Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spatiotemporal regulation of the anaphase-promoting complex in mitosis

Key Points

  • The APC/C (anaphase-promoting complex; also known as the cyclosome) is an E3 ubiquitin ligase that mediates the ubiquitylation of key substrates for their degradation by the proteasome at precise times during mitotic progression.

  • Although APC/C activity is most apparent in targeting securin and cyclin B1 to promote anaphase and mitotic exit, the APC/C functions throughout mitosis.

  • Spatiotemporal regulation of APC/C activity promotes substrate degradation at defined times within distinct cellular compartments.

  • The APC/C has several positive and negative regulators, including kinases and protein phosphatases, binding with co-activators CDC20 or CDC20 homologue 1 (CDH1), and with inhibitors such as the mitotic checkpoint complex (MCC).

  • Co-activator proteins recruit substrates to the APC/C and cause conformational changes in the APC/C, fostering increased activity of the E2 ubiquitin-conjugating enzymes that initiate and elongate ubiquitin chains on substrates.

  • The MCC is the effector of the spindle checkpoint signalling pathway. Binding of the MCC to the APC/C inhibits substrate recruitment and ubiquitin chain formation.

  • Dynamic turnover of the MCC, which is partly due to the synthesis and degradation of CDC20, is essential for timely targeting of securin and cyclin B1 after silencing of the spindle checkpoint when chromosomes align at metaphase.

Abstract

The appropriate timing of events that lead to chromosome segregation during mitosis and cytokinesis is essential to prevent aneuploidy, and defects in these processes can contribute to tumorigenesis. Key mitotic regulators are controlled through ubiquitylation and proteasome-mediated degradation. The APC/C (anaphase-promoting complex; also known as the cyclosome) is an E3 ubiquitin ligase that has a crucial function in the regulation of the mitotic cell cycle, particularly at the onset of anaphase and during mitotic exit. Co-activator proteins, inhibitor proteins, protein kinases and phosphatases interact with the APC/C to temporally and spatially control its activity and thus ensure accurate timing of mitotic events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ordered degradation of APC/C substrates.
Figure 2: Structural organization of the APC/C.
Figure 3: Conformational changes during APC/C activation and inactivation.
Figure 4: MCC turnover during mitosis.
Figure 5: Positive and negative modulators control rapid changes in APC/C activity.
Figure 6: Hypothesis for the spatiotemporal regulation of the APC/C in mitosis.

Similar content being viewed by others

References

  1. Satyanarayana, A. & Kaldis, P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28, 2925–2939 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Nakayama, K. I. & Nakayama, K. Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin. Cell Dev. Biol. 16, 323–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Weissman, A. M. Themes and variations on ubiquitylation. Nature Rev. Mol. Cell Biol. 2, 169–178 (2001).

    Article  CAS  Google Scholar 

  4. Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nature Rev. Cancer 6, 369–381 (2006).

    Article  CAS  Google Scholar 

  5. Mocciaro, A. & Rape, M. Emerging regulatory mechanisms in ubiquitin-dependent cell cycle control. J. Cell Sci. 125, 255–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hicke, L. Protein regulation by monoubiquitin. Nature Rev. Mol. Cell Biol. 2, 195–201 (2001).

    Article  CAS  Google Scholar 

  7. Matsumoto, M. L. et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol. Cell 39, 477–484 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Ye, Y. & Rape, M. Building ubiquitin chains: E2 enzymes at work. Nature Rev. Mol. Cell Biol. 10, 755–764 (2009).

    Article  CAS  Google Scholar 

  10. Bassermann, F., Eichner, R. & Pagano, M. The ubiquitin proteasome system - implications for cell cycle control and the targeted treatment of cancer. Biochim. Biophys. Acta 1843, 150–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Sudakin, V. et al. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 6, 185–197 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. King, R. W. et al. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81, 279–288 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Irniger, S., Piatti, S., Michaelis, C. & Nasmyth, K. Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81, 269–278 (1995). References 11–13 identified the APC/C as a E3 ubiquitin ligase that is required for cyclin proteolysis in clam (reference 11), X. laevis (reference 12) and yeast (reference 13).

    Article  CAS  PubMed  Google Scholar 

  14. Chang, L., Zhang, Z., Yang, J., McLaughlin, S. H. & Barford, D. Molecular architecture and mechanism of the anaphase-promoting complex. Nature 513, 388–393 (2014). This study identified the position of the human APC/C subunits and determined how co-activator binding causes a conformational change that increases APC/C activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Herzog, F. et al. Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex. Science 323, 1477–1481 (2009). This study isolated human APC/C in different functional states and found that MCC binding limits the flexibility of the APC/C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohi, M. D. et al. Structural organization of the anaphase-promoting complex bound to the mitotic activator Slp1. Mol. Cell 28, 871–885 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dube, P. et al. Localization of the coactivator Cdh1 and the cullin subunit Apc2 in a cryo-electron microscopy model of vertebrate APC/C. Mol. Cell 20, 867–879 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Passmore, L. A. et al. Structural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitylation. Mol. Cell 20, 855–866 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Schreiber, A. et al. Structural basis for the subunit assembly of the anaphase-promoting complex. Nature 470, 227–232 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Uzunova, K. et al. APC15 mediates CDC20 autoubiquitylation by APC/C(MCC) and disassembly of the mitotic checkpoint complex. Nature Struct. Mol. Biol. 19, 1116–1123 (2012). This study shows that CDC20 ubiquitylation and turnover is required for MCC disassembly and hence mitotic exit.

    Article  CAS  Google Scholar 

  21. Primorac, I. & Musacchio, A. Panta rhei: the APC/C at steady state. J. Cell Biol. 201, 177–189 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, J., Dye, B. T., Rajashankar, K. R., Kurinov, I. & Schulman, B. A. Insights into anaphase promoting complex TPR subdomain assembly from a CDC26–APC6 structure. Nature Struct. Mol. Biol. 16, 987–989 (2009).

    Article  CAS  Google Scholar 

  23. Zhang, Z. et al. The four canonical TPR subunits of human APC/C form related homo-dimeric structures and stack in parallel to form a TPR suprahelix. J. Mol. Biol. 425, 4236–4248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meyer, H. J. & Rape, M. Processive ubiquitin chain formation by the anaphase-promoting complex. Semin. Cell Dev. Biol. 22, 544–550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rodrigo-Brenni, M. C. & Morgan, D. O. Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130, 127–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Brown, N. G. et al. Mechanism of polyubiquitination by human anaphase-promoting complex: RING repurposing for ubiquitin chain assembly. Mol. Cell 56, 246–260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Williamson, A. et al. Regulation of ubiquitin chain initiation to control the timing of substrate degradation. Mol. Cell 42, 744–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu, H., King, R. W., Peters, J. M. & Kirschner, M. W. Identification of a novel ubiquitin-conjugating enzyme involved in mitotic cyclin degradation. Curr. Biol. 6, 455–466 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Aristarkhov, A. et al. E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins. Proc. Natl Acad. Sci. USA 93, 4294–4299 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kirkpatrick, D. S. et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nature Cell Biol. 8, 700–710 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Williamson, A. et al. Identification of a physiological E2 module for the human anaphase-promoting complex. Proc. Natl Acad. Sci. USA 106, 18213–18218 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jin, L., Williamson, A., Banerjee, S., Philipp, I. & Rape, M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653–665 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu, T. et al. UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex. Proc. Natl Acad. Sci. USA 107, 1355–1360 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Garnett, M. J. et al. UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit. Nature Cell Biol. 11, 1363–1369 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Kelly, A., Wickliffe, K. E., Song, L., Fedrigo, I. & Rape, M. Ubiquitin chain elongation requires E3-dependent tracking of the emerging conjugate. Mol. Cell 56, 232–245 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Pines, J. Cubism and the cell cycle: the many faces of the APC/C. Nature Rev. Mol. Cell Biol. 12, 427–438 (2011).

    Article  CAS  Google Scholar 

  37. Meyer, H. J. & Rape, M. Enhanced protein degradation by branched ubiquitin chains. Cell 157, 910–921 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stegmeier, F. et al. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446, 876–881 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Huang, X. et al. Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry. Mol. Cell 42, 511–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Kraft, C., Vodermaier, H. C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J. M. The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol. Cell 18, 543–553 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Kimata, Y., Baxter, J. E., Fry, A. M. & Yamano, H. A role for the Fizzy/Cdc20 family of proteins in activation of the APC/C distinct from substrate recruitment. Mol. Cell 32, 576–583 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Van Voorhis, V. A. & Morgan, D. O. Activation of the APC/C ubiquitin ligase by enhanced E2 efficiency. Curr. Biol. 24, 1556–1562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rudner, A. D., Hardwick, K. G. & Murray, A. W. Cdc28 activates exit from mitosis in budding yeast. J. Cell Biol. 149, 1361–1376 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rudner, A. D. & Murray, A. W. Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. J. Cell Biol. 149, 1377–1390 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kramer, E. R., Scheuringer, N., Podtelejnikov, A. V., Mann, M. & Peters, J. M. Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol. Biol. Cell 11, 1555–1569 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kraft, C. et al. Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J. 22, 6598–6609 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shteinberg, M., Protopopov, Y., Listovsky, T., Brandeis, M. & Hershko, A. Phosphorylation of the cyclosome is required for its stimulation by Fizzy/cdc20. Biochem. Biophys. Res. Commun. 260, 193–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Golan, A., Yudkovsky, Y. & Hershko, A. The cyclin-ubiquitin ligase activity of cyclosome/APC is jointly activated by protein kinases Cdk1–cyclin B and Plk. J. Biol. Chem. 277, 15552–15557 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Chung, E. & Chen, R. H. Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint. Nature Cell Biol. 5, 748–753 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Labit, H. et al. Dephosphorylation of Cdc20 is required for its C-box-dependent activation of the APC/C. EMBO J. 31, 3351–3362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tang, Z., Shu, H., Oncel, D., Chen, S. & Yu, H. Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC/C inhibition by the spindle checkpoint. Mol. Cell 16, 387–397 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Yudkovsky, Y., Shteinberg, M., Listovsky, T., Brandeis, M. & Hershko, A. Phosphorylation of Cdc20/fizzy negatively regulates the mammalian cyclosome/APC in the mitotic checkpoint. Biochem. Biophys. Res. Commun. 271, 299–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. D'Angiolella, V., Mari, C., Nocera, D., Rametti, L. & Grieco, D. The spindle checkpoint requires cyclin-dependent kinase activity. Genes Dev. 17, 2520–2525 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 1721–1724 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Jaspersen, S. L., Charles, J. F. & Morgan, D. O. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr. Biol. 9, 227–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Matyskiela, M. E., Rodrigo-Brenni, M. C. & Morgan, D. O. Mechanisms of ubiquitin transfer by the anaphase-promoting complex. J. Biol. 8, 92 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Listovsky, T. & Sale, J. E. Sequestration of CDH1 by MAD2L2 prevents premature APC/C activation prior to anaphase onset. J. Cell Biol. 203, 87–100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Glotzer, M., Murray, A. W. & Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. King, R. W., Glotzer, M. & Kirschner, M. W. Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Mol. Biol. Cell 7, 1343–1357 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yamano, H., Tsurumi, C., Gannon, J. & Hunt, T. The role of the destruction box and its neighbouring lysine residues in cyclin B for anaphase ubiquitin-dependent proteolysis in fission yeast: defining the D-box receptor. EMBO J. 17, 5670–5678 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zur, A. & Brandeis, M. Securin degradation is mediated by fzy and fzr, and is required for complete chromatid separation but not for cytokinesis. EMBO J. 20, 792–801 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. He, J. et al. Insights into degron recognition by APC/C coactivators from the structure of an Acm1–Cdh1 complex. Mol. Cell 50, 649–660 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pfleger, C. M. & Kirschner, M. W. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 14, 655–665 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pfleger, C. M., Lee, E. & Kirschner, M. W. Substrate recognition by the Cdc20 and Cdh1 components of the anaphase-promoting complex. Genes Dev. 15, 2396–2407 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Passmore, L. A. & Barford, D. Coactivator functions in a stoichiometric complex with anaphase-promoting complex/cyclosome to mediate substrate recognition. EMBO Rep. 6, 873–878 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. da Fonseca, P. C. et al. Structures of APC/C(Cdh1) with substrates identify Cdh1 and Apc10 as the D-box co-receptor. Nature 470, 274–278 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Buschhorn, B. A. et al. Substrate binding on the APC/C occurs between the coactivator Cdh1 and the processivity factor Doc1. Nature Struct. Mol. Biol. 18, 6–13 (2011).

    Article  CAS  Google Scholar 

  68. Carroll, C. W. & Morgan, D. O. The Doc1 subunit is a processivity factor for the anaphase-promoting complex. Nature Cell Biol. 4, 880–887 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Carroll, C. W., Enquist-Newman, M. & Morgan, D. O. The APC subunit Doc1 promotes recognition of the substrate destruction box. Curr. Biol. 15, 11–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Tian, W. et al. Structural analysis of human Cdc20 supports multisite degron recognition by APC/C. Proc. Natl Acad. Sci. USA 109, 18419–18424 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Passmore, L. A. et al. Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. EMBO J. 22, 786–796 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Matyskiela, M. E. & Morgan, D. O. Analysis of activator-binding sites on the APC/C supports a cooperative substrate-binding mechanism. Mol. Cell 34, 68–80 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chao, W. C., Kulkarni, K., Zhang, Z., Kong, E. H. & Barford, D. Structure of the mitotic checkpoint complex. Nature 484, 208–213 (2012). This paper determined the crystal structure of the fission yeast MCC and found that the MCC inhibits the APC/C by preventing substrate recruitment.

    Article  CAS  PubMed  Google Scholar 

  74. Matsusaka, T., Enquist-Newman, M., Morgan, D. O. & Pines, J. Co-activator independent differences in how the metaphase and anaphase APC/C recognise the same substrate. Biol. Open 3, 904–912 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wasch, R., Robbins, J. A. & Cross, F. R. The emerging role of APC/CCdh1 in controlling differentiation, genomic stability and tumor suppression. Oncogene 29, 1–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Mailand, N. & Diffley, J. F. CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122, 915–926 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Rodier, G., Coulombe, P., Tanguay, P. L., Boutonnet, C. & Meloche, S. Phosphorylation of Skp2 regulated by CDK2 and Cdc14B protects it from degradation by APC(Cdh1) in G1 phase. EMBO J. 27, 679–691 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hellmuth, S., Bottger, F., Pan, C., Mann, M. & Stemmann, O. PP2A delays APC/C-dependent degradation of separase-associated but not free securin. EMBO J. 33, 1134–1147 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Choi, E. et al. BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing of mitosis. EMBO J. 28, 2077–2089 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Song, L., Craney, A. & Rape, M. Microtubule-dependent regulation of mitotic protein degradation. Mol. Cell 53, 179–192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Patra, D. & Dunphy, W. G. Xe-p9, a Xenopus Suc1/Cks protein, is essential for the Cdc2-dependent phosphorylation of the anaphase- promoting complex at mitosis. Genes Dev. 12, 2549–2559 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shteinberg, M. & Hershko, A. Role of Suc1 in the activation of the cyclosome by protein kinase Cdk1/cyclin B. Biochem. Biophys. Res. Commun. 257, 12–18 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Wolthuis, R. et al. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol. Cell 30, 290–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Bourne, Y. et al. Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1. Cell 84, 863–874 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Sudakin, V., Shteinberg, M., Ganoth, D., Hershko, J. & Hershko, A. Binding of activated cyclosome to p13(suc1). Use for affinity purification. J. Biol. Chem. 272, 18051–18059 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Polinko, E. S. & Strome, S. Depletion of a Cks homolog in C. elegans embryos uncovers a post-metaphase role in both meiosis and mitosis. Curr. Biol. 10, 1471–1474 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Swan, A., Barcelo, G. & Schupbach, T. Drosophila Cks30A interacts with Cdk1 to target Cyclin A for destruction in the female germline. Development 132, 3669–3678 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Lenart, P. et al. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr. Biol. 17, 304–315 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Topper, L. M. et al. The dephosphorylated form of the anaphase-promoting complex protein Cdc27/Apc3 concentrates on kinetochores and chromosome arms in mitosis. Cell Cycle 1, 282–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Sivakumar, S., Daum, J. R., Tipton, A. R., Rankin, S. & Gorbsky, G. J. The spindle and kinetochore-associated (SKA) complex enhances binding of the anaphase-promoting complex/cyclosome (APC/C) to chromosomes and promotes mitotic exit. Mol. Biol. Cell 25, 594–605 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tugendreich, S., Tomkiel, J., Earnshaw, W. & Hieter, P. CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81, 261–268 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Jorgensen, P. M., Brundell, E., Starborg, M. & Hoog, C. A subunit of the anaphase-promoting complex is a centromere-associated protein in mammalian cells. Mol. Cell. Biol. 18, 468–476 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Acquaviva, C., Herzog, F., Kraft, C. & Pines, J. The anaphase promoting complex/cyclosome is recruited to centromeres by the spindle assembly checkpoint. Nature Cell Biol. 6, 892–898 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Ban, K. H. et al. The END network couples spindle pole assembly to inhibition of the anaphase-promoting complex/cyclosome in early mitosis. Dev. Cell 13, 29–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Torres, J. Z., Ban, K. H. & Jackson, P. K. A specific form of phospho protein phosphatase 2 regulates anaphase-promoting complex/cyclosome association with spindle poles. Mol. Biol. Cell 21, 897–904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  97. Foley, E. A. & Kapoor, T. M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nature Rev. Mol. Cell Biol. 14, 25–37 (2013).

    Article  CAS  Google Scholar 

  98. Lara-Gonzalez, P., Westhorpe, F. G. & Taylor, S. S. The spindle assembly checkpoint. Curr. Biol. 22, R966–R980 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. London, N. & Biggins, S. Signalling dynamics in the spindle checkpoint response. Nature Rev. Mol. Cell Biol. 15, 736–748 (2014).

    Article  CAS  Google Scholar 

  100. van Zon, W. & Wolthuis, R. M. Cyclin A and Nek2A: APC/C–Cdc20 substrates invisible to the mitotic spindle checkpoint. Biochem. Soc. Trans. 38, 72–77 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. den Elzen, N. & Pines, J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J. Cell Biol. 153, 121–136 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Geley, S. et al. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol. 153, 137–148 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hayes, M. J. et al. Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C. Nature Cell Biol. 8, 607–614 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Hames, R. S., Wattam, S. L., Yamano, H., Bacchieri, R. & Fry, A. M. APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. EMBO J. 20, 7117–7127 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Di Fiore, B. & Pines, J. How cyclin A destruction escapes the spindle assembly checkpoint. J. Cell Biol. 190, 501–509 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lu, D. et al. Multiple mechanisms determine the order of APC/C substrate degradation in mitosis. J. Cell Biol. 207, 23–39 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sedgwick, G. G. et al. Mechanisms controlling the temporal degradation of Nek2A and Kif18A by the APC/C–Cdc20 complex. EMBO J. 32, 303–314 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Collin, P., Nashchekina, O., Walker, R. & Pines, J. The spindle assembly checkpoint works like a rheostat rather than a toggle switch. Nature Cell Biol. 15, 1378–1385 (2013). This study demonstrates that the spindle checkpoint inhibition of the APC/C is a graded response that correlates with the number of unattached kinetochores.

    Article  CAS  PubMed  Google Scholar 

  109. Mena, A. L., Lam, E. W. & Chatterjee, S. Sustained spindle-assembly checkpoint response requires de novo transcription and translation of cyclin B1. PLoS ONE 5, e13037 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zeng, X. et al. Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell 18, 382–395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Varetti, G., Guida, C., Santaguida, S., Chiroli, E. & Musacchio, A. Homeostatic control of mitotic arrest. Mol. Cell 44, 710–720 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Brito, D. A. & Rieder, C. L. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194–1200 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gascoigne, K. E. & Taylor, S. S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14, 111–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Santaguida, S., Vernieri, C., Villa, F., Ciliberto, A. & Musacchio, A. Evidence that Aurora B is implicated in spindle checkpoint signalling independently of error correction. EMBO J. 30, 1508–1519 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. De Antoni, A. et al. The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr. Biol. 15, 214–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Kulukian, A., Han, J. S. & Cleveland, D. W. Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev. Cell 16, 105–117 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fang, G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol. Biol. Cell 13, 755–766 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sudakin, V., Chan, G. K. & Yen, T. J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol. 154, 925–936 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hardwick, K. G., Johnston, R. C., Smith, D. L. & Murray, A. W. MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p. J. Cell Biol. 148, 871–882 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fraschini, R. et al. Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. EMBO J. 20, 6648–6659 (2001). References 118–120 report that the APC/C is inhibited by the MCC, which is a complex composed of BUBR1, BUB3, CDC20 and MAD2 proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rischitor, P. E., May, K. M. & Hardwick, K. G. Bub1 is a fission yeast kinetochore scaffold protein, and is sufficient to recruit other spindle checkpoint proteins to ectopic sites on chromosomes. PLoS ONE 2, e1342 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Williams, G. L., Roberts, T. M. & Gjoerup, O. V. Bub1: escapades in a cellular world. Cell Cycle 6, 1699–1704 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Lara-Gonzalez, P., Scott, M. I., Diez, M., Sen, O. & Taylor, S. S. BubR1 blocks substrate recruitment to the APC/C in a KEN-box-dependent manner. J. Cell Sci. 124, 4332–4345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Izawa, D. & Pines, J. The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature http://dx.doi.org/10.1038/nature13911 (2014). This study demonstrates that the MCC can bind to and potentially inhibit a second molecule of CDC20, possibly while it is bound to the APC/C.

  125. Izawa, D. & Pines, J. Mad2 and the APC/C compete for the same site on Cdc20 to ensure proper chromosome segregation. J. Cell Biol. 199, 27–37 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang, Y. & Lees, E. Identification of an overlapping binding domain on Cdc20 for Mad2 and anaphase-promoting complex: model for spindle checkpoint regulation. Mol. Cell. Biol. 21, 5190–5199 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Foster, S. A. & Morgan, D. O. The APC/C subunit Mnd2/Apc15 promotes Cdc20 autoubiquitination and spindle assembly checkpoint inactivation. Mol. Cell 47, 921–932 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mansfeld, J., Collin, P., Collins, M. O., Choudhary, J. S. & Pines, J. APC15 drives the turnover of MCC–CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nature Cell Biol. 13, 1234–1243 (2011). References 127 and 128, along with reference 20, show that APC15 is required for CDC20 turnover, which promotes spindle checkpoint inactivation and hence mitotic exit.

    Article  CAS  PubMed  Google Scholar 

  129. Chang, L. & Barford, D. Insights into the anaphase-promoting complex: a molecular machine that regulates mitosis. Curr. Opin. Struct. Biol. 29C, 1–9 (2014).

    Article  CAS  Google Scholar 

  130. Daum, J. R. et al. Cohesion fatigue induces chromatid separation in cells delayed at metaphase. Curr. Biol. 21, 1018–1024 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Stevens, D., Gassmann, R., Oegema, K. & Desai, A. Uncoordinated loss of chromatid cohesion is a common outcome of extended metaphase arrest. PLoS ONE 6, e22969 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Eytan, E., Sitry-Shevah, D., Teichner, A. & Hershko, A. Roles of different pools of the mitotic checkpoint complex and the mechanisms of their disassembly. Proc. Natl Acad. Sci. USA 110, 10568–10573 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Liang, H., Lim, H. H., Venkitaraman, A. & Surana, U. Cdk1 promotes kinetochore bi-orientation and regulates Cdc20 expression during recovery from spindle checkpoint arrest. EMBO J. 31, 403–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Pan, J. & Chen, R. H. Spindle checkpoint regulates Cdc20p stability in Saccharomyces cerevisiae. Genes Dev. 18, 1439–1451 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nilsson, J. Cdc20 control of cell fate during prolonged mitotic arrest: do Cdc20 protein levels affect cell fate in response to antimitotic compounds? Bioessays 33, 903–909 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Musacchio, A. & Ciliberto, A. The spindle-assembly checkpoint and the beauty of self-destruction. Nature Struct. Mol. Biol. 19, 1059–1061 (2012).

    Article  CAS  Google Scholar 

  137. Reddy, S. K., Rape, M., Margansky, W. A. & Kirschner, M. W. Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature 446, 921–925 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Sackton, K. L. et al. Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C. Nature 514, 646–649 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lara-Gonzalez, P. & Taylor, S. S. Cohesion fatigue explains why pharmacological inhibition of the APC/C induces a spindle checkpoint-dependent mitotic arrest. PLoS ONE 7, e49041 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Xia, G. et al. Conformation-specific binding of p31comet antagonizes the function of Mad2 in the spindle checkpoint. EMBO J. 23, 3133–3143 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yang, M. et al. p31comet blocks Mad2 activation through structural mimicry. Cell 131, 744–755 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mapelli, M. et al. Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. EMBO J. 25, 1273–1284 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Vink, M. et al. In vitro FRAP identifies the minimal requirements for Mad2 kinetochore dynamics. Curr. Biol. 16, 755–766 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Jia, L. et al. Defining pathways of spindle checkpoint silencing: functional redundancy between Cdc20 ubiquitination and p31comet. Mol. Biol. Cell 22, 4227–4235 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hagan, R. S. et al. p31comet acts to ensure timely spindle checkpoint silencing subsequent to kinetochore attachment. Mol. Biol. Cell 22, 4236–4246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ma, H. T., Chan, Y. Y., Chen, X., On, K. F. & Poon, R. Y. Depletion of p31comet protein promotes sensitivity to antimitotic drugs. J. Biol. Chem. 287, 21561–21569 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Westhorpe, F. G., Tighe, A., Lara-Gonzalez, P. & Taylor, S. S. p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J. Cell Sci. 124, 3905–3916 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Teichner, A. et al. p31comet promotes disassembly of the mitotic checkpoint complex in an ATP-dependent process. Proc. Natl Acad. Sci. USA 108, 3187–3192 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Miniowitz-Shemtov, S., Teichner, A., Sitry-Shevah, D. & Hershko, A. ATP is required for the release of the anaphase-promoting complex/cyclosome from inhibition by the mitotic checkpoint. Proc. Natl Acad. Sci. USA 107, 5351–5356 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Eytan, E. et al. Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31comet. Proc. Natl Acad. Sci. USA 111, 12019–12024 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Nilsson, J., Yekezare, M., Minshull, J. & Pines, J. The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nature Cell Biol. 10, 1411–1420 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Gao, Y. F. et al. Cdk1-phosphorylated CUEDC2 promotes spindle checkpoint inactivation and chromosomal instability. Nature Cell Biol. 13, 924–933 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Dick, A. E. & Gerlich, D. W. Kinetic framework of spindle assembly checkpoint signalling. Nature Cell Biol. 15, 1370–1377 (2013). This study uses laser microsurgery to determine the strength of spindle checkpoint signalling and the extent to which spindle checkpoint can be re-imposed at metaphase before irreversible APC/C activation.

    Article  CAS  PubMed  Google Scholar 

  154. Bader, J. R. & Vaughan, K. T. Dynein at the kinetochore: timing, interactions and functions. Semin. Cell Dev. Biol. 21, 269–275 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Howell, B. J. et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol. 155, 1159–1172 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wojcik, E. et al. Kinetochore dynein: its dynamics and role in the transport of the rough deal checkpoint protein. Nature Cell Biol. 3, 1001–1007 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Lesage, B., Qian, J. & Bollen, M. Spindle checkpoint silencing: PP1 tips the balance. Curr. Biol. 21, R898–903 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Gaitanos, T. N. et al. Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3. EMBO J. 28, 1442–1452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Welburn, J. P. et al. The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev. Cell 16, 374–385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Daum, J. R. et al. Ska3 is required for spindle checkpoint silencing and the maintenance of chromosome cohesion in mitosis. Curr. Biol. 19, 1467–1472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sivakumar, S., Daum, J. R., Tipton, A. R., Rankin, S. & Gorbsky, G. J. The spindle and kinetochore-associated (Ska) complex enhances binding of the anaphase-promoting complex/cyclosome (APC/C) to chromosomes and promotes mitotic exit. Mol. Biol. Cell 25, 594–605 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Potapova, T. A., Sivakumar, S., Flynn, J. N., Li, R. & Gorbsky, G. J. Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited. Mol. Biol. Cell 22, 1191–1206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Pfleger, C. M., Salic, A., Lee, E. & Kirschner, M. W. Inhibition of Cdh1–APC by the MAD2-related protein MAD2L2: a novel mechanism for regulating Cdh1. Genes Dev. 15, 1759–1764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sigl, R. et al. Loss of the mammalian APC/C activator FZR1 shortens G1 and lengthens S phase but has little effect on exit from mitosis. J. Cell Sci. 122, 4208–4217 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Garcia-Higuera, I. et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nature Cell Biol. 10, 802–811 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Floyd, S., Pines, J. & Lindon, C. APC/C Cdh1 targets aurora kinase to control reorganization of the mitotic spindle at anaphase. Curr. Biol. 18, 1649–1658 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Blanco, M. A., Sanchez-Diaz, A., de Prada, J. M. & Moreno, S. APC(ste9/srw1) promotes degradation of mitotic cyclins in G1 and is inhibited by cdc2 phosphorylation. EMBO J. 19, 3945–3955 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sigrist, S. J. & Lehner, C. F. Drosophila fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 90, 671–681 (1997).

    Article  CAS  PubMed  Google Scholar 

  169. Schwab, M., Lutum, A. S. & Seufert, W. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell 90, 683–693 (1997).

    Article  CAS  PubMed  Google Scholar 

  170. Visintin, R., Prinz, S. & Amon, A. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278, 460–463 (1997).

    Article  CAS  PubMed  Google Scholar 

  171. Clute, P. & Pines, J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nature Cell Biol. 1, 82–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  172. Huang, J. & Raff, J. W. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J. 18, 2184–2195 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Shindo, N., Kumada, K. & Hirota, T. Separase sensor reveals dual roles for separase coordinating cohesin cleavage and cdk1 inhibition. Dev. Cell 23, 112–123 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Yaakov, G., Thorn, K. & Morgan, D. O. Separase biosensor reveals that cohesin cleavage timing depends on phosphatase PP2A(Cdc55) regulation. Dev. Cell 23, 124–136 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rape, M. & Kirschner, M. W. Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432, 588–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Listovsky, T. et al. Mammalian Cdh1/Fzr mediates its own degradation. EMBO J. 23, 1619–1626 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Martinez, J. S., Jeong, D. E., Choi, E., Billings, B. M. & Hall, M. C. Acm1 is a negative regulator of the CDH1-dependent anaphase-promoting complex/cyclosome in budding yeast. Mol. Cell. Biol. 26, 9162–9176 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Grosskortenhaus, R. & Sprenger, F. Rca1 inhibits APC–Cdh1(Fzr) and is required to prevent cyclin degradation in G2. Dev. Cell 2, 29–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  179. Reimann, J. D. et al. Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105, 645–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Ostapenko, D., Burton, J. L., Wang, R. & Solomon, M. J. Pseudosubstrate inhibition of the anaphase-promoting complex by Acm1: regulation by proteolysis and Cdc28 phosphorylation. Mol. Cell. Biol. 28, 4653–4664 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Enquist-Newman, M., Sullivan, M. & Morgan, D. O. Modulation of the mitotic regulatory network by APC-dependent destruction of the Cdh1 inhibitor Acm1. Mol. Cell 30, 437–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Reimann, J. D., Gardner, B. E., Margottin-Goguet, F. & Jackson, P. K. Emi1 regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins. Genes Dev. 15, 3278–3285 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Frye, J. J. et al. Electron microscopy structure of human APC/C(CDH1)–EMI1 reveals multimodal mechanism of E3 ligase shutdown. Nature Struct. Mol. Biol. 20, 827–835 (2013). This study shows how EMI1 sterically inhibits the APC/C by both preventing substrate recruitment and inhibiting ubiquitin chain elongation.

    Article  CAS  Google Scholar 

  184. Liu, J. & Maller, J. L. Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor. Curr. Biol. 15, 1458–1468 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Rauh, N. R., Schmidt, A., Bormann, J., Nigg, E. A. & Mayer, T. U. Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437, 1048–1052 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Tung, J. J. et al. A role for the anaphase-promoting complex inhibitor Emi2/XErp1, a homolog of early mitotic inhibitor 1, in cytostatic factor arrest of Xenopus eggs. Proc. Natl Acad. Sci. USA 102, 4318–4323 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Tischer, T., Hormanseder, E. & Mayer, T. U. The APC/C inhibitor XErp1/Emi2 is essential for Xenopus early embryonic divisions. Science 338, 520–524 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Wang, W. & Kirschner, M. W. Emi1 preferentially inhibits ubiquitin chain elongation by the anaphase-promoting complex. Nature Cell Biol. 15, 797–806 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Ohe, M. et al. Emi2 inhibition of the anaphase-promoting complex/cyclosome absolutely requires Emi2 binding via the C-terminal RL tail. Mol. Biol. Cell 21, 905–913 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sako, K. et al. Emi2 mediates meiotic MII arrest by competitively inhibiting the binding of Ube2S to the APC/C. Nature Commun. 5, 3667 (2014).

    Article  Google Scholar 

  191. Machida, Y. J. & Dutta, A. The APC/C inhibitor, Emi1, is essential for prevention of rereplication. Genes Dev. 21, 184–194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Di Fiore, B. & Pines, J. Emi1 is needed to couple DNA replication with mitosis but does not regulate activation of the mitotic APC/C. J. Cell Biol. 177, 425–437 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Guardavaccaro, D. et al. Control of meiotic and mitotic progression by the F box protein β-Trcp1 in vivo. Dev. Cell 4, 799–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  194. Margottin-Goguet, F. et al. Prophase destruction of Emi1 by the SCF(βTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev. Cell 4, 813–826 (2003).

    Article  CAS  PubMed  Google Scholar 

  195. Hansen, D. V., Loktev, A. V., Ban, K. H. & Jackson, P. K. Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFβTrCP-dependent destruction of the APC Inhibitor Emi1. Mol. Biol. Cell 15, 5623–5634 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Moshe, Y., Boulaire, J., Pagano, M. & Hershko, A. Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc. Natl Acad. Sci. USA 101, 7937–7942 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sumara, I. et al. Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr. Biol. 14, 1712–1722 (2004).

    Article  CAS  PubMed  Google Scholar 

  198. van Vugt, M. A. et al. Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for anaphase promoting complex/Cdc20 activation and initiation of cytokinesis. J. Biol. Chem. 279, 36841–36854 (2004).

    Article  CAS  PubMed  Google Scholar 

  199. Moshe, Y., Bar-On, O., Ganoth, D. & Hershko, A. Regulation of the action of early mitotic inhibitor 1 on the anaphase-promoting complex/cyclosome by cyclin-dependent kinases. J. Biol. Chem. 286, 16647–16657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhang, Z., Kulkarni, K., Hanrahan, S. J., Thompson, A. J. & Barford, D. The APC/C subunit Cdc16/Cut9 is a contiguous tetratricopeptide repeat superhelix with a homo-dimer interface similar to Cdc27. EMBO J. 29, 3733–3744 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for critically reading the manuscript and providing suggestions. They also thank A. R. Tipton and L. A. Diaz-Martinez for discussions and suggestions on the manuscript. They apologize to authors whose work they could not cite owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Gorbsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Monoubiquitylation

The addition of a single ubiquitin to a target protein.

Securin

A protein inhibitor of the protease separase.

Nuclear mitotic apparatus protein

(NUMA). A protein that partners with dynein in the assembly and maintenance of spindle poles.

Dynein–dynactin complex

A microtubule motor complex involved in the transport of spindle checkpoint proteins from kinetochores to the spindle pole.

Cohesin complex

A protein complex that holds replicated sister chromatids together before anaphase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, S., Gorbsky, G. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol 16, 82–94 (2015). https://doi.org/10.1038/nrm3934

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3934

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing