orozco, R. Z. & Muhlemann, O. Posttranscriptional gene regulation by spatial rearrangement of the 3′ untranslated region. PLoS Biol. 6, e92 (2008).

    PubMed  PubMed Central  Google Scholar 

  35. Silva, A. L., Ribeiro, P., Inacio, A., Liebhaber, S. A. & Romao, L. Proximity of the poly(A)-binding protein to a premature termination codon inhibits mammalian nonsense-mediated mRNA decay. RNA 14, 563–576 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh, G., Rebbapragada, I. & Lykke-Andersen, J. A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol. 6, e111 (2008).

    PubMed  PubMed Central  Google Scholar 

  37. Hoshino, S., Imai, M., Kobayashi, T., Uchida, N. & Katada, T. The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 3′-poly(A) tail of mRNA. Direct association of eRF3/GSPT with polyadenylate-binding protein. J. Biol. Chem. 274, 16677–16680 (1999).

    CAS  PubMed  Google Scholar 

  38. Cosson, B. et al. Poly(A)-binding protein acts in translation termination via eukaryotic release factor 3 interaction and does not influence [PSI+] propagation. Mol. Cell. Biol. 22, 3301–3315 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kozlov, G. & Gehring, K. Molecular basis of eRF3 recognition by the MLLE domain of poly(A)-binding protein. PLoS ONE 5, e10169 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. Joncourt, R., Eberle, A. B., Rufener, S. C. & Muhlemann, O. Eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay by two genetically separable mechanisms. PLoS ONE 9, e104391 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Fatscher, T., Boehm, V., Weiche, B. & Gehring, N. H. The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay. RNA 20, 1579–1592 (2014). References 40 and 41 show that the ability of PTC-proximal PABPC to render a transcript resistant to NMD depends on its interaction with eIF4G.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wells, S. E., Hillner, P. E., Vale, R. D. & Sachs, A. B. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2, 135–140 (1998).

    CAS  PubMed  Google Scholar 

  43. Kahvejian, A., Svitkin, Y. V., Sukarieh, R., M'Boutchou, M. N. & Sonenberg, N. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev. 19, 104–113 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Amrani, N., Ghosh, S., Mangus, D. A. & Jacobson, A. Translation factors promote the formation of two states of the closed-loop mRNP. Nature 453, 1276–1280 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Inacio, A. et al. Nonsense mutations in close proximity to the initiation codon fail to trigger full nonsense-mediated mRNA decay. J. Biol. Chem. 279, 32170–32180 (2004).

    CAS  PubMed  Google Scholar 

  46. Neu-Yilik, G. et al. Mechanism of escape from nonsense-mediated mRNA decay of human β-globin transcripts with nonsense mutations in the first exon. RNA 17, 843–854 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Peixeiro, I. et al. Interaction of PABPC1 with the translation initiation complex is critical to the NMD resistance of AUG-proximal nonsense mutations. Nucleic Acids Res. 40, 1160–1173 (2012). This reference provides evidence that the interaction between PABPC and eIF4G is crucial for rendering a mRNA containing a termination codon close to the start codon resistant to NMD.

    CAS  PubMed  Google Scholar 

  48. Buhler, M., Steiner, S., Mohn, F., Paillusson, A. & Muhlemann, O. EJC-independent degradation of nonsense immunoglobulin-μ mRNA depends on 3′ UTR length. Nat. Struct. Mol. Biol. 13, 462–464 (2006).

    PubMed  Google Scholar 

  49. Yepiskoposyan, H., Aeschimann, F., Nilsson, D., Okoniewski, M. & Muhlemann, O. Autoregulation of the nonsense-mediated mRNA decay pathway in human cells. RNA 17, 2108–2118 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Toma, K. G., Rebbapragada, I., Durand, S. & Lykke-Andersen, J. Identification of elements in human long 3′ UTRs that inhibit nonsense-mediated decay. RNA 21, 887–897 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Le Hir, H., Izaurralde, E., Maquat, L. E. & Moore, M. J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon–exon junctions. EMBO J. 19, 6860–6869 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Singh, G. et al. The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell 151, 750–764 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sauliere, J. et al. CLIP–seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nat. Struct. Mol. Biol. 19, 1124–1131 (2012).

    CAS  PubMed  Google Scholar 

  54. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M. J. The exon–exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim, V. N., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science 293, 1832–1836 (2001).

    CAS  PubMed  Google Scholar 

  56. Lykke-Andersen, J., Shu, M. D. & Steitz, J. A. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 293, 1836–1839 (2001).

    CAS  PubMed  Google Scholar 

  57. Gehring, N. H., Neu-Yilik, G., Schell, T., Hentze, M. W. & Kulozik, A. E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell 11, 939–949 (2003).

    CAS  PubMed  Google Scholar 

  58. Nagy, E. & Maquat, L. E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).

    CAS  PubMed  Google Scholar 

  59. Yamashita, A. et al. SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay. Genes Dev. 23, 1091–1105 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Arias-Palomo, E. et al. The nonsense-mediated mRNA decay SMG-1 kinase is regulated by large-scale conformational changes controlled by SMG-8. Genes Dev. 25, 153–164 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Melero, R. et al. Structures of SMG1-UPFs complexes: SMG1 contributes to regulate UPF2-dependent activation of UPF1 in NMD. Structure 22, 1105–1119 (2014).

    CAS  PubMed  Google Scholar 

  62. Isken, O. et al. Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell 133, 314–327 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gatfield, D. & Izaurralde, E. Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature 429, 575–578 (2004).

    CAS  PubMed  Google Scholar 

  64. Glavan, F., Behm-Ansmant, I., Izaurralde, E. & Conti, E. Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex. EMBO J. 25, 5117–5125 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Huntzinger, E., Kashima, I., Fauser, M., Sauliere, J. & Izaurralde, E. SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA 14, 2609–2617 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Eberle, A. B., Lykke-Andersen, S., Muhlemann, O. & Jensen, T. H. SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat. Struct. Mol. Biol. 16, 49–55 (2009).

    CAS  PubMed  Google Scholar 

  67. Schmidt, S. A. et al. Identification of SMG6 cleavage sites and a preferred RNA cleavage motif by global analysis of endogenous NMD targets in human cells. Nucleic Acids Res. 43, 309–323 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Lykke-Andersen, S. et al. Human nonsense-mediated RNA decay initiates widely by endonucleolysis and targets snoRNA host genes. Genes Dev. 28, 2498–2517 (2014). References 67 and 68 use transcriptome-wide approaches that identify NMD-responsive mRNAs and NMD-specific degradation intermediates, to improve the probability of finding direct NMD targets.

    PubMed  PubMed Central  Google Scholar 

  69. Unterholzner, L. & Izaurralde, E. SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol. Cell 16, 587–596 (2004).

    CAS  PubMed  Google Scholar 

  70. Yamashita, A. et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat. Struct. Mol. Biol. 12, 1054–1063 (2005).

    CAS  PubMed  Google Scholar 

  71. Loh, B., Jonas, S. & Izaurralde, E. The SMG5–SMG7 heterodimer directly recruits the CCR4–NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes Dev. 27, 2125–2138 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cho, H., Kim, K. M. & Kim, Y. K. Human proline-rich nuclear receptor coregulatory protein 2 mediates an interaction between mRNA surveillance machinery and decapping complex. Mol. Cell 33, 75–86 (2009).

    CAS  PubMed  Google Scholar 

  73. Lai, T. et al. Structural basis of the PNRC2-mediated link between mRNA surveillance and decapping. Structure 20, 2025–2037 (2012).

    CAS  PubMed  Google Scholar 

  74. Cho, H. et al. SMG5-PNRC2 is functionally dominant compared with SMG5-SMG7 in mammalian nonsense-mediated mRNA decay. Nucleic Acids Res. 41, 1319–1328 (2013).

    CAS  PubMed  Google Scholar 

  75. Anders, K. R., Grimson, A. & Anderson, P. SMG-5, required for C. elegans nonsense-mediated mRNA decay, associates with SMG-2 and protein phosphatase 2A. EMBO J. 22, 641–650 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Durand, S. et al. Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies. J. Cell Biol. 178, 1145–1160 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mendell, J. T., Sharifi, N. A., Meyers, J. L., Martinez-Murillo, F. & Dietz, H. C. Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat. Genet. 36, 1073–1078 (2004).

    CAS  PubMed  Google Scholar 

  78. Wittmann, J., Hol, E. M. & Jack, H. M. hUPF2 silencing identifies physiologic substrates of mammalian nonsense-mediated mRNA decay. Mol. Cell. Biol. 26, 1272–1287 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ni, J. Z. et al. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 21, 708–718 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Saltzman, A. L. et al. Regulation of multiple core spliceosomal proteins by alternative splicing-coupled nonsense-mediated mRNA decay. Mol. Cell. Biol. 28, 4320–4330 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Weischenfeldt, J. et al. NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes Dev. 22, 1381–1396 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Thoren, L. A. et al. UPF2 is a critical regulator of liver development, function and regeneration. PLoS ONE 5, e11650 (2010).

    PubMed  PubMed Central  Google Scholar 

  83. McIlwain, D. R. et al. Smg1 is required for embryogenesis and regulates diverse genes via alternative splicing coupled to nonsense-mediated mRNA decay. Proc. Natl Acad. Sci. USA 107, 12186–12191 (2010).

    PubMed  PubMed Central  Google Scholar 

  84. Wang, D. et al. Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes tumorigenesis. Mol. Cell. Biol. 31, 3670–3680 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Weischenfeldt, J. et al. Mammalian tissues defective in nonsense-mediated mRNA decay display highly aberrant splicing patterns. Genome Biol. 13, R35 (2012). References 81, 82 and 85 demonstrate the roles of NMD in various physiological processes.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tani, H. et al. Identification of hundreds of novel UPF1 target transcripts by direct determination of whole transcriptome stability. RNA Biol. 9, 1370–1379 (2012). References 84 and 86 measure mRNA half-lives in control and NMD-inhibited conditions, to identify direct targets of NMD.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Nguyen, L. S. et al. Transcriptome profiling of UPF3B/NMD-deficient lymphoblastoid cells from patients with various forms of intellectual disability. Mol. Psychiatry 17, 1103–1115 (2012).

    CAS  PubMed  Google Scholar 

  88. Nguyen, L. S. et al. Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders. Hum. Mol. Genet. 22, 1816–1825 (2013).

    CAS  PubMed  Google Scholar 

  89. Wong, J. J. et al. Orchestrated intron retention regulates normal granulocyte differentiation. Cell 154, 583–595 (2013).

    CAS  PubMed  Google Scholar 

  90. Gardner, L. B. Hypoxic inhibition of nonsense-mediated RNA decay regulates gene expression and the integrated stress response. Mol. Cell. Biol. 28, 3729–3741 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Martin, L. & Gardner, L. B. Stress-induced inhibition of nonsense-mediated RNA decay regulates intracellular cystine transport and intracellular glutathione through regulation of the cystine/glutamate exchanger SLC7A11. Oncogene 34, 4211–4218 (2015).

    CAS  PubMed  Google Scholar 

  92. Oren, Y. S. et al. The unfolded protein response affects readthrough of premature termination codons. EMBO Mol. Med. 6, 685–701 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Karam, R. et al. The unfolded protein response is shaped by the NMD pathway. EMBO Rep. 16, 599–609 (2015). This reference provides evidence that NMD shapes the cellular threshold of ER stress by restricting the levels of mRNAs encoding proteins that are involved in the UPR.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lareau, L. F., Inada, M., Green, R. E., Wengrod, J. C. & Brenner, S. E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446, 926–929 (2007). References 79, 80, 85 and 94 describe the widespread use of AS–NMD in transcripts of splicing factors. Reference 85 shows that some splicing factors are misregulated in UPF2-deficient mouse cells, which leads to a general increase in alternative splicing.

    CAS  PubMed  Google Scholar 

  95. Mourtada-Maarabouni, M. & Williams, G. T. Growth arrest on inhibition of nonsense-mediated decay is mediated by noncoding RNA GAS5. Biomed. Res. Int. 2013, 358015 (2013).

    PubMed  PubMed Central  Google Scholar 

  96. Tani, H., Torimura, M. & Akimitsu, N. The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. PLoS ONE 8, e55684 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Askarian-Amiri, M. E. et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA 17, 878–891 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kadlec, J., Guilligay, D., Ravelli, R. B. & Cusack, S. Crystal structure of the UPF2-interacting domain of nonsense-mediated mRNA decay factor UPF1. RNA 12, 1817–1824 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Takahashi, S. et al. Upf1 potentially serves as a RING-related E3 ubiquitin ligase via its association with Upf3 in yeast. RNA 14, 1950–1958 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kuroha, K., Tatematsu, T. & Inada, T. Upf1 stimulates degradation of the product derived from aberrant messenger RNA containing a specific nonsense mutation by the proteasome. EMBO Rep. 10, 1265–1271 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kuroha, K., Ando, K., Nakagawa, R. & Inada, T. The Upf factor complex interacts with aberrant products derived from mRNAs containing a premature termination codon and facilitates their proteasomal degradation. J. Biol. Chem. 288, 28630–28640 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Maquat, L. E., Hwang, J., Sato, H. & Tang, Y. CBP80-promoted mRNP rearrangements during the pioneer round of translation, nonsense-mediated mRNA decay, and thereafter. Cold Spring Harb. Symp. Quant. Biol. 75, 127–134 (2010).

    CAS  PubMed  Google Scholar 

  103. Durand, S. & Lykke-Andersen, J. Nonsense-mediated mRNA decay occurs during eIF4F-dependent translation in human cells. Nat. Struct. Mol. Biol. 20, 702–709 (2013).

    CAS  PubMed  Google Scholar 

  104. Rufener, S. C. & Muhlemann, O. eIF4E-bound mRNPs are substrates for nonsense-mediated mRNA decay in mammalian cells. Nat. Struct. Mol. Biol. 20, 710–717 (2013).

    CAS  PubMed  Google Scholar 

  105. Singh, G., Jakob, S., Kleedehn, M. G. & Lykke-Andersen, J. Communication with the exon-junction complex and activation of nonsense-mediated decay by human Upf proteins occur in the cytoplasm. Mol. Cell 27, 780–792 (2007).

    CAS  PubMed  Google Scholar 

  106. Miller, J. N. & Pearce, D. A. Nonsense-mediated decay in genetic disease: friend or foe? Mutat. Res. Rev. Mutat. Res. 762, 52–64 (2014).

    CAS  PubMed  Google Scholar 

  107. Holbrook, J. A., Neu-Yilik, G., Hentze, M. W. & Kulozik, A. E. Nonsense-mediated decay approaches the clinic. Nat. Genet. 36, 801–808 (2004).

    CAS  PubMed  Google Scholar 

  108. Khajavi, M., Inoue, K. & Lupski, J. R. Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur. J. Hum. Genet. 14, 1074–1081 (2006).

    CAS  PubMed  Google Scholar 

  109. Miller, J. in Molecular Genetic Pathology (eds Cheng, L., Zhang, D. Y. & Eble, J. N.) 825–856 (Springer New York, 2012).

    Google Scholar 

  110. Li, S. & Wilkinson, M. F. Nonsense surveillance in lymphocytes? Immunity 8, 135–141 (1998).

    CAS  PubMed  Google Scholar 

  111. Ge, Y. & Porse, B. T. The functional consequences of intron retention: alternative splicing coupled to NMD as a regulator of gene expression. Bioessays 36, 236–243 (2014).

    CAS  PubMed  Google Scholar 

  112. Lareau, L. F., Brooks, A. N., Soergel, D. A., Meng, Q. & Brenner, S. E. The coupling of alternative splicing and nonsense-mediated mRNA decay. Adv. Exp. Med. Biol. 623, 190–211 (2007).

    PubMed  Google Scholar 

  113. Malabat, C., Feuerbach, F., Ma, L., Saveanu, C. & Jacquier, A. Quality control of transcription start site selection by nonsense-mediated-mRNA decay. eLife 4, e06722 (2015).

    PubMed Central  Google Scholar 

  114. Colak, D., Ji, S. J., Porse, B. T. & Jaffrey, S. R. Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay. Cell 153, 1252–1265 (2013). This reference demonstrates that proper spatial expression of the ROBO3.2 receptor is controlled by localized translation and NMD-targeting of the Robo3.2 mRNA in certain axonal growth cones.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sureau, A., Gattoni, R., Dooghe, Y., Stevenin, J. & Soret, J. SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J. 20, 1785–1796 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wollerton, M. C., Gooding, C., Wagner, E. J., Garcia-Blanco, M. A. & Smith, C. W. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol. Cell 13, 91–100 (2004).

    CAS  PubMed  Google Scholar 

  117. Braunschweig, U. et al. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res. 24, 1774–1786 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Somers, J., Poyry, T. & Willis, A. E. A perspective on mammalian upstream open reading frame function. Int. J. Biochem. Cell Biol. 45, 1690–1700 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ramani, A. K. et al. High resolution transcriptome maps for wild-type and nonsense-mediated decay-defective Caenorhabditis elegans. Genome Biol. 10, R101 (2009).

    PubMed  PubMed Central  Google Scholar 

  120. Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 101, 11269–11274 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Dinman, J. D. Mechanisms and implications of programmed translational frameshifting. Wiley Interdiscip. Rev. RNA 3, 661–673 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Belew, A. T. et al. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 512, 265–269 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Shetty, S. P. & Copeland, P. R. Selenocysteine incorporation: a trump card in the game of mRNA decay. Biochimie 114, 97–101 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Sunde, R. A. & Raines, A. M. Selenium regulation of the selenoprotein and nonselenoprotein transcriptomes in rodents. Adv. Nutr. 2, 138–150 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Seyedali, A. & Berry, M. J. Nonsense-mediated decay factors are involved in the regulation of selenoprotein mRNA levels during selenium deficiency. RNA 20, 1248–1256 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Usuki, F., Yamashita, A. & Fujimura, M. Post-transcriptional defects of antioxidant selenoenzymes cause oxidative stress under methylmercury exposure. J. Biol. Chem. 286, 6641–6649 (2011).

    CAS  PubMed  Google Scholar 

  127. Medghalchi, S. M. et al. Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum. Mol. Genet. 10, 99–105 (2001).

    CAS  PubMed  Google Scholar 

  128. Li, T. et al. Smg6/Est1 licenses embryonic stem cell differentiation via nonsense-mediated mRNA decay. EMBO J. 34, 1630–1647 (2015). This reference shows that viable SMG6-deficient ES cells fail to differentiate and that NMD, and not telomere maintenance, is the crucial activity underlying this defect.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Imamachi, N., Tani, H. & Akimitsu, N. Up-frameshift protein 1 (UPF1): multitalented entertainer in RNA decay. Drug Discov. Ther. 6, 55–61 (2012).

    CAS  PubMed  Google Scholar 

  130. Varsally, W. & Brogna, S. UPF1 involvement in nuclear functions. Biochem. Soc. Trans. 40, 778–783 (2012).

    CAS  PubMed  Google Scholar 

  131. Kaygun, H. & Marzluff, W. F. Regulated degradation of replication-dependent histone mRNAs requires both ATR and Upf1. Nat. Struct. Mol. Biol. 12, 794–800 (2005).

    CAS  PubMed  Google Scholar 

  132. Gong, C., Kim, Y. K., Woeller, C. F., Tang, Y. & Maquat, L. E. SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Genes Dev. 23, 54–66 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Jolly, L. A., Homan, C. C., Jacob, R., Barry, S. & Gecz, J. The UPF3B gene, implicated in intellectual disability, autism, ADHD and childhood onset schizophrenia regulates neural progenitor cell behaviour and neuronal outgrowth. Hum. Mol. Genet. 22, 4673–4687 (2013).

    CAS  PubMed  Google Scholar 

  134. Lou, C. H. et al. Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated RNA decay pathway. Cell Rep. 6, 748–764 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Bruno, I. G. et al. Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol. Cell 42, 500–510 (2011). References 134 and 135 show that specific miRNAs target NMD factors to downregulate the activity of NMD, and that this is necessary for the differentiation of neuronal progenitor cells into neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Preitner, N., Quan, J. & Flanagan, J. G. This message will self-destruct: NMD regulates axon guidance. Cell 153, 1185–1187 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Tarpey, P. S. et al. Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nat. Genet. 39, 1127–1133 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Yamasaki, S. & Anderson, P. Reprogramming mRNA translation during stress. Curr. Opin. Cell Biol. 20, 222–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Nickless, A. et al. Intracellular calcium regulates nonsense-mediated mRNA decay. Nat. Med. 20, 961–966 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Brown, J. A. et al. A novel role for hSMG-1 in stress granule formation. Mol. Cell. Biol. 31, 4417–4429 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Park, E. & Maquat, L. E. Staufen-mediated mRNA decay. Wiley Interdiscip. Rev. RNA 4, 423–435 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Chakrabarti, S. et al. Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol. Cell 41, 693–703 (2011).

    CAS  PubMed  Google Scholar 

  143. Clerici, M. et al. Unusual bipartite mode of interaction between the nonsense-mediated decay factors, UPF1 and UPF2. EMBO J. 28, 2293–2306 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Fiorini, F., Boudvillain, M. & Le Hir, H. Tight intramolecular regulation of the human Upf1 helicase by its N- and C-terminal domains. Nucleic Acids Res. 41, 2404–2415 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to those researchers whose work was not cited due to space limitations, and thank Christian Kroun Damgaard, Jens Lykke-Andersen and four insightful reviewers for their critical assessments of the manuscript. Research in the authors' laboratory is funded by the European Research Council, the Danish National Research Foundation (grant DNRF58), the Lundbeck Foundation and the Novo Nordisk Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Søren Lykke-Andersen or Torben Heick Jensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

PTC-generating events. (PDF 97 kb)

PowerPoint slides

Glossary

Exon–junction complex

(EJC). A complex deposited upstream of most exon–exon junctions following splicing. The EJC stimulates export and translation.

Deadenylase

A 3′–5′ exoribonuclease with specificity for poly(A) moieties.

General decapping complex

A protein complex responsible for the hydrolysis of the 7-methylguanosine (m7G) cap situated at mRNA 5′ ends.

β-thalassaemia

A blood disorder caused by mutations in the β-globin (HBB) gene on chromosome 11, which leads to reduced or absent production of haemoglobin β-chains.

Haploinsufficiency

A phenotype caused by the insufficient expression of a functional factor as a result of a mutation in one of the two encoding alleles.

Waardenburg syndrome type 4C

An auditory–pigmentary syndrome that is characterized by pigmentary abnormalities of the eye, deafness and gastrointestinal disease.

Integrated stress response

Various cellular stresses that act (partly) through the inactivation of the eukaryotic translation initiation factor subunit eIF2.

Programmed ribosomal frameshifting

A shift of the reading frame by one or two nucleotides (in the 5′ or 3′ direction), directed by a mRNA structural element.

Selenoproteins

Proteins containing one or more of the non-conventional amino acid selenocysteine.

Selenocysteine insertion sequence

(SECIS). A 60 nt RNA sequence element situated downstream of a UGA termination codon in selenoprotein-coding mRNAs.

Histone mRNA degradation

An up frameshift 1 (UPF1)-dependent degradation mechanism mediated by its binding of stem–loops at the 3′ end of replication-dependent histone mRNAs.

Staufen 1-mediated mRNA decay

(SMD). The degradation of substrates with extended double-stranded 3′ UTR structures that bind one, or both, of the up frameshift 1 (UPF1)-recruiting Staufen paralogues STAU1 and STAU2.

Axonal growth cones

Dynamic extensions at the tips of axons. Growth cones are able to rapidly change direction and branch in response to stimuli.

Commissural neurons

A tract of nerve fibres passing from one side to the other of the spinal cord or the brain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lykke-Andersen, S., Jensen, T. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol 16, 665–677 (2015). https://doi.org/10.1038/nrm4063

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing