Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic regulation of ageing: linking environmental inputs to genomic stability

Key Points

  • Widespread epigenomic remodelling, at the level of DNA or histone protein modification, has been observed during ageing across species and cell types. Some epigenetic states can function as 'molecular clocks'.

  • The experimental perturbation of chromatin modifiers can influence the lifespan of model organisms.

  • Environmental inputs, such as diet, physical activity, hormones or pheromones, have been linked to remodelling of the epigenome as well as to changes in lifespan. Chromatin may thus act as a molecular integrator of environmental exposures.

  • Random epigenetic changes, or epimutations, throughout life may trigger increases in transcriptional and genomic instability.

  • The unique regulation of chromatin in germline cells might protect these cells more than somatic cells during ageing.

  • Some ageing or age-related phenotypes, such as lifespan, fertility and stress resistance, may be inherited through successive generations in model organisms, through non-genetic mechanisms.

  • The use of epigenetic drugs or epigenome-editing technologies may be a promising avenue for age-related therapeutics.

Abstract

Ageing is affected by both genetic and non-genetic factors. Here, we review the chromatin-based epigenetic changes that occur during ageing, the role of chromatin modifiers in modulating lifespan and the importance of epigenetic signatures as biomarkers of ageing. We also discuss how epigenome remodelling by environmental stimuli affects several aspects of transcription and genomic stability, with important consequences for longevity, and outline epigenetic differences between the 'mortal soma' and the 'immortal germ line'. Finally, we discuss the inheritance of characteristics of ageing and potential chromatin-based strategies to delay or reverse hallmarks of ageing or age-related diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Environmental inputs that affect longevity can also affect the chromatin landscape.
Figure 2: A model for the possible crosstalk between chromatin changes and transcriptional and genomic instability during ageing.

Similar content being viewed by others

References

  1. Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010).

    CAS  PubMed  Google Scholar 

  2. Cournil, A. & Kirkwood, T. B. If you would live long, choose your parents well. Trends Genet. 17, 233–235 (2001).

    CAS  PubMed  Google Scholar 

  3. Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span — from yeast to humans. Science 328, 321–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Remolina, S. C. & Hughes, K. A. Evolution and mechanisms of long life and high fertility in queen honey bees. Age 30, 177–185 (2008).

    PubMed  PubMed Central  Google Scholar 

  5. Libert, S., Bonkowski, M. S., Pointer, K., Pletcher, S. D. & Guarente, L. Deviation of innate circadian period from 24 h reduces longevity in mice. Aging Cell 11, 794–800 (2012).

    CAS  PubMed  Google Scholar 

  6. Waddington, C. H. The epigenotype. Int. J. Epidemiol. 41, 10–13 (2012).

    CAS  PubMed  Google Scholar 

  7. Zahn, J. M. et al. AGEMAP: a gene expression database for aging in mice. PLoS Genet. 3, e201 (2007).

    PubMed  PubMed Central  Google Scholar 

  8. Southworth, L. K., Owen, A. B. & Kim, S. K. Aging mice show a decreasing correlation of gene expression within genetic modules. PLoS Genet. 5, e1000776 (2009). This study was the first genome-wide investigation of the effect of ageing on the robustness of transcriptional networks in mice.

    PubMed  PubMed Central  Google Scholar 

  9. Gut, P. & Verdin, E. The nexus of chromatin regulation and intermediary metabolism. Nature 502, 489–498 (2013).

    CAS  PubMed  Google Scholar 

  10. Vaquero, A. & Reinberg, D. Calorie restriction and the exercise of chromatin. Genes Dev. 23, 1849–1869 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Seong, K. H., Li, D., Shimizu, H., Nakamura, R. & Ishii, S. Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145, 1049–1061 (2011).

    CAS  PubMed  Google Scholar 

  12. Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    CAS  Google Scholar 

  14. Cruickshanks, H. A. et al. Senescent cells harbour features of the cancer epigenome. Nat. Cell Biol. 15, 1495–1506 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilson, V. L. & Jones, P. A. DNA methylation decreases in aging but not in immortal cells. Science 220, 1055–1057 (1983).

    CAS  PubMed  Google Scholar 

  16. Day, K. et al. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 14, R102 (2013).

    PubMed  PubMed Central  Google Scholar 

  17. Maegawa, S. et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 20, 332–340 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Teschendorff, A. E. et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 20, 440–446 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zou, J., Lippert, C., Heckerman, D., Aryee, M. & Listgarten, J. Epigenome-wide association studies without the need for cell-type composition. Nat. Methods 11, 309–311 (2014).

    CAS  PubMed  Google Scholar 

  20. Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413–425 (2013).

    CAS  PubMed  Google Scholar 

  21. Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673–688 (2014). This was the first extensive study of the epigenomic landscape (several histone marks and DNA methylation) in purified stem cells (HSCs) from young and old mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. Greer, E. L. et al. DNA methylation on N6-adenine in C. elegans. Cell 161, 868–878 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu, Y. et al. N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161, 879–892 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, G. et al. N6-methyladenine DNA modification in Drosophila. Cell 161, 893–906 (2015).

    CAS  PubMed  Google Scholar 

  26. Weidner, C. I. et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 15, R24 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    CAS  PubMed  Google Scholar 

  28. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013). This study is the most extensive demonstration that DNA methylation levels at specific loci are predictive of age across a range of cells and tissues.

    PubMed  PubMed Central  Google Scholar 

  29. Capuano, F., Mulleder, M., Kok, R., Blom, H. J. & Ralser, M. Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal. Chem. 86, 3697–3702 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Simpson, V. J., Johnson, T. E. & Hammen, R. F. Caenorhabditis elegans DNA does not contain 5-methylcytosine at any time during development or aging. Nucleic Acids Res. 14, 6711–6719 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin, M. J., Tang, L. Y., Reddy, M. N. & Shen, C. K. DNA methyltransferase gene dDnmt2 and longevity of Drosophila. J. Biol. Chem. 280, 861–864 (2005).

    CAS  PubMed  Google Scholar 

  32. Phalke, S. et al. Retrotransposon silencing and telomere integrity in somatic cells of Drosophila depends on the cytosine-5 methyltransferase DNMT2. Nat. Genet. 41, 696–702 (2009).

    CAS  PubMed  Google Scholar 

  33. Schaefer, M. & Lyko, F. Lack of evidence for DNA methylation of Invader4 retroelements in Drosophila and implications for Dnmt2-mediated epigenetic regulation. Nat. Genet. 42, 920–921; author reply 921 (2010).

    CAS  PubMed  Google Scholar 

  34. Cavalli, G. & Misteli, T. Functional implications of genome topology. Nat. Struct. Mol. Biol. 20, 290–299 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Feser, J. & Tyler, J. Chromatin structure as a mediator of aging. FEBS Lett. 585, 2041–2048 (2011).

    CAS  PubMed  Google Scholar 

  36. Hu, Z. et al. Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev. 28, 396–408 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. O'Sullivan, R. J., Kubicek, S., Schreiber, S. L. & Karlseder, J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat. Struct. Mol. Biol. 17, 1218–1225 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, L. et al. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep. 4, 189–204 (2013). This was the first genome-wide study of age-dependent changes in histone modifications in purified adult stem cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shah, P. P. et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 27, 1787–1799 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Feser, J. et al. Elevated histone expression promotes life span extension. Mol. Cell 39, 724–735 (2010). This study provided the first evidence that the expression level of core histones may directly affect lifespan.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Das, C. & Tyler, J. K. Histone exchange and histone modifications during transcription and aging. Biochim. Biophys. Acta 1819, 332–342 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsurumi, A. & Li, W. X. Global heterochromatin loss: a unifying theory of aging? Epigenetics 7, 680–688 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dechat, T. et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 22, 832–853 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, W. et al. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348, 1160–1163 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jin, C. et al. Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab. 14, 161–172 (2011).

    CAS  PubMed  Google Scholar 

  47. Maures, T. J., Greer, E. L., Hauswirth, A. G. & Brunet, A. The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 10, 980–990 (2011).

    CAS  PubMed  Google Scholar 

  48. Ni, Z., Ebata, A., Alipanahiramandi, E. & Lee, S. S. Two SET domain containing genes link epigenetic changes and aging in Caenorhabditis elegans. Aging Cell 11, 315–325 (2012).

    CAS  PubMed  Google Scholar 

  49. Siebold, A. P. et al. Polycomb Repressive Complex 2 and Trithorax modulate Drosophila longevity and stress resistance. Proc. Natl Acad. Sci. USA 107, 169–174 (2010).

    CAS  PubMed  Google Scholar 

  50. Baumgart, M. et al. RNA-seq of the aging brain in the short-lived fish N. furzeri — conserved pathways and novel genes associated with neurogenesis. Aging Cell 13, 965–974 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pu, M. et al. Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span. Genes Dev. 29, 718–731 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Benayoun, B. A. et al. H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158, 673–688 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Greer, E. L. et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466, 383–387 (2010). This study links histone methylation to lifespan extension for the first time in a metazoan.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81, 65–95 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, L., Greer, C., Eisenman, R. N. & Secombe, J. Essential functions of the histone demethylase lid. PLoS Genet. 6, e1001221 (2010).

    PubMed  PubMed Central  Google Scholar 

  56. Lee, S. S., Kennedy, S., Tolonen, A. C. & Ruvkun, G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 300, 644–647 (2003).

    CAS  PubMed  Google Scholar 

  57. Alvares, S. M., Mayberry, G. A., Joyner, E. Y., Lakowski, B. & Ahmed, S. H3K4 demethylase activities repress proliferative and postmitotic aging. Aging Cell 13, 245–253 (2014).

    CAS  PubMed  Google Scholar 

  58. Sen, P. et al. H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev. 29, 1362–1376 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dang, W. et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459, 802–807 (2009). This study, which was the first experimental swap of histone residues, shows that H4K16 itself has a role in yeast replicative ageing.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Krishnan, V. et al. Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc. Natl Acad. Sci. USA 108, 12325–12330 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hargreaves, D. C., Horng, T. & Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138, 129–145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Peleg, S. et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328, 753–756 (2010).

    CAS  PubMed  Google Scholar 

  63. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000). This study was the first demonstration that longevity-promoting sirtuins are HDACs.

    CAS  PubMed  Google Scholar 

  64. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kugel, S. & Mostoslavsky, R. Chromatin and beyond: the multitasking roles for SIRT6. Trends Biochem. Sci. 39, 72–81 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Burnett, C. et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482–485 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Satoh, A. et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 18, 416–430 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Michishita, E. et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492–496 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Toiber, D. et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol. Cell 51, 454–468 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

    CAS  PubMed  Google Scholar 

  71. Kanfi, Y. et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221 (2012). Studies 70 and 71 were the first to link a member of the sirtuin family with ageing and lifespan in mammals.

    CAS  PubMed  Google Scholar 

  72. Van Meter, M. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 5, 5011 (2014).

    CAS  PubMed  Google Scholar 

  73. Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907–918 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, R. H. et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14, 312–323 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Love, D. C. et al. Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity. Proc. Natl Acad. Sci. USA 107, 7413–7418 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rahman, M. M. et al. Intracellular protein glycosylation modulates insulin mediated lifespan in C. elegans. Aging 2, 678–690 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bartholomew, B. Regulating the chromatin landscape: structural and mechanistic perspectives. Annu. Rev. Biochem. 83, 671–696 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pegoraro, G. et al. Ageing-related chromatin defects through loss of the NURD complex. Nat. Cell Biol. 11, 1261–1267 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Dang, W. et al. Inactivation of yeast Isw2 chromatin remodeling enzyme mimics longevity effect of calorie restriction via induction of genotoxic stress response. Cell Metab. 19, 952–966 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Riedel, C. G. et al. DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nat. Cell Biol. 15, 491–501 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Janssen, I., Carson, V., Lee, I. M., Katzmarzyk, P. T. & Blair, S. N. Years of life gained due to leisure-time physical activity in the U.S.. Am. J. Prev. Med. 44, 23–29 (2013).

    PubMed  PubMed Central  Google Scholar 

  82. Maures, T. J. et al. Males shorten the life span of C. elegans hermaphrodites via secreted compounds. Science 343, 541–544 (2014). Together with references 123 and 124, this study was the first to investigate the mechanistic bases of the effects ofsex interactions on lifespan and also identifies a link with a chromatin modifier, UTX-1.

    CAS  PubMed  Google Scholar 

  83. Orozco-Solis, R. & Sassone-Corsi, P. Circadian clock: linking epigenetics to aging. Curr. Opin. Genet. Dev. 26, 66–72 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Heydari, A. R., Unnikrishnan, A., Lucente, L. V. & Richardson, A. Caloric restriction and genomic stability. Nucleic Acids Res. 35, 7485–7496 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Jiang, N. et al. Dietary and genetic effects on age-related loss of gene silencing reveal epigenetic plasticity of chromatin repression during aging. Aging 5, 813–824 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Horvath, S. et al. Obesity accelerates epigenetic aging of human liver. Proc. Natl Acad. Sci. USA 111, 15538–15543 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Greer, E. L. & Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425 (2005).

    CAS  PubMed  Google Scholar 

  88. Hatta, M., Liu, F. & Cirillo, L. A. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1. Biochem. Biophys. Res. Commun. 379, 1005–1008 (2009).

    CAS  PubMed  Google Scholar 

  89. Rogina, B. & Helfand, S. L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl Acad. Sci. USA 101, 15998–16003 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Boily, G. et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 3, e1759 (2008).

    PubMed  PubMed Central  Google Scholar 

  91. Greer, E. L. & Brunet, A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8, 113–127 (2009).

    CAS  PubMed  Google Scholar 

  92. Stenesen, D. et al. Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab. 17, 101–112 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    PubMed  Google Scholar 

  94. Abate, G. et al. Snf1/AMPK regulates Gcn5 occupancy, H3 acetylation and chromatin remodelling at S. cerevisiae ADY2 promoter. Biochim. Biophys. Acta 1819, 419–427 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. McGee, S. L. et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57, 860–867 (2008).

    CAS  PubMed  Google Scholar 

  96. Mihaylova, M. M. et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607–621 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bungard, D. et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329, 1201–1205 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lau, A. W., Liu, P., Inuzuka, H. & Gao, D. SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. Am. J. Cancer Res. 4, 245–255 (2014).

    PubMed  PubMed Central  Google Scholar 

  99. Xu, Q. et al. AMPK regulates histone H2B O-GlcNAcylation. Nucleic Acids Res. 42, 5594–5604 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kaeberlein, M., Kirkland, K. T., Fields, S. & Kennedy, B. K. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2, E296 (2004).

    PubMed  PubMed Central  Google Scholar 

  101. Hachinohe, M. et al. A reduction in age-enhanced gluconeogenesis extends lifespan. PLoS ONE 8, e54011 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Zheng, L., Roeder, R. G. & Luo, Y. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114, 255–266 (2003).

    CAS  PubMed  Google Scholar 

  103. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Salminen, A., Kauppinen, A., Hiltunen, M. & Kaarniranta, K. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res. Rev. 16, 45–65 (2014).

    CAS  PubMed  Google Scholar 

  105. Williams, D. S., Cash, A., Hamadani, L. & Diemer, T. Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway. Aging Cell 8, 765–768 (2009).

    CAS  PubMed  Google Scholar 

  106. Edwards, C. B., Copes, N., Brito, A. G., Canfield, J. & Bradshaw, P. C. Malate and fumarate extend lifespan in Caenorhabditis elegans. PLoS ONE 8, e58345 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chin, R. M. et al. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 509, 397–401 (2014).

    Google Scholar 

  108. Froy, O. Circadian rhythms, aging, and life span in mammals. Physiology 26, 225–235 (2011).

    CAS  PubMed  Google Scholar 

  109. Hurd, M. W. & Ralph, M. R. The significance of circadian organization for longevity in the golden hamster. J. Biol. Rhythms 13, 430–436 (1998).

    CAS  PubMed  Google Scholar 

  110. Rakshit, K. & Giebultowicz, J. M. Cryptochrome restores dampened circadian rhythms and promotes healthspan in aging Drosophila. Aging Cell 12, 752–762 (2013).

    CAS  PubMed  Google Scholar 

  111. Aguilar-Arnal, L. & Sassone-Corsi, P. The circadian epigenome: how metabolism talks to chromatin remodeling. Curr. Opin. Cell Biol. 25, 170–176 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497–508 (2006). This study demonstrates that the molecular circadian clock is an epigenetic regulator.

    CAS  PubMed  Google Scholar 

  113. Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328 (2008).

    CAS  PubMed  Google Scholar 

  115. Bellet, M. M. et al. Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc. Natl Acad. Sci. USA 110, 3333–3338 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437–440 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wu, C. W. et al. Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice. J. Appl. Physiol. 105, 1585–1594 (2008).

    PubMed  Google Scholar 

  118. Lugert, S. et al. Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6, 445–456 (2010).

    CAS  PubMed  Google Scholar 

  119. Li, L. et al. Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students. PLoS ONE 9, e99222 (2014).

    PubMed  PubMed Central  Google Scholar 

  120. Gremeaux, V. et al. Exercise and longevity. Maturitas 73, 312–317 (2012).

    PubMed  Google Scholar 

  121. Koltai, E. et al. Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech. Ageing Dev. 131, 21–28 (2010).

    CAS  PubMed  Google Scholar 

  122. McGee, S. L., Fairlie, E., Garnham, A. P. & Hargreaves, M. Exercise-induced histone modifications in human skeletal muscle. J. Physiol. 587, 5951–5958 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Shi, C. & Murphy, C. T. Mating induces shrinking and death in Caenorhabditis mothers. Science 343, 536–540 (2014).

    CAS  PubMed  Google Scholar 

  124. Gendron, C. M. et al. Drosophila life span and physiology are modulated by sexual perception and reward. Science 343, 544–548 (2014).

    CAS  PubMed  Google Scholar 

  125. Edison, A. S. Caenorhabditis elegans pheromones regulate multiple complex behaviors. Curr. Opin. Neurobiol. 19, 378–388 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ludewig, A. H. et al. Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1. Proc. Natl Acad. Sci. USA 110, 5522–5527 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wiench, M., Miranda, T. B. & Hager, G. L. Control of nuclear receptor function by local chromatin structure. FEBS J. 278, 2211–2230 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Osmanbeyoglu, H. U. et al. Estrogen represses gene expression through reconfiguring chromatin structures. Nucleic Acids Res. 41, 8061–8071 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kanungo, M. S. & Thakur, M. K. Modulation of acetylation of histones and transcription of chromatin by butyric acid and 17β-estradiol in the brain of rats of various ages. Biochem. Biophys. Res. Commun. 87, 266–271 (1979).

    CAS  PubMed  Google Scholar 

  130. Deroo, B. J. & Korach, K. S. Estrogen receptors and human disease. J. Clin. Invest. 116, 561–570 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Chong, S., Youngson, N. A. & Whitelaw, E. Heritable germline epimutation is not the same as transgenerational epigenetic inheritance. Nat. Genet. 39, 574–575; author reply 575–576 (2007).

    CAS  PubMed  Google Scholar 

  132. Holliday, R. The inheritance of epigenetic defects. Science 238, 163–170 (1987).

    CAS  PubMed  Google Scholar 

  133. Vijg, J. & Suh, Y. Genome instability and aging. Annu. Rev. Physiol. 75, 645–668 (2013).

    CAS  PubMed  Google Scholar 

  134. Burgess, R. C., Misteli, T. & Oberdoerffer, P. DNA damage, chromatin, and transcription: the trinity of aging. Curr. Opin. Cell Biol. 24, 724–730 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Vyjayanti, V. N. & Rao, K. S. DNA double strand break repair in brain: reduced NHEJ activity in aging rat neurons. Neurosci. Lett. 393, 18–22 (2006).

    CAS  PubMed  Google Scholar 

  136. Burtner, C. R. & Kennedy, B. K. Progeria syndromes and ageing: what is the connection? Nat. Rev. Mol. Cell Biol. 11, 567–578 (2010).

    CAS  PubMed  Google Scholar 

  137. Liu, J., Kim, J. & Oberdoerffer, P. Metabolic modulation of chromatin: implications for DNA repair and genomic integrity. Front. Genet. 4, 182 (2013).

    PubMed  PubMed Central  Google Scholar 

  138. Kidwell, M. G. Transposable elements and the evolution of genome size in eukaryotes. Genetica 115, 49–63 (2002).

    CAS  PubMed  Google Scholar 

  139. Maxwell, P. H., Burhans, W. C. & Curcio, M. J. Retrotransposition is associated with genome instability during chronological aging. Proc. Natl Acad. Sci. USA 108, 20376–20381 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ross, R. J., Weiner, M. M. & Lin, H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505, 353–359 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Wood, J. G. & Helfand, S. L. Chromatin structure and transposable elements in organismal aging. Front. Genet. 4, 274 (2013).

    PubMed  PubMed Central  Google Scholar 

  142. Dennis, S., Sheth, U., Feldman, J. L., English, K. A. & Priess, J. R. C. elegans germ cells show temperature and age-dependent expression of Cer1, a Gypsy/Ty3-related retrotransposon. PLoS Pathog. 8, e1002591 (2012).

    PubMed  PubMed Central  Google Scholar 

  143. Li, W. et al. Activation of transposable elements during aging and neuronal decline in Drosophila. Nat. Neurosci. 16, 529–531 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. De Cecco, M. et al. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging 5, 867–883 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Reilly, M. T., Faulkner, G. J., Dubnau, J., Ponomarev, I. & Gage, F. H. The role of transposable elements in health and diseases of the central nervous system. J. Neurosci. 33, 17577–17586 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. De Cecco, M. et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12, 247–256 (2013).

    CAS  PubMed  Google Scholar 

  147. Vinuela, A., Snoek, L. B., Riksen, J. A. & Kammenga, J. E. Genome-wide gene expression regulation as a function of genotype and age in C. elegans. Genome Res. 20, 929–937 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, Q. et al. The spatial association of gene expression evolves from synchrony to asynchrony and stochasticity with age. PLoS ONE 6, e24076 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011–1014 (2006).

    CAS  PubMed  Google Scholar 

  150. Warren, L. A. et al. Transcriptional instability is not a universal attribute of aging. Aging Cell 6, 775–782 (2007). References 149 and 150 were pioneering studies that investigated the effects of ageing on cell-to-cell noise at selected genes.

    CAS  PubMed  Google Scholar 

  151. Busuttil, R. A. et al. Intra-organ variation in age-related mutation accumulation in the mouse. PLoS ONE 2, e876 (2007).

    PubMed  PubMed Central  Google Scholar 

  152. Weinberger, L. et al. Expression noise and acetylation profiles distinguish HDAC functions. Mol. Cell 47, 193–202 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Jones, D. L. Aging and the germ line: where mortality and immortality meet. Stem Cell Rev. 3, 192–200 (2007).

    CAS  PubMed  Google Scholar 

  154. Lim, J. P. & Brunet, A. Bridging the transgenerational gap with epigenetic memory. Trends Genet. 29, 176–186 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ragunathan, K., Jih, G. & Moazed, D. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348, 1258699 (2015).

    PubMed  Google Scholar 

  156. Gaydos, L. J., Wang, W. & Strome, S. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science 345, 1515–1518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Radford, E. J. et al. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903 (2014).

    PubMed  PubMed Central  Google Scholar 

  158. Kelly, W. G. Transgenerational epigenetics in the germline cycle of Caenorhabditis elegans. Epigenetics Chromatin 7, 6 (2014).

    PubMed  PubMed Central  Google Scholar 

  159. Katz, D. J., Edwards, T. M., Reinke, V. & Kelly, W. G. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137, 308–320 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Greer, E. L. et al. A histone methylation network regulates transgenerational epigenetic memory in C. elegans. Cell Rep. 7, 113–126 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Xiao, Y. et al. Caenorhabditis elegans chromatin-associated proteins SET-2 and ASH-2 are differentially required for histone H3 Lys 4 methylation in embryos and adult germ cells. Proc. Natl Acad. Sci. USA 108, 8305–8310 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Kerr, S. C., Ruppersburg, C. C., Francis, J. W. & Katz, D. J. SPR-5 and MET-2 function cooperatively to reestablish an epigenetic ground state during passage through the germ line. Proc. Natl Acad. Sci. USA 111, 9509–9514 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Robert, V. J. et al. The SET-2/SET1 histone H3K4 methyltransferase maintains pluripotency in the Caenorhabditis elegans germline. Cell Rep. 9, 443–450 (2014).

    CAS  PubMed  Google Scholar 

  164. Buckley, B. A. et al. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489, 447–451 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Simon, M. et al. Reduced insulin/IGF-1 signaling restores germ cell immortality to Caenorhabditis elegans Piwi mutants. Cell Rep. 7, 762–773 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Greer, E. L. et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365–371 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Rechavi, O. et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277–287 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Tauffenberger, A. & Parker, J. A. Heritable transmission of stress resistance by high dietary glucose in Caenorhabditis elegans. PLoS Genet. 10, e1004346 (2014).

    PubMed  PubMed Central  Google Scholar 

  170. Stern, S., Fridmann-Sirkis, Y., Braun, E. & Soen, Y. Epigenetically heritable alteration of fly development in response to toxic challenge. Cell Rep. 1, 528–542 (2012).

    CAS  PubMed  Google Scholar 

  171. Hojfeldt, J. W., Agger, K. & Helin, K. Histone lysine demethylases as targets for anticancer therapy. Nat. Rev. Drug Discov. 12, 917–930 (2013).

    CAS  PubMed  Google Scholar 

  172. Falkenberg, K. J. & Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691 (2014).

    CAS  PubMed  Google Scholar 

  173. Graff, J. et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483, 222–226 (2012).

    PubMed  PubMed Central  Google Scholar 

  174. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Cusanovich, D. A. et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

    CAS  PubMed  Google Scholar 

  177. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  178. Maze, I., Noh, K. M., Soshnev, A. A. & Allis, C. D. Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat. Rev. Genet. 15, 259–271 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Bhaumik, S. R., Smith, E. & Shilatifard, A. Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008–1016 (2007).

    CAS  PubMed  Google Scholar 

  180. Schubeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).

    CAS  PubMed  Google Scholar 

  181. Bocklandt, S. et al. Epigenetic predictor of age. PLoS ONE 6, e14821 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Horvath, S. et al. Accelerated epigenetic aging in Down syndrome. Aging Cell 14, 491–495 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).

    PubMed  PubMed Central  Google Scholar 

  184. Tsygankov, D., Liu, Y., Sanoff, H. K., Sharpless, N. E. & Elston, T. C. A quantitative model for age-dependent expression of the p16INK4a tumor suppressor. Proc. Natl Acad. Sci. USA 106, 16562–16567 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl Acad. Sci. USA 101, 17312–17315 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Kellinger, M. W. et al. 5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 19, 831–833 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Kirkwood, T. B. & Holliday, R. The evolution of ageing and longevity. Proc. R. Soc. Lond. B 205, 531–546 (1979).

    CAS  PubMed  Google Scholar 

  188. Mahmoudi, S. & Brunet, A. Aging and reprogramming: a two-way street. Curr. Opin. Cell Biol. 24, 744–756 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  190. Wahlestedt, M. et al. An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood 121, 4257–4264 (2013).

    CAS  PubMed  Google Scholar 

  191. Jenkins, T. G., Aston, K. I., Pflueger, C., Cairns, B. R. & Carrell, D. T. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet. 10, e1004458 (2014).

    PubMed  PubMed Central  Google Scholar 

  192. Shao, G. B. et al. Aging alters histone H3 lysine 4 methylation in mouse germinal vesicle stage oocytes. Reprod. Fertil. Dev. 27, 419–426 (2014).

    Google Scholar 

  193. Manosalva, I. & Gonzalez, A. Aging changes the chromatin configuration and histone methylation of mouse oocytes at germinal vesicle stage. Theriogenology 74, 1539–1547 (2010).

    CAS  PubMed  Google Scholar 

  194. Hamatani, T. et al. Age-associated alteration of gene expression patterns in mouse oocytes. Hum. Mol. Genet. 13, 2263–2278 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to those whose work could not be cited owing to space constraints. B.A.B., E.A.P and A.B. wrote the review together. The authors thank Aaron Daugherty, Elizabeth Schroder and Kévin Contrepois, as well as the anonymous reviewers, for helpful comments on the manuscript. B.A.B. is supported by K99 AG049934. E.A.P. is supported by US National Science Foundation GRFP and US National Institutes of Health (NIH) F31 AG043232 graduate fellowships. A.B. is supported by NIH DP1 AG044848, P01 AG036695, and the Glenn Laboratories for the Biology of Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Brunet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Supplementary information

Supplementary information S1 (box)

Targeted and global methods of epigenome mapping. (PDF 69 kb)

Supplementary information S2 (table)

Epigenetic changes observed during ageing (referenced table) (PDF 140 kb)

Supplementary information S3 (table)

Modulation of lifespan by components and modifiers of chromatin (referenced) (PDF 137 kb)

Related links

Related links

FURTHER INFORMATION

ENCODE

National Institutes of Health Roadmap Epigenomics Project

Glossary

Lifespan

The time elapsed between birth and death in time units. In yeast, lifespan can be measured in two ways: chronological lifespan, which corresponds to the length of time a non-dividing cell can survive; and replicative lifespan, which corresponds to the number of mitotic cell divisions a mother cell has undergone.

Healthspan

The duration of disease-free physiological health within the lifespan of an individual. In humans, for instance, this corresponds to the period of high cognitive abilities, immune competence and peak physical condition.

Isogenic

Characterized by essentially identical genetic material. Highly inbred populations are usually considered to be isogenic.

Epigenetic

The broad definition of the term corresponds to modes of genomic regulation that are not directly encoded in DNA. We use it specifically to refer to chromatin-level regulation. According to its strictest definition, epigenetics encompasses strictly heritable changes without changes in the underlying gene sequence.

Chromatin

A complex of DNA and histone proteins that packages genetic information. Chromatin can be broadly stratified in two states: euchromatin, which is a loose and transcription-permissive compartment; and heterochromatin, which is a dense and compact compartment that contains repressed DNA.

Epigenomes

The epigenetic landscapes of cells, including the genome-wide distributions of chromatin marks such as histone modifications or DNA methylation.

Replicative senescence

A limitation in the number of time a cell can divide. Replicative senescence has sometimes been used as an in vitro proxy for ageing in dividing mammalian cells such as fibroblasts or stem cells.

CpG islands

Clusters of CpG dinucleotides, which are usually found in the promoter regions of some genes. CpG islands are typically defined by a minimum length (200–500 bp) and an unusual enrichment of CpG (>60%). They are usually unmethylated in the germline or pluripotent state.

Chronological age

The time elapsed since the birth of an individual. Chronological age is often compared to biological age.

Biological age

The age of the average population that is most similar to the individual under observation. Younger biological ages are linked to high performance and health, whereas older biological ages correlate with disease onset. Biological age is used as a proxy for individual health.

Histone chaperone

A protein that aids the folding or dimerization of histones, as well as their loading onto the chromatin fibre. Different histones have different chaperones.

Sirtuin

A member of the family of class III histone deacetylases (HDACs). The first sirtuin to be discovered was the yeast protein Sir2p. The defining characteristic of these HDACs is their dependency on NAD+ as a cofactor to catalyse deacetylation or other enzymatic reactions, including ADP-ribosylation.

Dietary restriction

A reduction in food intake without malnutrition. There are many types of dietary restriction regimen, such as intermittent fasting, global caloric restriction or specific reduction of a nutrient type.

Position variegation effect

Variability in the activation state of a gene depending on its proximity to a heterochromatin domain.

Insulin and insulin-like growth factor (IGF) signalling pathways

Important conserved signalling pathways that are sensitive to nutrient levels and that have been linked to longevity and stress resistance across Metazoa. Primary components that are relevant to ageing include the insulin and IGF1 receptors, the activation of which triggers a phosphorylation cascade involving PI3K, AKT and ultimately the forkhead box protein O (FOXO) transcription factors.

Genomic instability

Random loss of integrity of genetic material, whether through large-scale rearrangements (such as chromosomal translocations, large inversions and deletions, and so on), site-specific changes (such as single- nucleotide changes) or transposon insertions. Genomic instability may be a driver of ageing and of age-related diseases such as cancer.

Pheromones

Secreted chemical factors that can trigger a response in other members of a given species. Pheromone signalling has been linked to sexual behaviour, feeding and stress.

Epimutations

Aberrant or atypical changes in epigenetic states, which are often stochastic.

Transposable elements

Endogenous DNA elements that change their position or amplify their copy number within a host genome. There are two main types of transposable elements. Type I elements function through an RNA intermediate, such as long interspersed nuclear elements or long tandem repeats (copy–paste mechanism). Type II elements function through a DNA intermediate (cut–paste mechanism). They usually occupy a large portion of eukaryotic genomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benayoun, B., Pollina, E. & Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16, 593–610 (2015). https://doi.org/10.1038/nrm4048

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4048

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing