Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ovary and fimbrial stem cells: biology, niche and cancer origins

Key Points

  • Cyclic rupture and repair of the ovarian surface epithelium during ovulation, and repeated exposure of the fimbrial epithelium to the mechanics of follicular rupture, suggests the existence of stem cells that fuel cellular regeneration in these tissues.

  • Stem-like epithelial cells have been identified in the ovary and fimbria; however, only the Leu-rich repeat-containing G protein-coupled receptor 5 (LGR5)-expressing cells at the ovary surface have been formally shown to contribute to lifelong epithelial homeostasis and post-ovulatory repair in vivo. These Lgr5+ stem cells are concentrated at interfollicular clefts and at the hilum region.

  • Stem cells reside within instructive niches that dictate their function; candidate ovary niche sources encompass the mature epithelial progeny and underlying follicular and stromal cells.

  • Epithelial ovarian cancers, which form the majority of ovarian cancers in humans, are believed to originate from the ovary or (more recently) fimbria.

  • The discovery of a transformation-prone stem cell niche at the ovary hilum in mice, and the presence of transitional epithelia at the ovarian fimbriae in humans, has raised the interesting possibility that mutations in these stem cells may contribute to ovarian carcinogenesis.

Abstract

The mammalian ovary is covered by a single-layered epithelium that undergoes rupture and remodelling following each ovulation. Although resident stem cells are presumed to be crucial for this cyclic regeneration, their identity and mode of action have been elusive. Surrogate stemness assays and in vivo fate-mapping studies using recently discovered stem cell markers have identified stem cell pools in the ovary and fimbria that ensure epithelial homeostasis. Recent findings provide insights into intrinsic mechanisms and local extrinsic cues that govern the function of ovarian and fimbrial stem cells. These discoveries have advanced our understanding of stem cell biology in the ovary and fimbria, and lay the foundations for evaluating the contribution of resident stem cells to the initiation and progression of human epithelial ovarian cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The adult human and mouse ovary and associated tissues.
Figure 2: Locations and characteristics of epithelial stem and stem-like cells in the ovarian surface epithelium (OSE) and the fimbria.
Figure 3: Putative ovarian surface epithelium (OSE) and fimbrial niche locations and signals.
Figure 4: Proposed model of stem cell-driven epithelial ovarian cancer (EOC) carcinogenesis.

Similar content being viewed by others

References

  1. Auersperg, N., Wong, A. S., Choi, K. C., Kang, S. K. & Leung, P. C. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr. Rev. 22, 255–288 (2001). A thorough review of the biology of the OSE, highlighting its involvement in the ovulation process and in ovarian carcinogenesis.

    CAS  PubMed  Google Scholar 

  2. Tan, O. L. & Fleming, J. S. Proliferating cell nuclear antigen immunoreactivity in the ovarian surface epithelium of mice of varying ages and total lifetime ovulation number following ovulation. Biol. Reprod. 71, 1501–1507 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Wright, J. W., Jurevic, L. & Stouffer, R. L. Dynamics of the primate ovarian surface epithelium during the ovulatory menstrual cycle. Hum. Reprod. 26, 1408–1421 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burdette, J. E., Kurley, S. J., Kilen, S. M., Mayo, K. E. & Woodruff, T. K. Gonadotropin-induced superovulation drives ovarian surface epithelia proliferation in CD1 mice. Endocrinology 147, 2338–2345 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Lau, A. et al. Altered expression of inflammation-associated genes in oviductal cells following follicular fluid exposure: implications for ovarian carcinogenesis. Exp. Biol. Med. 239, 24–32 (2014).

    Article  CAS  Google Scholar 

  6. Bahar-Shany, K. et al. Exposure of fallopian tube epithelium to follicular fluid mimics carcinogenic changes in precursor lesions of serous papillary carcinoma. Gynecol. Oncol. 132, 322–327 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Emori, M. M. & Drapkin, R. The hormonal composition of follicular fluid and its implications for ovarian cancer pathogenesis. Reprod. Biol. Endocrinol. 12, 60 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007). The first study to identify Lgr5 as a stem cell marker gene of the intestinal and colonic epithelium using in vivo lineage tracing strategies; since then, Lgr5 has been found to mark many types of epithelial stem cell.

    Article  CAS  PubMed  Google Scholar 

  9. Barker, N. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Van Keymeulen, A. et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479, 189–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. van Amerongen, R., Bowman, A. N. & Nusse, R. Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11, 387–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Ousset, M. et al. Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat. Cell Biol. 14, 1131–1138 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. DeWard, A. D., Cramer, J. & Lagasse, E. Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population. Cell Rep. 9, 701–711 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doupe, D. P. et al. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science 337, 1091–1093 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat. Genet. 40, 1291–1299 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Mascre, G. et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489, 257–262 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Trempus, C. S. et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J. Invest. Dermatol. 120, 501–511 (2003).

    CAS  PubMed  Google Scholar 

  19. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Lim, X. et al. Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science 342, 1226–1230 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Goodell, M. A., Nguyen, H. & Shroyer, N. Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nat. Rev. Mol. Cell Biol. 16, 299–309 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garson, K. & Vanderhyden, B. C. Epithelial ovarian cancer stem cells: underlying complexity of a simple paradigm. Reproduction 149, R59–R70 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Barker, N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 15, 19–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Tata, P. R. et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503, 218–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mannik, J., Alzayady, K. & Ghazizadeh, S. Regeneration of multilineage skin epithelia by differentiated keratinocytes. J. Invest. Dermatol. 130, 388–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Ahmed, N., Abubaker, K. & Findlay, J. K. Ovarian cancer stem cells: molecular concepts and relevance as therapeutic targets. Mol. Aspects Med. 39, 110–125 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Flesken-Nikitin, A., Odai-Afotey, A. A. & Nikitin, A. Y. Role of the stem cell niche in the pathogenesis of epithelial ovarian cancers. Mol. Cell. Oncol. 1, e963435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Szotek, P. P. et al. Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics. Proc. Natl Acad. Sci. USA 105, 12469–12473 (2008). Identifies label-retaining cells in the adult mouse OSE that display cellular quiescence, DNA label retention, enhanced in vitro colony formation and dye-effluxing cytoprotective capacity; these cells are juxtaposed at ovulatory follicles.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang, Y. et al. Identification of quiescent, stem-like cells in the distal female reproductive tract. PLoS ONE 7, e40691 (2012). Describes stem-like epithelial cells in the adult mouse oviduct, concentrated at the fimbria; these cells are capable of forming self-renewing organoids in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paik, D. Y. et al. Stem-like epithelial cells are concentrated in the distal end of the fallopian tube: a site for injury and serous cancer initiation. Stem Cells 30, 2487–2497 (2012). Identifies CD44+ stem-like epithelial cells in the human fallopian tube, concentrated at the fimbria; these cells generate spheres in vitro that contain all functional fallopian tubal epithelia, comprising ciliated, secretory and basally located cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gamwell, L. F., Collins, O. & Vanderhyden, B. C. The mouse ovarian surface epithelium contains a population of LY6A (SCA-1) expressing progenitor cells that are regulated by ovulation-associated factors. Biol. Reprod. 87, 80 (2012). Identifies Ly6a+ verapamil-sensitive OSE in the adult mouse with Hoechst-effluxing capability; these Ly6a+ cells displayed enhanced sphere-forming abilities and responded to growth factors in follicular fluid in vitro.

    Article  PubMed  Google Scholar 

  33. Patterson, A. L. & Pru, J. K. Long-term label retaining cells localize to distinct regions within the female reproductive epithelium. Cell Cycle 12, 2888–2898 (2013). Describes stem-like epithelial cells in the adult mouse oviduct, concentrated at the fimbria; these cells expressed KIT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ng, A. et al. Lgr5 marks stem/progenitor cells in ovary and tubal epithelia. Nat. Cell Biol. 16, 745–757 (2014). Describes widespread LGR5 expression in the adult mouse OSE. In vivo lineage tracing formally establishes both the hilum and the extrahilum Lgr5+ pools as adult OSE-resident stem cells.

    Article  CAS  PubMed  Google Scholar 

  35. Flesken-Nikitin, A. et al. Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche. Nature 495, 241–245 (2013). Identifies a large Aldh1+Lgr5+ OSE population at the ovary hilum, which functions as a major OSE stem cell reservoir that is responsible for contributing epithelial progeny to the entire ovary surface in vivo . This study also demonstrates that OSE cells at the ovary hilum have increased transformative potential.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Auersperg, N. The origin of ovarian cancers — hypotheses and controversies. Front. Biosci. 5, 709–719 (2013).

    Article  Google Scholar 

  37. Auersperg, N. The origin of ovarian carcinomas: a unifying hypothesis. Int. J. Gynecol. Pathol. 30, 12–21 (2011).

    Article  PubMed  Google Scholar 

  38. Dubeau, L. & Drapkin, R. Coming into focus: the nonovarian origins of ovarian cancer. Ann. Oncol. 24 (Suppl. 8), 28–35 (2013).

    Google Scholar 

  39. Yang-Hartwich, Y. et al. Ovulation and extra-ovarian origin of ovarian cancer. Sci. Rep. 4, 6116 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Auersperg, N., Woo, M. M. & Gilks, C. B. The origin of ovarian carcinomas: a developmental view. Gynecol. Oncol. 110, 452–454 (2008). Highlights that the human ovary and fallopian tube are connected by a narrow isthmus termed the ovarian fimbriae; this region is an epithelial transitional zone with overlapping OSE and fimbrial marker expression.

    Article  PubMed  Google Scholar 

  41. Shih, leM. & Kurman, R. J. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am. J. Pathol. 164, 1511–1518 (2004). Classification of the EOC spectrum into type I and type II tumours, based on clinicopathology and molecular profile.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scully, R. E. Early de novo ovarian cancer and cancer developing in benign ovarian lesions. Int. J. Gynaecol. Obstetr. 49, S9–S15 (1995).

    Article  Google Scholar 

  43. Crum, C. P. et al. The distal fallopian tube: a new model for pelvic serous carcinogenesis. Curr. Opin. Obstetr. Gynecol. 19, 3–9 (2007).

    Article  Google Scholar 

  44. Piek, J. M. et al. Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. J. Pathol. 195, 451–456 (2001). The first study to demonstrate the presence of STICs in the fimbria of carriers of BRCA mutations, leading to the formulation of an alternative hypothesis that EOCs, notably HGSCs, are derived from the fimbria rather than from the ovary.

    Article  CAS  PubMed  Google Scholar 

  45. Kobayashi, A. & Behringer, R. R. Developmental genetics of the female reproductive tract in mammals. Nat. Rev. Genet. 4, 969–980 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Wright, J. W. et al. Ovarian surface epitheliectomy in the non-human primate: continued cyclic ovarian function and limited epithelial replacement. Hum. Reprod. 26, 1422–1430 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kabawat, S. E. et al. Tissue distribution of a coelomic-epithelium-related antigen recognized by the monoclonal antibody OC125. Int. J. Gynecol. Pathol. 2, 275–285 (1983).

    Article  CAS  PubMed  Google Scholar 

  48. Sherman-Baust, C. A. et al. A genetically engineered ovarian cancer mouse model based on fallopian tube transformation mimics human high-grade serous carcinoma development. J. Pathol. 233, 228–237 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. King, S. M. et al. The impact of ovulation on fallopian tube epithelial cells: evaluating three hypotheses connecting ovulation and serous ovarian cancer. Endocr. Relat. Cancer 18, 627–642 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zou, K. et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat. Cell Biol. 11, 631–636 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Virant-Klun, I. et al. Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation 76, 843–856 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Pacchiarotti, J. et al. Differentiation potential of germ line stem cells derived from the postnatal mouse ovary. Differentiation 79, 159–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Virant-Klun, I. et al. Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev. 18, 137–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. White, Y. A. et al. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat. Med. 18, 413–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Johnson, J., Canning, J., Kaneko, T., Pru, J. K. & Tilly, J. L. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428, 145–150 (2004). Seminal report that identified putative germline stem cells in the adult human OSE monolayer, thus challenging the long-standing dogma that female mammals are born with a fixed ovarian follicle reserve.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, H. et al. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries. Proc. Natl Acad. Sci. USA 109, 12580–12585 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Byskov, A. G. et al. No evidence for the presence of oogonia in the human ovary after their final clearance during the first two years of life. Hum. Reprod. 26, 2129–2139 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Kerr, J. B. et al. The primordial follicle reserve is not renewed after chemical or gamma-irradiation mediated depletion. Reproduction 143, 469–476 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Lei, L. & Spradling, A. C. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proc. Natl Acad. Sci. USA 110, 8585–8590 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lavranos, T. C., Rodgers, H. F., Bertoncello, I. & Rodgers, R. J. Anchorage-independent culture of bovine granulosa cells: the effects of basic fibroblast growth factor and dibutyryl cAMP on cell division and differentiation. Exp. Cell Res. 211, 245–251 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Rastetter, R. H. et al. Marker genes identify three somatic cell types in the fetal mouse ovary. Dev. Biol. 394, 242–252 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Mork, L. et al. Temporal differences in granulosa cell specification in the ovary reflect distinct follicle fates in mice. Biol. Reprod. 86, 37 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Honda, A. et al. Isolation, characterization, and in vitro and in vivo differentiation of putative thecal stem cells. Proc. Natl Acad. Sci. USA 104, 12389–12394 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bowen, N. J. et al. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells. BMC Med. Genomics 2, 71 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Auersperg, N. The stem-cell profile of ovarian surface epithelium is reproduced in the oviductal fimbriae, with increased stem-cell marker density in distal parts of the fimbriae. Int. J. Gynecol. Pathol. 32, 444–453 (2013). Demonstrates that the narrow isthmus that connects the ovary and fallopian tube in humans has a robust stem cell expression profile.

    Article  CAS  PubMed  Google Scholar 

  66. Moreb, J. S. Aldehyde dehydrogenase as a marker for stem cells. Curr. Stem Cell Res. Ther. 3, 237–246 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Barker, N. et al. Very long-term self-renewal of small intestine, colon, and hair follicles from cycling Lgr5+ve stem cells. Cold Spring Harb. Symp. Quant. Biol. 73, 351–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. de Visser, K. E. et al. Developmental stage-specific contribution of LGR5+ cells to basal and luminal epithelial lineages in the postnatal mammary gland. J. Pathol. 228, 300–309 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Barker, N. et al. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep. 2, 540–552 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Jameson, S. A. et al. Temporal transcriptional profiling of somatic and germ cells reveals biased lineage priming of sexual fate in the fetal mouse gonad. PLoS Genet. 8, e1002575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 95, 605–614 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Badders, N. M. et al. The Wnt receptor, Lrp5, is expressed by mouse mammary stem cells and is required to maintain the basal lineage. PLoS ONE 4, e6594 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Reynolds, A. et al. Canonical Wnt signals combined with suppressed TGFβ/BMP pathways promote renewal of the native human colonic epithelium. Gut 63, 610–621 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. 19, 379–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Fafilek, B. et al. Troy, a tumor necrosis factor receptor family member, interacts with Lgr5 to inhibit Wnt signaling in intestinal stem cells. Gastroenterology 144, 381–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Stange, D. E. et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357–368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vainio, S., Heikkila, M., Kispert, A., Chin, N. & McMahon, A. P. Female development in mammals is regulated by Wnt-4 signalling. Nature 397, 405–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Chassot, A. A. et al. Activation of β-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum. Mol. Genet. 17, 1264–1277 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Tomizuka, K. et al. R-spondin 1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum. Mol. Genet. 17, 1278–1291 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Hashimoto, T., Schlessinger, D. & Cui, C. Y. Troy binding to lymphotoxin-α activates NFκB mediated transcription. Cell Cycle 7, 106–111 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Pispa, J., Pummila, M., Barker, P. A., Thesleff, I. & Mikkola, M. L. Edar and Troy signalling pathways act redundantly to regulate initiation of hair follicle development. Hum. Mol. Genet. 17, 3380–3391 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Mohamed, O. A. et al. Uterine Wnt/β-catenin signaling is required for implantation. Proc. Natl Acad. Sci. USA 102, 8579–8584 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kessler, M. et al. Chlamydia trachomatis disturbs epithelial tissue homeostasis in fallopian tubes via paracrine Wnt signaling. Am. J. Pathol. 180, 186–198 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Carroll, T. J., Park, J. S., Hayashi, S., Majumdar, A. & McMahon, A. P. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev. Cell 9, 283–292 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Parr, B. A. & McMahon, A. P. Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature 395, 707–710 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Hsu, Y. C. & Fuchs, E. A family business: stem cell progeny join the niche to regulate homeostasis. Nat. Rev. Mol. Cell Biol. 13, 103–114 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Clevers, H., Loh, K. M. & Nusse, R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346, 1248012 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Gregorieff, A. et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129, 626–638 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Farin, H. F., Van Es, J. H. & Clevers, H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology 143, 1518–1529.e7 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. He, X. C. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nat. Genet. 36, 1117–1121 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Haramis, A. P. et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303, 1684–1686 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Liu, Y., Lyle, S., Yang, Z. & Cotsarelis, G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol. 121, 963–968 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Watt, F. M. Mammalian skin cell biology: at the interface between laboratory and clinic. Science 346, 937–940 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Hsu, Y. C., Li, L. & Fuchs, E. Emerging interactions between skin stem cells and their niches. Nat. Med. 20, 847–856 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Boyer, A., Goff, A. K. & Boerboom, D. WNT signaling in ovarian follicle biology and tumorigenesis. Trends Endocrinol. Metab. 21, 25–32 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Hsieh, M., Johnson, M. A., Greenberg, N. M. & Richards, J. S. Regulated expression of Wnts and Frizzleds at specific stages of follicular development in the rodent ovary. Endocrinology 143, 898–908 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Ricken, A., Lochhead, P., Kontogiannea, M. & Farookhi, R. Wnt signaling in the ovary: identification and compartmentalized expression of wnt-2, wnt-2b, and Frizzled-4 mRNAs. Endocrinology 143, 2741–2749 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Hsieh, M., Mulders, S. M., Friis, R. R., Dharmarajan, A. & Richards, J. S. Expression and localization of secreted Frizzled-related protein-4 in the rodent ovary: evidence for selective up-regulation in luteinized granulosa cells. Endocrinology 144, 4597–4606 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Usongo, M. & Farookhi, R. β-catenin/Tcf-signaling appears to establish the murine ovarian surface epithelium (OSE) and remains active in selected postnatal OSE cells. BMC Dev. Biol. 12, 17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Monkley, S. J., Delaney, S. J., Pennisi, D. J., Christiansen, J. H. & Wainwright, B. J. Targeted disruption of the Wnt2 gene results in placentation defects. Development 122, 3343–3353 (1996).

    CAS  PubMed  Google Scholar 

  103. Sakaki-Yumoto, M., Katsuno, Y. & Derynck, R. TGF-β family signaling in stem cells. Biochim. Biophys. Acta 1830, 2280–2296 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Mani, S. A. et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ahmed, N. et al. Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium. Am. J. Physiol. Cell Physiol. 290, C1532–C1542 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Zhu, Y., Nilsson, M. & Sundfeldt, K. Phenotypic plasticity of the ovarian surface epithelium: TGF-β1 induction of epithelial to mesenchymal transition (EMT) in vitro. Endocrinology 151, 5497–5505 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Shepherd, T. G. & Nachtigal, M. W. Identification of a putative autocrine bone morphogenetic protein-signaling pathway in human ovarian surface epithelium and ovarian cancer cells. Endocrinology 144, 3306–3314 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Nilsson, E., Doraiswamy, V., Parrott, J. A. & Skinner, M. K. Expression and action of transforming growth factor beta (TGFβ1, TGFβ2, TGFβ3) in normal bovine ovarian surface epithelium and implications for human ovarian cancer. Mol. Cell. Endocrinol. 182, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Henriksen, R. et al. Expression and prognostic significance of TGF-β isotypes, latent TGF-β 1 binding protein, TGF-β type I and type II receptors, and endoglin in normal ovary and ovarian neoplasms. Lab. Invest. 73, 213–220 (1995).

    CAS  PubMed  Google Scholar 

  110. Shimasaki, S. et al. A functional bone morphogenetic protein system in the ovary. Proc. Natl Acad. Sci. USA 96, 7282–7287 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Symonds, D., Tomic, D., Borgeest, C., McGee, E. & Flaws, J. A. Smad 3 regulates proliferation of the mouse ovarian surface epithelium. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 273, 681–686 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Erickson, G. F. & Shimasaki, S. The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod. Biol. Endocrinol. 1, 9 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Maruo, T. et al. Expression of epidermal growth factor and its receptor in the human ovary during follicular growth and regression. Endocrinology 132, 924–931 (1993).

    Article  CAS  PubMed  Google Scholar 

  114. Doraiswamy, V., Parrott, J. A. & Skinner, M. K. Expression and action of transforming growth factor alpha in normal ovarian surface epithelium and ovarian cancer. Biol. Reprod. 63, 789–796 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Jindal, S. K., Snoey, D. M., Lobb, D. K. & Dorrington, J. H. Transforming growth factor α localization and role in surface epithelium of normal human ovaries and in ovarian carcinoma cells. Gynecol. Oncol. 53, 17–23 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Parrott, J. A., Mosher, R., Kim, G. & Skinner, M. K. Autocrine interactions of keratinocyte growth factor, hepatocyte growth factor, and kit-ligand in the regulation of normal ovarian surface epithelial cells. Endocrinology 141, 2532–2539 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Hess, S., Gulati, R. & Peluso, J. J. Hepatocyte growth factor induces rat ovarian surface epithelial cell mitosis or apoptosis depending on the presence or absence of an extracellular matrix. Endocrinology 140, 2908–2916 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Parrott, J. A., Kim, G., Mosher, R. & Skinner, M. K. Expression and action of keratinocyte growth factor (KGF) in normal ovarian surface epithelium and ovarian cancer. Mol. Cell. Endocrinol. 167, 77–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Karlan, B. Y., Jones, J., Greenwald, M. & Lagasse, L. D. Steroid hormone effects on the proliferation of human ovarian surface epithelium in vitro. Am. J. Obstetr. Gynecol. 173, 97–104 (1995).

    Article  CAS  Google Scholar 

  120. Stewart, S. L. et al. Gonadotropin and steroid hormones stimulate proliferation of the rat ovarian surface epithelium. J. Cell. Physiol. 198, 119–124 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Davies, B. R., Finnigan, D. S., Smith, S. K. & Ponder, B. A. Administration of gonadotropins stimulates proliferation of normal mouse ovarian surface epithelium. Gynecol. Endocrinol. 13, 75–81 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Donnez, J., Casanas-Roux, F., Caprasse, J., Ferin, J. & Thomas, K. Cyclic changes in ciliation, cell height, and mitotic activity in human tubal epithelium during reproductive life. Fertil. Steril. 43, 554–559 (1985).

    Article  CAS  PubMed  Google Scholar 

  123. Saddick, S. Y. In vitro regulation of sheep ovarian surface epithelium (OSE) proliferation by local ovarian factors. Saudi J. Biol. Sci. 19, 285–290 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Press, M. F., Nousek-Goebl, N. A., Bur, M. & Greene, G. L. Estrogen receptor localization in the female genital tract. Am. J. Pathol. 123, 280–292 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Amso, N. N., Crow, J. & Shaw, R. W. Comparative immunohistochemical study of oestrogen and progesterone receptors in the fallopian tube and uterus at different stages of the menstrual cycle and the menopause. Hum. Reprod. 9, 1027–1037 (1994).

    Article  CAS  PubMed  Google Scholar 

  126. King, S. M., Modi, D. A., Eddie, S. L. & Burdette, J. E. Insulin and insulin-like growth factor signaling increases proliferation and hyperplasia of the ovarian surface epithelium and decreases follicular integrity through upregulation of the PI3-kinase pathway. J. Ovarian Res. 6, 12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. King, S. M., Quartuccio, S., Hilliard, T. S., Inoue, K. & Burdette, J. E. Alginate hydrogels for three-dimensional organ culture of ovaries and oviducts. J. Vis. Exp. 20, 2084 (2011).

    Google Scholar 

  128. Jackson, K. S., Inoue, K., Davis, D. A., Hilliard, T. S. & Burdette, J. E. Three-dimensional ovarian organ culture as a tool to study normal ovarian surface epithelial wound repair. Endocrinology 150, 3921–3926 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lawrenson, K. et al. In vitro three-dimensional modeling of fallopian tube secretory epithelial cells. BMC Cell Biol. 14, 43 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lawrenson, K. et al. In vitro three-dimensional modelling of human ovarian surface epithelial cells. Cell Prolif. 42, 385–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. Nat. Med. 17, 1225–1227 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Zeng, Y. A. & Nusse, R. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell 6, 568–577 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cancer Genome Atlas Research Network et al. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  135. Levanon, K., Crum, C. & Drapkin, R. New insights into the pathogenesis of serous ovarian cancer and its clinical impact. J. Clin. Oncol. 26, 5284–5293 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Orsulic, S. et al. Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell 1, 53–62 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Connolly, D. C. et al. Female mice chimeric for expression of the simian virus 40 TAg under control of the MISIIR promoter develop epithelial ovarian cancer. Cancer Res. 63, 1389–1397 (2003).

    CAS  PubMed  Google Scholar 

  138. Flesken-Nikitin, A., Choi, K. C., Eng, J. P., Shmidt, E. N. & Nikitin, A. Y. Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res. 63, 3459–3463 (2003).

    CAS  PubMed  Google Scholar 

  139. Laviolette, L. A. et al. 17β-estradiol accelerates tumor onset and decreases survival in a transgenic mouse model of ovarian cancer. Endocrinology 151, 929–938 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Mullany, L. K. et al. Molecular and functional characteristics of ovarian surface epithelial cells transformed by KrasG12D and loss of Pten in a mouse model in vivo. Oncogene 30, 3522–3536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vanderhyden, B. C., Shaw, T. J. & Ethier, J. F. Animal models of ovarian cancer. Reprod. Biol. Endocrinol. 1, 67 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Clark-Knowles, K. V., Garson, K., Jonkers, J. & Vanderhyden, B. C. Conditional inactivation of Brca1 in the mouse ovarian surface epithelium results in an increase in preneoplastic changes. Exp. Cell Res. 313, 133–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Dinulescu, D. M. et al. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat. Med. 11, 63–70 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Wu, R. et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/β-catenin and PI3K/Pten signaling pathways. Cancer Cell 11, 321–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Szabova, L. et al. Perturbation of Rb, 53, and Brca1 or Brca2 cooperate in inducing metastatic serous epithelial ovarian cancer. Cancer Res. 72, 4141–4153 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Perets, R. et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell 24, 751–765 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kim, J. et al. High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proc. Natl Acad. Sci. USA 109, 3921–3926 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  148. van der Horst, P. H. et al. A mouse model for endometrioid ovarian cancer arising from the distal oviduct. J. Int. Cancer 135, 1028–1037 (2014).

    Article  CAS  Google Scholar 

  149. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Zhu, L. et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457, 603–607 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40, 915–920 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tan, T. Z. et al. Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer. EMBO Mol. Med. 5, 983–998 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  153. Asad, M. et al. FZD7 drives in vitro aggressiveness in Stem-A subtype of ovarian cancer via regulation of non-canonical Wnt/PCP pathway. Cell Death Dis. 5, e1346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Herfs, M. et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc. Natl Acad. Sci. USA 109, 10516–10521 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Wang, X. et al. Residual embryonic cells as precursors of a Barrett's-like metaplasia. Cell 145, 1023–1035 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Murdoch, W. J. & McDonnel, A. C. Roles of the ovarian surface epithelium in ovulation and carcinogenesis. Reproduction 123, 743–750 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Bjersing, L. & Cajander, S. Ovulation and the role of the ovarian surface epithelium. Experientia 31, 605–608 (1975).

    Article  CAS  PubMed  Google Scholar 

  158. Colgin, D. C. & Murdoch, W. J. Evidence for a role of the ovarian surface epithelium in the ovulatory mechanism of the sheep: secretion of urokinase-type plasminogen activator. Anim. Reprod. Sci. 47, 197–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  159. Kruk, P. A., Uitto, V. J., Firth, J. D., Dedhar, S. & Auersperg, N. Reciprocal interactions between human ovarian surface epithelial cells and adjacent extracellular matrix. Exp. Cell Res. 215, 97–108 (1994).

    Article  CAS  PubMed  Google Scholar 

  160. Gaytan, F., Bellido, C., Gaytan, M., Morales, C. & Sanchez-Criado, J. E. Differential effects of RU486 and indomethacin on follicle rupture during the ovulatory process in the rat. Biol. Reprod. 69, 99–105 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Singavarapu, R., Buchinsky, N., Cheon, D. J. & Orsulic, S. Whole ovary immunohistochemistry for monitoring cell proliferation and ovulatory wound repair in the mouse. Reprod. Biol. Endocrinol. 8, 98 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wright, J. W. et al. Ovulation in the absence of the ovarian surface epithelium in the primate. Biol. Reprod. 82, 599–605 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Wright, J. W., Pejovic, T., Fanton, J. & Stouffer, R. L. Induction of proliferation in the primate ovarian surface epithelium in vivo. Hum. Reprod. 23, 129–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Auersperg, N., Maclaren, I. A. & Kruk, P. A. Ovarian surface epithelium: autonomous production of connective tissue-type extracellular matrix. Biol. Reprod. 44, 717–724 (1991).

    Article  CAS  PubMed  Google Scholar 

  165. George, S. H., Milea, A. & Shaw, P. A. Proliferation in the normal FTE is a hallmark of the follicular phase, not BRCA mutation status. Clin. Cancer Res. 18, 6199–6207 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Crow, J., Amso, N. N., Lewin, J. & Shaw, R. W. Morphology and ultrastructure of fallopian tube epithelium at different stages of the menstrual cycle and menopause. Hum. Reprod. 9, 2224–2233 (1994).

    Article  CAS  PubMed  Google Scholar 

  167. Beller, U., Haimovitch, R. & Ben-Sasson, S. Periovulatory multifocal mesothelial proliferation: a possible association with malignant transformation. Int. J. Gynecol. Cancer 5, 306–309 (1995).

    Article  PubMed  Google Scholar 

  168. Gaytan, M. et al. Cyclic changes of the ovarian surface epithelium in the rat. Reproduction 129, 311–321 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Fleming, J. S., McQuillan, H. J., Millier, M. J., Beaugie, C. R. & Livingstone, V. E-cadherin expression and bromodeoxyuridine incorporation during development of ovarian inclusion cysts in age-matched breeder and incessantly ovulated CD-1 mice. Reprod. Biol. Endocrinol. 5, 14 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Fathalla, M. F. Incessant ovulation — a factor in ovarian neoplasia? Lancet 2, 163 (1971). Proposed the incessant ovulation hypothesis, which posits that the cyclic rupture and repair trauma endured by OSE increases cell proliferation and consequently accumulation of deleterious somatic mutations.

    Article  CAS  PubMed  Google Scholar 

  171. Auersperg, N. Ovarian surface epithelium as a source of ovarian cancers: unwarranted speculation or evidence-based hypothesis? Gynecol. Oncol. 130, 246–251 (2013).

    Article  PubMed  Google Scholar 

  172. Cheng, W., Liu, J., Yoshida, H., Rosen, D. & Naora, H. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat. Med. 11, 531–537 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Kindelberger, D. W. et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. Am. J. Surg. Pathol. 31, 161–169 (2007).

    Article  PubMed  Google Scholar 

  174. Medeiros, F. et al. The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am. J. Surg. Pathol. 30, 230–236 (2006).

    Article  PubMed  Google Scholar 

  175. Seidman, J. D., Zhao, P. & Yemelyanova, A. “Primary peritoneal” high-grade serous carcinoma is very likely metastatic from serous tubal intraepithelial carcinoma: assessing the new paradigm of ovarian and pelvic serous carcinogenesis and its implications for screening for ovarian cancer. Gynecol. Oncol. 120, 470–473 (2011).

    Article  PubMed  Google Scholar 

  176. Mehrad, M., Ning, G., Chen, E. Y., Mehra, K. K. & Crum, C. P. A pathologist's road map to benign, precancerous, and malignant intraepithelial proliferations in the fallopian tube. Adv. Anatom. Pathol. 17, 293–302 (2010).

    Article  CAS  Google Scholar 

  177. Kuhn, E. et al. TP53 mutations in serous tubal intraepithelial carcinoma and concurrent pelvic high-grade serous carcinoma — evidence supporting the clonal relationship of the two lesions. J. Pathol. 226, 421–426 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Levanon, K. et al. Primary ex vivo cultures of human fallopian tube epithelium as a model for serous ovarian carcinogenesis. Oncogene 29, 1103–1113 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Przybycin, C. G., Kurman, R. J., Ronnett, B. M., Shih, I. M. & Vang, R. Are all pelvic (nonuterine) serous carcinomas of tubal origin? Am. J. Surg. Pathol. 34, 1407–1416 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all laboratory members in the group for their support and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Barker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Fimbria

The most distal part of the fallopian tube (or oviduct in non-primates). The fimbria comprises finger-like fringes that collect the released oocyte from the surface of the ovary and transport it into the uterus for fertilization.

Ovary

A reproductive organ that is responsible for the production and cyclic release of oocytes. In mammals, the ovary is present as a pair of glands that are attached to the uterus by the ovary ligaments.

Follicular fluid

A growth factor-enriched liquid that fills the ovarian follicle. The composition of the follicular fluid dramatically changes during folliculogenesis, as well as during the various stages of the oestrus cycle.

Niche

The supportive local environment in which stem cells reside. The stem cell niche supplies all the extrinsic signalling cues that dictate stem cell maintenance and proliferative activity.

DNA label retention

Introduction of a nucleotide analogue (for example, 5-bromo-2′-deoxyuridine (BrdU) or 5-iodo-2′-deoxyuridine (IdU)) or labelling by genetic means (for example, using histone 2B–GFP) for a short period, followed by a prolonged period in the absence of the labelling reagent. After several rounds of cell division, fast-cycling cells rapidly dilute the label, whereas quiescent cells retain most of the original label. These cells are termed label-retaining cells.

Side-population enrichment

A flow-cytometry assay that discriminates for and enriches cell populations that efflux fluorescent dyes (for example, Hoechst 33342) at a higher pace, owing to the expression of ATP-binding cassette transporter proteins within the cell membrane.

Fate-mapping

Permanent labelling of a cell type with a reporter marker (LacZ or a fluorescent protein) that is inherited by its progeny upon cellular division, thus facilitating analyses of its cell-fate decisions and behaviour. Also known as lineage tracing.

Cellular quiescence

A reversible, non-dividing cell state. Some stem cells are quiescent under steady state, a property that is believed to sustain lifelong tissue maintenance and preservation of the stem cell compartment.

Organoids

Three-dimensional cell culture structures that recapitulate the multipotent cellular differentiation and functional complexity of the native tissue of origin.

Corpus luteum

The vascularized by-product of a recently ruptured follicle. Over time, the corpus luteum regresses into the centre of the ovary to become stromal or interstitial tissue.

Epithelial–mesenchymal transition

(EMT). A biological process by which epithelial cells dissolve their tight junctions with one another and convert into a free, migratory form.

Cancer cell of origin

The cell that sustains the first cancer-promoting mutation or mutations that initiate tumour development.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, A., Barker, N. Ovary and fimbrial stem cells: biology, niche and cancer origins. Nat Rev Mol Cell Biol 16, 625–638 (2015). https://doi.org/10.1038/nrm4056

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4056

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer