Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of mammalian gene expression by selective mRNA export

Key Points

  • Nuclear export of mRNAs to the cytoplasm has been thought of as a 'one size fits all' default pathway.

  • Two conserved complexes have key roles in the nuclear export of mRNA: transcription-export complexes TREX and TREX-2.

  • Several recent examples indicate that specific biological pathways can be regulated by selective mRNA export, giving priority to some sets of mRNA over others.

  • Nuclear export of functionally related sets of transcripts may be regulated by specific mRNA-binding export factors that recognize specific sequence elements among the mRNAs.

  • mRNA export is a potentially important node in regulation of mammalian gene expression pathways.

  • There is accumulating evidence that dysregulation of mRNA export may contribute to the development of human disease.

  • Future research will provide key insights into how selective mRNA export pathways are regulated and how they are altered in disease.

Abstract

Nuclear export of mRNAs is a crucial step in the regulation of gene expression, linking transcription in the nucleus to translation in the cytoplasm. Although important components of the mRNA export machinery are well characterized, such as transcription-export complexes TREX and TREX-2, recent work has shown that, in some instances, mammalian mRNA export can be selective and can regulate crucial biological processes such as DNA repair, gene expression, maintenance of pluripotency, haematopoiesis, proliferation and cell survival. Such findings show that mRNA export is an unexpected, yet potentially important, mechanism for the control of gene expression and of the mammalian transcriptome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steps of mRNA export from nuclear transcription to the cytoplasm.
Figure 2: Interactions between nuclear pore complex components and mRNA export complexes.
Figure 3: Examples of biological pathways that are regulated by selective mRNA export.

Similar content being viewed by others

References

  1. Cheng, H. et al. Human mRNA export machinery recruited to the 5′ end of mRNA. Cell 127, 1389–1400 (2006).

    CAS  PubMed  Google Scholar 

  2. Masuda, S. et al. Recruitment of the human TREX complex to mRNA during splicing. Genes Dev. 19, 1512–1517 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Strasser, K. et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304–308 (2002).

    PubMed  Google Scholar 

  4. Zhou, Z. et al. The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature 407, 401–405 (2000).

    CAS  PubMed  Google Scholar 

  5. Jani, D. et al. Functional and structural characterization of the mammalian TREX-2 complex that links transcription with nuclear messenger RNA export. Nucleic Acids Res. 40, 4562–4573 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ellisdon, A. M., Dimitrova, L., Hurt, E. & Stewart, M. Structural basis for the assembly and nucleic acid binding of the TREX-2 transcription-export complex. Nat. Struct. Mol. Biol. 19, 328–336 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jani, D. et al. Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export. Mol. Cell 33, 727–737 (2009). References 5–7 provide important insights into the molecular architecture of TREX-2.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fischer, T. et al. Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery. Nat. Cell Biol. 6, 840–848 (2004).

    CAS  PubMed  Google Scholar 

  9. Fischer, T. et al. The mRNA export machinery requires the novel Sac3p–Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J. 21, 5843–5852 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bachi, A. et al. The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA 6, 136–158 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Katahira, J. et al. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J. 18, 2593–2609 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wickramasinghe, V. O. et al. mRNA export from mammalian cell nuclei is dependent on GANP. Curr. Biol. 20, 25–31 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hautbergue, G. M., Hung, M. L., Golovanov, A. P., Lian, L. Y. & Wilson, S. A. Mutually exclusive interactions drive handover of mRNA from export adaptors to TAP. Proc. Natl Acad. Sci. USA 105, 5154–5159 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wickramasinghe, V. O. et al. Selective nuclear export of specific classes of mRNA from mammalian nuclei is promoted by GANP. Nucleic Acids Res. 42, 5059–5071 (2014). This study shows that components of TREX-2 specifically promote the nuclear export of transcripts encoding proteins that are required for gene expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wickramasinghe, V. O. et al. Human inositol polyphosphate multikinase regulates transcript-selective nuclear mRNA export to preserve genome integrity. Mol. Cell 51, 737–750 (2013). This study shows that DNA repair can be regulated by selective mRNA export. The mechanism involves TREX component ALY and IPMK and its catalytic product PtdIns(3,4,5)P 3.

    CAS  PubMed  Google Scholar 

  16. Wang, L. et al. The THO complex regulates pluripotency gene mRNA export and controls embryonic stem cell self-renewal and somatic cell reprogramming. Cell Stem Cell 13, 676–690 (2013). In this study, the THO subcomplex of TREX is shown to regulate establishment of pluripotency by promoting the nuclear export of transcripts that encode stem cell specification factors.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Culjkovic-Kraljacic, B., Baguet, A., Volpon, L., Amri, A. & Borden, K. L. The oncogene eIF4E reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation. Cell Rep. 2, 207–215 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Guria, A. et al. Identification of mRNAs that are spliced but not exported to the cytoplasm in the absence of THOC5 in mouse embryo fibroblasts. RNA 17, 1048–1056 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mancini, A. et al. THOC5/FMIP, an mRNA export TREX complex protein, is essential for hematopoietic primitive cell survival in vivo. BMC Biol. 8, 1 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. Topisirovic, I. et al. Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP. EMBO J. 28, 1087–1098 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Katahira, J., Inoue, H., Hurt, E. & Yoneda, Y. Adaptor Aly and co-adaptor Thoc5 function in the Tap-p15-mediated nuclear export of HSP70 mRNA. EMBO J. 28, 556–567 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Culjkovic, B., Topisirovic, I., Skrabanek, L., Ruiz-Gutierrez, M. & Borden, K. L. eIF4E is a central node of an RNA regulon that governs cellular proliferation. J. Cell Biol. 175, 415–426 (2006). This is one of the first studies to demonstrate selectivity of mRNA export in mammals. eIF4E coordinately promotes the export of mRNA encoded by several genes that are involved in cellular proliferation. This selective pathway is dependent on CRM1, the main protein export receptor, which exports various other RNAs and does not depend on NXF1.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bonnet, A. & Palancade, B. Regulation of mRNA trafficking by nuclear pore complexes. Genes 5, 767–791 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Nino, C. A., Herissant, L., Babour, A. & Dargemont, C. mRNA nuclear export in yeast. Chem. Rev. 113, 8523–8545 (2013).

    CAS  PubMed  Google Scholar 

  25. Natalizio, B. J. & Wente, S. R. Postage for the messenger: designating routes for nuclear mRNA export. Trends Cell Biol. 23, 365–373 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Katahira, J. mRNA export and the TREX complex. Biochim. Biophys. Acta 1819, 507–513 (2012).

    CAS  PubMed  Google Scholar 

  27. Tutucci, E. & Stutz, F. Keeping mRNPs in check during assembly and nuclear export. Nat. Rev. Mol. Cell Biol. 12, 377–384 (2011).

    CAS  PubMed  Google Scholar 

  28. Rodriguez-Navarro, S. & Hurt, E. Linking gene regulation to mRNA production and export. Curr. Opin. Cell Biol. 23, 302–309 (2011).

    CAS  PubMed  Google Scholar 

  29. Grunwald, D., Singer, R. H. & Rout, M. Nuclear export dynamics of RNA–protein complexes. Nature 475, 333–341 (2011).

    PubMed  PubMed Central  Google Scholar 

  30. Matera, A. G. & Wang, Z. A day in the life of the spliceosome. Nat. Rev. Mol. Cell Biol. 15, 108–121 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bentley, D. L. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet. 15, 163–175 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Muller-McNicoll, M. & Neugebauer, K. M. How cells get the message: dynamic assembly and function of mRNA–protein complexes. Nat. Rev. Genet. 14, 275–287 (2013).

    PubMed  Google Scholar 

  33. Brugiolo, M., Herzel, L. & Neugebauer, K. M. Counting on co-transcriptional splicing. F1000Prime Rep. 5, 9 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. Dias, A. P., Dufu, K., Lei, H. & Reed, R. A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nat. Commun. 1, 97 (2010).

    PubMed  Google Scholar 

  35. Molenaar, C., Abdulle, A., Gena, A., Tanke, H. J. & Dirks, R. W. Poly(A)+ RNAs roam the cell nucleus and pass through speckle domains in transcriptionally active and inactive cells. J. Cell Biol. 165, 191–202 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lamond, A. I. & Spector, D. L. Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 4, 605–612 (2003).

    CAS  PubMed  Google Scholar 

  37. Huang, S., Deerinck, T. J., Ellisman, M. H. & Spector, D. L. In vivo analysis of the stability and transport of nuclear poly(A)+ RNA. J. Cell Biol. 126, 877–899 (1994).

    CAS  PubMed  Google Scholar 

  38. Cisse, I. I. et al. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341, 664–667 (2013).

    CAS  PubMed  Google Scholar 

  39. Zhao, Z. W. et al. Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy. Proc. Natl Acad. Sci. USA 111, 681–686 (2014).

    CAS  PubMed  Google Scholar 

  40. Osborne, S. L., Thomas, C. L., Gschmeissner, S. & Schiavo, G. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 114, 2501–2511 (2001).

    CAS  PubMed  Google Scholar 

  41. Boronenkov, I. V., Loijens, J. C., Umeda, M. & Anderson, R. A. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell 9, 3547–3560 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Barlow, C. A., Laishram, R. S. & Anderson, R. A. Nuclear phosphoinositides: a signaling enigma wrapped in a compartmental conundrum. Trends Cell Biol. 20, 25–35 (2010).

    CAS  PubMed  Google Scholar 

  43. Okada, M., Jang, S. W. & Ye, K. Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. Proc. Natl Acad. Sci. USA 105, 8649–8654 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shopland, L. S., Johnson, C. V., Byron, M., McNeil, J. & Lawrence, J. B. Clustering of multiple specific genes and gene-rich R-bands around SC-35 domains: evidence for local euchromatic neighborhoods. J. Cell Biol. 162, 981–990 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Oeffinger, M. & Zenklusen, D. To the pore and through the pore: a story of mRNA export kinetics. Biochim. Biophys. Acta 1819, 494–506 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sheinberger, J. & Shav-Tal, Y. The dynamic pathway of nuclear RNA in eukaryotes. Nucleus 4, 195–205 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. Siebrasse, J. P., Kaminski, T. & Kubitscheck, U. Nuclear export of single native mRNA molecules observed by light sheet fluorescence microscopy. Proc. Natl Acad. Sci. USA 109, 9426–9431 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ma, J. et al. High-resolution three-dimensional mapping of mRNA export through the nuclear pore. Nat. Commun. 4, 2414 (2013).

    PubMed  Google Scholar 

  49. Mor, A. et al. Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nat. Cell Biol. 12, 543–552 (2010).

    CAS  PubMed  Google Scholar 

  50. Grunwald, D. & Singer, R. H. In vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature 467, 604–607 (2010). References 47–50 describe the use of high-resolution imaging techniques to examine the kinetics of nuclear export of single mRNA molecules.

    PubMed  PubMed Central  Google Scholar 

  51. Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–1800 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Politz, J. C., Tuft, R. A., Pederson, T. & Singer, R. H. Movement of nuclear poly(A) RNA throughout the interchromatin space in living cells. Curr. Biol. 9, 285–291 (1999).

    CAS  PubMed  Google Scholar 

  53. Ben-Ari, Y. et al. The life of an mRNA in space and time. J. Cell Sci. 123, 1761–1774 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shibata, S., Matsuoka, Y. & Yoneda, Y. Nucleocytoplasmic transport of proteins and poly(A)+ RNA in reconstituted Tpr-less nuclei in living mammalian cells. Genes Cells 7, 421–434 (2002).

    CAS  PubMed  Google Scholar 

  55. Krull, S. et al. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J. 29, 1659–1673 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Umlauf, D. et al. The human TREX-2 complex is stably associated with the nuclear pore basket. J. Cell Sci. 12, 2656–2667 (2013).

    Google Scholar 

  57. Viphakone, N. et al. TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nat. Commun. 3, 1006 (2012). This study provides insight into how TREX promotes mRNA export by driving NXF1 into a conformation that enables it to bind to mRNA.

    PubMed  Google Scholar 

  58. Grant, R. P., Hurt, E., Neuhaus, D. & Stewart, M. Structure of the C-terminal FG-nucleoporin binding domain of Tap/NXF1. Nat. Struct. Biol. 9, 247–251 (2002).

    CAS  PubMed  Google Scholar 

  59. Fribourg, S., Braun, I. C., Izaurralde, E. & Conti, E. Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol. Cell 8, 645–656 (2001).

    CAS  PubMed  Google Scholar 

  60. Hulsmann, B. B., Labokha, A. A. & Gorlich, D. The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell 150, 738–751 (2012).

    PubMed  Google Scholar 

  61. Rajanala, K. & Nandicoori, V. K. Localization of nucleoporin Tpr to the nuclear pore complex is essential for Tpr mediated regulation of the export of unspliced RNA. PLoS ONE 7, e29921 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Coyle, J. H., Bor, Y. C., Rekosh, D. & Hammarskjold, M. L. The Tpr protein regulates export of mRNAs with retained introns that traffic through the Nxf1 pathway. RNA 17, 1344–1356 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yap, K., Lim, Z. Q., Khandelia, P., Friedman, B. & Makeyev, E. V. Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention. Genes Dev. 26, 1209–1223 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. von Moeller, H., Basquin, C. & Conti, E. The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nat. Struct. Mol. Biol. 16, 247–254 (2009).

    CAS  PubMed  Google Scholar 

  65. Montpetit, B. et al. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature 472, 238–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Weirich, C. S. et al. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat. Cell Biol. 8, 668–676 (2006).

    CAS  PubMed  Google Scholar 

  67. Noble, K. N. et al. The Dbp5 cycle at the nuclear pore complex during mRNA export II: nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1. Genes Dev. 25, 1065–1077 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hodge, C. A. et al. The Dbp5 cycle at the nuclear pore complex during mRNA export I: dbp5 mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1. Genes Dev. 25, 1052–1064 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Folkmann, A. W., Noble, K. N., Cole, C. N. & Wente, S. R. Dbp5, Gle1-IP6 and Nup159: a working model for mRNP export. Nucleus 2, 540–548 (2011).

    PubMed  PubMed Central  Google Scholar 

  70. Alcazar-Roman, A. R., Tran, E. J., Guo, S. & Wente, S. R. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat. Cell Biol. 8, 711–716 (2006).

    CAS  PubMed  Google Scholar 

  71. Dufu, K. et al. ATP is required for interactions between UAP56 and two conserved mRNA export proteins, Aly and CIP29, to assemble the TREX complex. Genes Dev. 24, 2043–2053 (2010). This study defines the molecular interactions that are involved in the assembly of TREX and suggests that the assembly process is ATP dependent.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jimeno, S., Rondon, A. G., Luna, R. & Aguilera, A. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J. 21, 3526–3535 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chavez, S. et al. A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J. 19, 5824–5834 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Strasser, K. & Hurt, E. Yra1p, a conserved nuclear RNA-binding protein, interacts directly with Mex67p and is required for mRNA export. EMBO J. 19, 410–420 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Stutz, F. et al. REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA 6, 638–650 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rehwinkel, J. et al. Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster. Nat. Struct. Mol. Biol. 11, 558–566 (2004).

    CAS  PubMed  Google Scholar 

  77. Farny, N. G., Hurt, J. A. & Silver, P. A. Definition of global and transcript-specific mRNA export pathways in metazoans. Genes Dev. 22, 66–78 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Luo, M. L. et al. Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature 413, 644–647 (2001).

    CAS  PubMed  Google Scholar 

  79. Strasser, K. & Hurt, E. Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p. Nature 413, 648–652 (2001).

    CAS  PubMed  Google Scholar 

  80. Chang, C. T. et al. Chtop is a component of the dynamic TREX mRNA export complex. EMBO J. 32, 473–486 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Folco, E. G., Lee, C. S., Dufu, K., Yamazaki, T. & Reed, R. The proteins PDIP3 and ZC11A associate with the human TREX complex in an ATP-dependent manner and function in mRNA export. PloS ONE 7, e43804 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hautbergue, G. M. et al. UIF, a new mRNA export adaptor that works together with REF/ALY, requires FACT for recruitment to mRNA. Curr. Biol. 19, 1918–1924 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chi, B. et al. Aly and THO are required for assembly of the human TREX complex and association of TREX components with the spliced mRNA. Nucleic Acids Res. 41, 1294–1306 (2013).

    CAS  PubMed  Google Scholar 

  84. Pena, A. et al. Architecture and nucleic acids recognition mechanism of the THO complex, an mRNP assembly factor. EMBO J. 31, 1605–1616 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhou, Z., Licklider, L. J., Gygi, S. P. & Reed, R. Comprehensive proteomic analysis of the human spliceosome. Nature 419, 182–185 (2002).

    CAS  PubMed  Google Scholar 

  86. Singh, G. et al. The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell 151, 750–764 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Huang, Y. & Steitz, J. A. SRprises along a messenger's journey. Mol. Cell 17, 613–615 (2005).

    CAS  PubMed  Google Scholar 

  88. Huang, Y., Yario, T. A. & Steitz, J. A. A molecular link between SR protein dephosphorylation and mRNA export. Proc. Natl Acad. Sci. USA 101, 9666–9670 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang, Y. & Steitz, J. A. Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol. Cell 7, 899–905 (2001).

    CAS  PubMed  Google Scholar 

  90. Huang, Y., Gattoni, R., Stevenin, J. & Steitz, J. A. SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol. Cell 11, 837–843 (2003).

    CAS  PubMed  Google Scholar 

  91. Lei, H., Zhai, B., Yin, S., Gygi, S. & Reed, R. Evidence that a consensus element found in naturally intronless mRNAs promotes mRNA export. Nucleic Acids Res. 41, 2517–2525 (2013).

    CAS  PubMed  Google Scholar 

  92. Narita, T. et al. NELF interacts with CBC and participates in 3′ end processing of replication-dependent histone mRNAs. Mol. Cell 26, 349–365 (2007).

    CAS  PubMed  Google Scholar 

  93. Sullivan, K. D., Mullen, T. E., Marzluff, W. F. & Wagner, E. J. Knockdown of SLBP results in nuclear retention of histone mRNA. RNA 15, 459–472 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hieronymus, H. & Silver, P. A. Genome-wide analysis of RNA–protein interactions illustrates specificity of the mRNA export machinery. Nat. Genet. 33, 155–161 (2003). References 76 and 94 provide the first evidence that mRNA export can be selective in yeast and in D. melanogaster.

    CAS  PubMed  Google Scholar 

  95. Hieronymus, H. & Silver, P. A. A systems view of mRNP biology. Genes Dev. 18, 2845–2860 (2004).

    CAS  PubMed  Google Scholar 

  96. Herold, A., Teixeira, L. & Izaurralde, E. Genome-wide analysis of nuclear mRNA export pathways in Drosophila. EMBO J. 22, 2472–2483 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tuck, A. C. & Tollervey, D. A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell 154, 996–1009 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Baejen, C. et al. Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition. Mol. Cell 55, 745–757 (2014).

    CAS  PubMed  Google Scholar 

  99. Meinel, D. M. et al. Recruitment of TREX to the transcription machinery by its direct binding to the phospho-CTD of RNA polymerase II. PLoS Genet. 9, e1003914 (2013).

    PubMed  PubMed Central  Google Scholar 

  100. Gomez-Gonzalez, B. et al. Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J. 30, 3106–3119 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Stubbs, S. H. & Conrad, N. K. Depletion of REF/Aly alters gene expression and reduces RNA polymerase II occupancy. Nucleic Acids Res. 43, 504–519 (2015).

    CAS  PubMed  Google Scholar 

  102. Rodriguez-Navarro, S. et al. Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116, 75–86 (2004).

    CAS  PubMed  Google Scholar 

  103. Cabal, G. G. et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441, 770–773 (2006).

    CAS  PubMed  Google Scholar 

  104. Wickramasinghe, V. O. et al. MCM3AP is transcribed from a promoter within an intron of the overlapping gene for GANP. J. Mol. Biol. 406, 355–361 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Singh, S. K. et al. GANP regulates recruitment of AID to immunoglobulin variable regions by modulating transcription and nucleosome occupancy. Nat. Commun. 4, 1830 (2013).

    PubMed  Google Scholar 

  106. Hutten, S. & Kehlenbach, R. H. CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol. 17, 193–201 (2007).

    CAS  PubMed  Google Scholar 

  107. Culjkovic-Kraljacic, B. & Borden, K. L. Aiding and abetting cancer: mRNA export and the nuclear pore. Trends Cell Biol. 23, 328–335 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kohler, A. & Hurt, E. Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Biol. 8, 761–773 (2007).

    PubMed  Google Scholar 

  109. McCloskey, A., Taniguchi, I., Shinmyozu, K. & Ohno, M. hnRNP C tetramer measures RNA length to classify RNA polymerase II transcripts for export. Science 335, 1643–1646 (2012).

    CAS  PubMed  Google Scholar 

  110. Brennan, C. M., Gallouzi, I. E. & Steitz, J. A. Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J. Cell Biol. 151, 1–14 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang, J., Bogerd, H. P., Wang, P. J., Page, D. C. & Cullen, B. R. Two closely related human nuclear export factors utilize entirely distinct export pathways. Mol. Cell 8, 397–406 (2001).

    CAS  PubMed  Google Scholar 

  112. Assouline, S. et al. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood 114, 257–260 (2009).

    CAS  PubMed  Google Scholar 

  113. Culjkovic, B. et al. The eIF4E RNA regulon promotes the Akt signaling pathway. J. Cell Biol. 181, 51–63 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Blackinton, J. G. & Keene, J. D. Post-transcriptional RNA regulons affecting cell cycle and proliferation. Semin. Cell Dev. Biol. 34, 44–54 (2014).

    CAS  PubMed  Google Scholar 

  115. Keene, J. D. & Tenenbaum, S. A. Eukaryotic mRNPs may represent posttranscriptional operons. Mol. Cell 9, 1161–1167 (2002).

    CAS  PubMed  Google Scholar 

  116. Keene, J. D. RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8, 533–543 (2007).

    CAS  PubMed  Google Scholar 

  117. Maag, D. et al. Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB. Proc. Natl Acad. Sci. USA 108, 1391–1396 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Resnick, A. C. et al. Inositol polyphosphate multikinase is a nuclear PI3-kinase with transcriptional regulatory activity. Proc. Natl Acad. Sci. USA 102, 12783–12788 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Saiardi, A. et al. Mammalian inositol polyphosphate multikinase synthesizes inositol 1,4,5-trisphosphate and an inositol pyrophosphate. Proc. Natl Acad. Sci. USA 98, 2306–2311 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang, X. et al. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell 135, 1017–1027 (2008).

    CAS  PubMed  Google Scholar 

  121. Chakraborty, P. et al. Nucleoporin levels regulate cell cycle progression and phase-specific gene expression. Dev. Cell 15, 657–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Faria, A. M. et al. The nucleoporin Nup96 is required for proper expression of interferon-regulated proteins and functions. Immunity 24, 295–304 (2006).

    CAS  PubMed  Google Scholar 

  123. Cooper, T. A., Wan, L. & Dreyfuss, G. RNA and disease. Cell 136, 777–793 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  125. Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 44, 47–52 (2012).

    CAS  Google Scholar 

  126. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    CAS  PubMed  Google Scholar 

  127. Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. New Engl. J. Med. 365, 1384–1395 (2011).

    CAS  PubMed  Google Scholar 

  128. Fujimura, S. et al. Increased expression of germinal center-associated nuclear protein RNA-primase is associated with lymphomagenesis. Cancer Res. 65, 5925–5934 (2005).

    CAS  PubMed  Google Scholar 

  129. Dominguez-Sanchez, M. S., Saez, C., Japon, M. A., Aguilera, A. & Luna, R. Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers. BMC Cancer 11, 77 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Saito, Y. et al. ALY as a potential contributor to metastasis in human oral squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 139, 585–594 (2013).

    CAS  PubMed  Google Scholar 

  131. Choong, M. L. et al. An integrated approach in the discovery and characterization of a novel nuclear protein over-expressed in liver and pancreatic tumors. FEBS Lett. 496, 109–116 (2001).

    CAS  PubMed  Google Scholar 

  132. Guo, S. et al. Linking transcriptional elongation and messenger RNA export to metastatic breast cancers. Cancer Res. 65, 3011–3016 (2005).

    CAS  PubMed  Google Scholar 

  133. Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004).

    CAS  PubMed  Google Scholar 

  134. Lazaris-Karatzas, A., Montine, K. S. & Sonenberg, N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345, 544–547 (1990).

    CAS  PubMed  Google Scholar 

  135. Nousiainen, H. O. et al. Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease. Nat. Genet. 40, 155–157 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Kaneb, H. M. et al. Deleterious mutations in the essential mRNA metabolism factor, hGle1, in amyotrophic lateral sclerosis. Hum. Mol. Genet. 24, 1363–1373 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. Herva, R., Conradi, N. G., Kalimo, H., Leisti, J. & Sourander, P. A syndrome of multiple congenital contractures: neuropathological analysis on five fetal cases. Am. J. Med. Genet. 29, 67–76 (1988).

    CAS  PubMed  Google Scholar 

  138. Herva, R., Leisti, J., Kirkinen, P. & Seppanen, U. A lethal autosomal recessive syndrome of multiple congenital contractures. Am. J. Med. Genet. 20, 431–439 (1985).

    CAS  PubMed  Google Scholar 

  139. Folkmann, A. W. et al. Gle1 functions during mRNA export in an oligomeric complex that is altered in human disease. Cell 155, 582–593 (2013). This study shows that mutations in the gene encoding mRNA export factor GLE1 that occur in motor neuron disease affect its oligomerization and shuttling, which disrupts efficient nuclear export of mRNA at nuclear pores.

    CAS  PubMed  Google Scholar 

  140. Aguilera, A. & Garcia-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012).

    CAS  PubMed  Google Scholar 

  141. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003).

    CAS  PubMed  Google Scholar 

  142. Gonzalez-Aguilera, C. et al. The THP1-SAC3-SUS1-CDC31 complex works in transcription elongation-mRNA export preventing RNA-mediated genome instability. Mol. Biol. Cell 19, 4310–4318 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Dominguez-Sanchez, M. S., Barroso, S., Gomez-Gonzalez, B., Luna, R. & Aguilera, A. Genome instability and transcription elongation impairment in human cells depleted of THO/TREX. PLoS Genet. 7, e1002386 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Bhatia, V. et al. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 511, 362–365 (2014).

    CAS  PubMed  Google Scholar 

  145. Ori, A. et al. Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol. Syst. Biol. 9, 648 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Forler, D. et al. RanBP2/Nup358 provides a major binding site for NXF1-p15 dimers at the nuclear pore complex and functions in nuclear mRNA export. Mol. Cell. Biol. 24, 1155–1167 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ullman, K. S., Shah, S., Powers, M. A. & Forbes, D. J. The nucleoporin Nup153 plays a critical role in multiple types of nuclear export. Mol. Biol. Cell 10, 649–664 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Speese, S. D. et al. Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 149, 832–846 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. York, J. D., Odom, A. R., Murphy, R., Ives, E. B. & Wente, S. R. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285, 96–100 (1999).

    CAS  PubMed  Google Scholar 

  150. Resendes, K. K., Rasala, B. A. & Forbes, D. J. Centrin 2 localizes to the vertebrate nuclear pore and plays a role in mRNA and protein export. Mol. Cell. Biol. 28, 1755–1769 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Faza, M. B. et al. Sem1 is a functional component of the nuclear pore complex-associated messenger RNA export machinery. J. Cell Biol. 184, 833–846 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Wilmes, G. M. et al. A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol. Cell 32, 735–746 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Mannen, T., Andoh, T. & Tani, T. Dss1 associating with the proteasome functions in selective nuclear mRNA export in yeast. Biochem. Biophys. Res. Commun. 365, 664–671 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ed Hurt for critical reading of the manuscript. V.O.W. acknowledges the support of Ashok Venkitaraman and the UK Medical Research Council (MRC). This work was also supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vihandha O. Wickramasinghe or Ronald A. Laskey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Messenger ribonucleoprotein particles

(mRNPs). Complexes that are formed by coating of cellular mRNAs with RNA-binding proteins, ensuring correct packaging of mRNA for nuclear export.

Inositol polyphosphate multikinase

(IPMK). A kinase that is implicated in the synthesis of both inositol phosphates (inositol-1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), InsP5 and InsP6) and phosphatidylinositol-3,4,5- trisphosphate.

Pluripotency

The potential ability of a cell to differentiate into any cell type of the three germ layers.

Spliceosomes

Large ribonucleoprotein complexes that catalyse the removal of intronic sequences from nuclear pre-mRNA. A spliceosome consists of five small nuclear ribonucleoproteins (snRNPs) and non-snRNP proteins, and it is remodelled extensively during its assembly and activation.

Exon–junction complex

(EJC). A multi-protein complex that is deposited onto newly synthesized and spliced mRNA 24 nt upstream of exon–exon junctions.

SR splicing factors

A family of RNA-binding splicing initiators that contain a domain rich in consecutive repeats of serine–arginine residues.

Homologous recombination

An error-free mechanism for repairing DNA double-strand breaks through DNA strand exchange. It is dependent on the recombinase DNA repair protein RAD51 homologue 1 and the tumour suppressor breast cancer susceptibility protein 2 (BRCA2).

Non-homologous end joining

(NHEJ). An error-prone mechanism for repairing DNA double-strand breaks through re-ligation of the broken ends without the need for a homologous template. It is dependent on the KU70–KU80 and XRCC4–XLF–DNA ligase IV complexes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wickramasinghe, V., Laskey, R. Control of mammalian gene expression by selective mRNA export. Nat Rev Mol Cell Biol 16, 431–442 (2015). https://doi.org/10.1038/nrm4010

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing