Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

In the right place at the right time: visualizing and understanding mRNA localization

A Corrigendum to this article was published on 08 July 2015

This article has been updated

Key Points

  • The asymmetrical distribution of mRNAs in cells is used by various organisms to spatially control gene expression.

  • RNA localization has a role in diverse biological processes, such as development, cell motility, neuron connectivity and mating type switching in yeast.

  • Recent technical advents and the development of new methods for mRNA detection in live and fixed cells allow the tracking and quantification of single mRNAs in a variety of cell types.

  • Single-molecule imaging of mRNA in fixed and live cells revealed a complex cooperativity between RNA-binding proteins (RBPs) and motor proteins to regulate active transport of mRNAs.

  • The composition of mRNA–protein (mRNP) complexes is intricate, and future research will reveal how they assemble into RNA granules with unique localization and functions.

  • Neurons and unicellular organisms, such as yeast and bacteria, use both convergent and disparate mechanisms of targeting mRNAs to different regions.

Abstract

The spatial regulation of protein translation is an efficient way to create functional and structural asymmetries in cells. Recent research has furthered our understanding of how individual cells spatially organize protein synthesis, by applying innovative technology to characterize the relationship between mRNAs and their regulatory proteins, single-mRNA trafficking dynamics, physiological effects of abrogating mRNA localization in vivo and for endogenous mRNA labelling. The implementation of new imaging technologies has yielded valuable information on mRNA localization, for example, by observing single molecules in tissues. The emerging movements and localization patterns of mRNAs in morphologically distinct unicellular organisms and in neurons have illuminated shared and specialized mechanisms of mRNA localization, and this information is complemented by transgenic and biochemical techniques that reveal the biological consequences of mRNA mislocalization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visualizing and understanding mRNA localization in different model systems.
Figure 2: Traditional and novel uses of MS2-like systems to investigate mRNA biology.
Figure 3: Cellular determinants of motored mRNA transport.
Figure 4: mRNA localization in unicellular organisms.
Figure 5: Different types of mRNA movements depend on subcellular location and on cell type.

Similar content being viewed by others

Change history

  • 08 July 2015

    In the original article, the two reference citations in the following sentence were incorrect: "... conversely, only 600–800 mammalian RBPs have been recognized so far (Refs 88,89; see the RBP database) ...". The correct references have now been added to the online version of this articleas as references 177 and 178.

References

  1. Weatheritt, R. J., Gibson, T. J. & Babu, M. M. Asymmetric mRNA localization contributes to fidelity and sensitivity of spatially localized systems. Nature Struct. Mol. Biol. 21, 833–839 (2014).

    CAS  Google Scholar 

  2. Jeffery, W. R., Tomlinson, C. R. & Brodeur, R. D. Localization of actin messenger RNA during early ascidian development. Dev. Biol. 99, 408–417 (1983).

    CAS  PubMed  Google Scholar 

  3. Lawrence, J. B. & Singer, R. H. Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell 45, 407–415 (1986).

    CAS  PubMed  Google Scholar 

  4. Melton, D. A. Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature 328, 80–82 (1987).

    CAS  PubMed  Google Scholar 

  5. Berleth, T. et al. The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J. 7, 1749–1756 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Long, R. M. et al. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277, 383–387 (1997). This is the first demonstration of mRNA localization in yeast.

    CAS  PubMed  Google Scholar 

  7. Garner, C. C., Tucker, R. P. & Matus, A. Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature 336, 674–677 (1988).

    CAS  PubMed  Google Scholar 

  8. Lecuyer, E. et al. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131, 174–187 (2007).

    CAS  PubMed  Google Scholar 

  9. Cajigas, I. J. et al. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453–466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jeffery, W. R. The spatial distribution of maternal mRNA is determined by a cortical cytoskeletal domain in Chaetopterus eggs. Dev. Biol. 110, 217–229 (1985).

    CAS  PubMed  Google Scholar 

  11. Pondel, M. D. & King, M. L. Localized maternal mRNA related to transforming growth factor β mRNA is concentrated in a cytokeratin-enriched fraction from Xenopus oocytes. Proc. Natl Acad. Sci. USA 85, 7612–7616 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yisraeli, J. K., Sokol, S. & Melton, D. A. A two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA. Development 108, 289–298 (1990).

    CAS  PubMed  Google Scholar 

  13. Sundell, C. L. & Singer, R. H. Requirement of microfilaments in sorting of actin messenger RNA. Science 253, 1275–1277 (1991).

    CAS  PubMed  Google Scholar 

  14. Litman, P., Barg, J. & Ginzburg, I. Microtubules are involved in the localization of tau mRNA in primary neuronal cell cultures. Neuron 13, 1463–1474 (1994).

    CAS  PubMed  Google Scholar 

  15. Macdonald, P. M. & Struhl, G. Cis-acting sequences responsible for anterior localization of bicoid mRNA in Drosophila embryos. Nature 336, 595–598 (1988).

    CAS  PubMed  Google Scholar 

  16. Yisraeli, J. K. & Melton, D. A. The material mRNA Vg1 is correctly localized following injection into Xenopus oocytes. Nature 336, 592–595 (1988).

    CAS  PubMed  Google Scholar 

  17. MacDonald, P. M. bicoid mRNA localization signal: phylogenetic conservation of function and RNA secondary structure. Development 110, 161–171 (1990).

    CAS  PubMed  Google Scholar 

  18. Mowry, K. L. & Melton, D. A. Vegetal messenger RNA localization directed by a 340-nt RNA sequence element in Xenopus oocytes. Science 255, 991–994 (1992).

    CAS  PubMed  Google Scholar 

  19. Gavis, E. R. & Lehmann, R. Localization of nanos RNA controls embryonic polarity. Cell 71, 301–313 (1992).

    CAS  PubMed  Google Scholar 

  20. Litman, P., Behar, L., Elisha, Z., Yisraeli, J. K. & Ginzburg, I. Exogenous tau RNA is localized in oocytes: possible evidence for evolutionary conservation of localization mechanisms. Dev. Biol. 176, 86–94 (1996).

    CAS  PubMed  Google Scholar 

  21. Kislauskis, E. H., Li, Z., Singer, R. H. & Taneja, K. L. Isoform-specific 3′-untranslated sequences sort α-cardiac and β-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J. Cell Biol. 123, 165–172 (1993).

    CAS  PubMed  Google Scholar 

  22. Schwartz, S. P., Aisenthal, L., Elisha, Z., Oberman, F. & Yisraeli, J. K. A. 69-kDa RNA-binding protein from Xenopus oocytes recognizes a common motif in two vegetally localized maternal mRNAs. Proc. Natl Acad. Sci. USA 89, 11895–11899 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ferrandon, D., Elphick, L., Nusslein-Volhard, C. & St Johnston, D. Staufen protein associates with the 3′UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell 79, 1221–1232 (1994).

    CAS  PubMed  Google Scholar 

  24. Ross, A. F., Oleynikov, Y., Kislauskis, E. H., Taneja, K. L. & Singer, R. H. Characterization of a β-actin mRNA zipcode-binding protein. Mol. Cell. Biol. 17, 2158–2165 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Robb, D. L., Heasman, J., Raats, J. & Wylie, C. A kinesin-like protein is required for germ plasm aggregation in Xenopus. Cell 87, 823–831 (1996).

    CAS  PubMed  Google Scholar 

  26. Eliscovich, C., Buxbaum, A. R., Katz, Z. B. & Singer, R. H. mRNA on the move: the road to its biological destiny. J. Biol. Chem. 288, 20361–20368 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Singer, R. H. & Ward, D. C. Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinated nucleotide analog. Proc. Natl Acad. Sci. USA 79, 7331–7335 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lawrence, J. B. & Singer, R. H. Quantitative analysis of in situ hybridization methods for the detection of actin gene expression. Nucleic Acids Res. 13, 1777–1799 (1985). This study reports the first optimization of FISH. The authors quantified β-actin mRNA in fibroblast by counting and normalizing autoradiography granules.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Femino, A. M., Fay, F. S., Fogarty, K. & Singer, R. H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998). This is the first demonstration of single-molecule FISH in cells.

    CAS  PubMed  Google Scholar 

  30. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nature Methods 5, 877–879 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shaffer, S. M., Wu, M. T., Levesque, M. J. & Raj, A. Turbo FISH: a method for rapid single molecule RNA FISH. PLoS ONE 8, e75120 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Levsky, J. M., Shenoy, S. M., Pezo, R. C. & Singer, R. H. Single-cell gene expression profiling. Science 297, 836–840 (2002).

    CAS  PubMed  Google Scholar 

  33. Jakt, L. M., Moriwaki, S. & Nishikawa, S. A continuum of transcriptional identities visualized by combinatorial fluorescent in situ hybridization. Development 140, 216–225 (2013).

    CAS  PubMed  Google Scholar 

  34. Battich, N., Stoeger, T. & Pelkmans, L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nature Methods 10, 1127–1133 (2013).

    CAS  PubMed  Google Scholar 

  35. Wang, S. X. & Hazelrigg, T. Implications for Bcd messenger-RNA localization from spatial-distribution of Exu protein in Drosophila oogenesis. Nature 369, 400–403 (1994).

    CAS  PubMed  Google Scholar 

  36. Kohrmann, M. et al. Microtubule-dependent recruitment of Staufen–green fluorescent protein into large RNA-containing granules and subsequent dendritic transport in living hippocampal neurons. Mol. Biol. Cell 10, 2945–2953 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Alami, N. H. et al. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81, 536–543 (2014). This is a demonstration of altered RBP-dependent granule transport in neurons in the absence of the neuronal RBP TDP-43.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998). This is the first use of an MS2 system to follow mRNA localization in live cells.

    CAS  PubMed  Google Scholar 

  39. Beach, D. L., Salmon, E. D. & Bloom, K. Localization and anchoring of mRNA in budding yeast. Curr. Biol. 9, 569–578 (1999).

    CAS  PubMed  Google Scholar 

  40. Brodsky, A. S. & Silver, P. A. Identifying proteins that affect mRNA localization in living cells. Methods 26, 151–155 (2002).

    CAS  PubMed  Google Scholar 

  41. Chao, J. A., Patskovsky, Y., Almo, S. C. & Singer, R. H. Structural basis for the coevolution of a viral RNA–protein complex. Nature Struct. Mol. Biol. 15, 103–105 (2008).

    CAS  Google Scholar 

  42. Lange, S. et al. Simultaneous transport of different localized mRNA species revealed by live-cell imaging. Traffic 9, 1256–1267 (2008).

    CAS  PubMed  Google Scholar 

  43. Hocine, S., Raymond, P., Zenklusen, D., Chao, J. A. & Singer, R. H. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nature Methods 10, 119–121 (2013).

    CAS  PubMed  Google Scholar 

  44. Wu, B., Chao, J. A. & Singer, R. H. Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNAs in living cells. Biophys. J. 102, 2936–2944 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, B., Chen, J. & Singer, R. H. Background free imaging of single mRNAs in live cells using split fluorescent proteins. Sci. Rep. 4, 3615 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Carrocci, T. J. & Hoskins, A. A. Imaging of RNAs in live cells with spectrally diverse small molecule fluorophores. Analyst 139, 44–47 (2014).

    CAS  PubMed  Google Scholar 

  47. Dolgosheina, E. V. et al. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol. 9, 2412–2420 (2014).

    CAS  PubMed  Google Scholar 

  48. Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Katz, Z. B. et al. β-actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration. Genes Dev. 26, 1885–1890 (2012). Forced mRNA localization at focal adhesions demonstrates how altered mRNA localization affects cell motility.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Long, R. M., Gu, W., Lorimer, E., Singer, R. H. & Chartrand, P. She2p is a novel RNA-binding protein that recruits the Myo4p–She3p complex to ASH1 mRNA. EMBO J. 19, 6592–6601 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Haim-Vilmovsky, L., Gadir, N., Herbst, R. H. & Gerst, J. E. A genomic integration method for the simultaneous visualization of endogenous mRNAs and their translation products in living yeast. RNA 17, 2249–2255 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Larson, D. R., Zenklusen, D., Wu, B., Chao, J. A. & Singer, R. H. Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332, 475–478 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lionnet, T. et al. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nature Methods 8, 165–170 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zimyanin, V. L. et al. In vivo Imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134, 843–853 (2008). Single-molecule imaging of an endogenous mRNA reveals a slight bias in active transport that leads to localization to the oocyte posterior.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jaramillo, A. M., Weil, T. T., Goodhouse, J., Gavis, E. R. & Schupbach, T. The dynamics of fluorescently labeled endogenous gurken mRNA in Drosophila. J. Cell Sci. 121, 887–894 (2008).

    CAS  PubMed  Google Scholar 

  56. Weil, T. T., Parton, R., Davis, I. & Gavis, E. R. Changes in bicoid mRNA anchoring highlight conserved mechanisms during the oocyte-to-embryo transition. Curr. Biol. 18, 1055–1061 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Forrest, K. M. & Gavis, E. R. Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr. Biol. 13, 1159–1168 (2003).

    CAS  PubMed  Google Scholar 

  58. Park, H. Y. et al. Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343, 422–424 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mali, P., Esvelt, K. M. & Church, G. M. Cas9 as a versatile tool for engineering biology. Nature Methods 10, 957–963 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fusco, D. et al. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13, 161–167 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Amrute-Nayak, M. & Bullock, S. L. Single-molecule assays reveal that RNA localization signals regulate dynein–dynactin copy number on individual transcript cargoes. Nature Cell Biol. 14, 416–423 (2012). Single-molecule measurements in vitro of mRNAs with altered sequences and binding proteins demonstrate the roles they have in active mRNA transport.

    CAS  PubMed  Google Scholar 

  62. Buxbaum, A. R., Wu, B. & Singer, R. H. Single β-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science 343, 419–422 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Batish, M., van den Bogaard, P., Kramer, F. R. & Tyagi, S. Neuronal mRNAs travel singly into dendrites. Proc. Natl Acad. Sci. USA 109, 4645–4650 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mikl, M., Vendra, G. & Kiebler, M. A. Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers. EMBO Rep. 12, 1077–1084 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Jambhekar, A. & Derisi, J. L. Cis-acting determinants of asymmetric, cytoplasmic RNA transport. RNA 13, 625–642 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Shahbabian, K. & Chartrand, P. Control of cytoplasmic mRNA localization. Cell. Mol. Life Sci. 69, 535–552 (2012).

    CAS  PubMed  Google Scholar 

  67. Zid, B. M. & O'Shea, E. K. Promoter sequences direct cytoplasmic localization and translation of mRNAs during starvation in yeast. Nature 514, 117–121 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Besse, F. & Ephrussi, A. Translational control of localized mRNAs: restricting protein synthesis in space and time. Nature Rev. Mol. Cell Biol. 9, 971–980 (2008).

    CAS  Google Scholar 

  69. Abaza, I. & Gebauer, F. Trading translation with RNA-binding proteins. RNA 14, 404–409 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Patel, V. L. et al. Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control. Genes Dev. 26, 43–53 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ascano, M., Hafner, M., Cekan, P., Gerstberger, S. & Tuschl, T. Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip. Rev.RNA 3, 159–177 (2012).

    CAS  PubMed  Google Scholar 

  72. Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Heraud-Farlow, J. E. et al. Staufen2 regulates neuronal target RNAs. Cell Rep. 5, 1511–1518 (2013).

    CAS  PubMed  Google Scholar 

  74. Geng, C. & Macdonald, P. M. Imp associates with squid and Hrp48 and contributes to localized expression of gurken in the oocyte. Mol. Cell. Biol. 26, 9508–9516 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. McDermott, S. M. & Davis, I. Drosophila hephaestus/polypyrimidine tract binding protein is required for dorso-ventral patterning and regulation of signalling between the germline and soma. PLoS ONE 8, e69978 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Uchiumi, T. et al. YB-1 is important for an early stage embryonic development: neural tube formation and cell proliferation. J. Biol. Chem. 281, 40440–40449 (2006).

    CAS  PubMed  Google Scholar 

  77. Klein, M. E., Younts, T. J., Castillo, P. E. & Jordan, B. A. RNA-binding protein Sam68 controls synapse number and local β-actin mRNA metabolism in dendrites. Proc. Natl Acad. Sci. USA 110, 3125–3130 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hartman, T. R. et al. RNA helicase A is necessary for translation of selected messenger RNAs. Nature Struct. Mol. Biol. 13, 509–516 (2006).

    CAS  Google Scholar 

  79. Fukuda, N. et al. The transacting factor CBF-A/Hnrnpab binds to the A2RE/RTS element of protamine 2 mRNA and contributes to its translational regulation during mouse spermatogenesis. PLoS Genet. 9, e1003858 (2013).

    PubMed  PubMed Central  Google Scholar 

  80. Glinka, M. et al. The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal β-actin mRNA translocation in spinal motor neurons. Hum. Mol. Genet. 19, 1951–1966 (2010).

    CAS  PubMed  Google Scholar 

  81. Todd, A. G. et al. SMN, Gemin2 and Gemin3 associate with β-actin mRNA in the cytoplasm of neuronal cells in vitro. J. Mol. Biol. 401, 681–689 (2010).

    CAS  PubMed  Google Scholar 

  82. Ma, B. et al. Huntingtin mediates dendritic transport of β-actin mRNA in rat neurons. Sci. Rep. 1, 140 (2011).

    PubMed  PubMed Central  Google Scholar 

  83. Kanai, Y., Dohmae, N. & Hirokawa, N. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513–525 (2004).

    CAS  PubMed  Google Scholar 

  84. Elvira, G. et al. Characterization of an RNA granule from developing brain. Mol. Cell Proteom. 5, 635–651 (2006).

    CAS  Google Scholar 

  85. Fritzsche, R. et al. Interactome of two diverse RNA granules links mRNA localization to translational repression in neurons. Cell Rep. 5, 1749–1762 (2013). This study demonstrates the overlap of RNA granule components from different RBP- and mRNA-containing granules, suggesting the extent of similarity of different mRNA complexes.

    CAS  PubMed  Google Scholar 

  86. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012). This paper demonstrates that RBPs contain sequences that facilitate their aggregation into RNA granules.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Donnelly, C. J. et al. Limited availability of ZBP1 restricts axonal mRNA localization and nerve regeneration capacity. EMBO J. 30, 4665–4677 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bullock, S. L., Nicol, A., Gross, S. P. & Zicha, D. Guidance of bidirectional motor complexes by mRNA cargoes through control of dynein number and activity. Curr. Biol. 16, 1447–1452 (2006).

    CAS  PubMed  Google Scholar 

  90. Gagnon, J. A. & Mowry, K. L. Molecular motors: directing traffic during RNA localization. Crit. Rev. Biochem. Mol. Biol. 46, 229–239 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bullock, S. L. Translocation of mRNAs by molecular motors: think complex? Semin. Cell Dev. Biol. 18, 194–201 (2007).

    CAS  PubMed  Google Scholar 

  92. Sladewski, T. E., Bookwalter, C. S., Hong, M. S. & Trybus, K. M. Single-molecule reconstitution of mRNA transport by a class V myosin. Nature Struct. Mol. Biol. 20, 952–957 (2013). This study shows that the multimerization of localization elements on mRNAs linearly correlates with the number of molecular motors to which they bind.

    CAS  Google Scholar 

  93. Soundararajan, H. C. & Bullock, S. L. The influence of dynein processivity control, MAPs, and microtubule ends on directional movement of a localising mRNA. Elife 3, e01596 (2014).

    PubMed  PubMed Central  Google Scholar 

  94. Messitt, T. J. et al. Multiple kinesin motors coordinate cytoplasmic RNA transport on a subpopulation of microtubules in Xenopus oocytes. Dev. Cell 15, 426–436 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gross, S. P., Vershinin, M. & Shubeita, G. T. Cargo transport: two motors are sometimes better than one. Curr. Biol. 17, R478–R486 (2007).

    CAS  PubMed  Google Scholar 

  96. McKenney, R. J., Huynh, W., Tanenbaum, M. E., Bhabha, G. & Vale, R. D. Activation of cytoplasmic dynein motility by dynactin–cargo adapter complexes. Science 345, 337–341 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Schlager, M. A., Hoang, H. T., Urnavicius, L., Bullock, S. L. & Carter, A. P. In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J. 33, 1855–1868 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Thirumurugan, K., Sakamoto, T., Hammer, J. A., Sellers, J. R. & Knight, P. J. The cargo-binding domain regulates structure and activity of myosin 5. Nature 442, 212–215 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Heym, R. G. et al. In vitro reconstitution of an mRNA-transport complex reveals mechanisms of assembly and motor activation. J. Cell Biol. 203, 971–984 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dynes, J. L. & Steward, O. Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites. J. Comp. Neurol. 500, 433–447 (2007). This paper reports Arc mRNA transporting in dendrites and quantifies multiple aspects of transport.

    CAS  PubMed  Google Scholar 

  101. Dynes, J. L. & Steward, O. Arc mRNA docks precisely at the base of individual dendritic spines indicating the existence of a specialized microdomain for synapse-specific mRNA translation. J. Comp. Neurol. 520, 3105–3119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu, X., Brechbiel, J. L. & Gavis, E. R. Dynein-dependent transport of nanos RNA in Drosophila sensory neurons requires Rumpelstiltskin and the germ plasm organizer Oskar. J. Neurosci. 33, 14791–14800 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu, G. et al. Interactions of elongation factor 1α with F-actin and β-actin mRNA: implications for anchoring mRNA in cell protrusions. Mol. Biol. Cell 13, 579–592 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. de Heredia, M. L. & Jansen, R. P. mRNA localization and the cytoskeleton. Curr. Opin. Cell Biol. 16, 80–85 (2004).

    CAS  Google Scholar 

  105. Delanoue, R. & Davis, I. Dynein anchors its mRNA cargo after apical transport in the Drosophila blastoderm embryo. Cell 122, 97–106 (2005).

    CAS  PubMed  Google Scholar 

  106. Gonzalez, I., Buonomo, S. B., Nasmyth, K. & von Ahsen, U. ASH1 mRNA localization in yeast involves multiple secondary structural elements and Ash1 protein translation. Curr. Biol. 9, 337–340 (1999).

    CAS  PubMed  Google Scholar 

  107. Bi, E. & Park, H. O. Cell polarization and cytokinesis in budding yeast. Genetics 191, 347–387 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Govindarajan, S., Nevo-Dinur, K. & Amster-Choder, O. Compartmentalization and spatio-temporal organization of macromolecules in bacteria. FEMS Microbiol. Rev. 36, 1005–1022 (2012).

    CAS  PubMed  Google Scholar 

  109. Bobola, N., Jansen, R. P., Shin, T. H. & Nasmyth, K. Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84, 699–709 (1996).

    CAS  PubMed  Google Scholar 

  110. Sil, A. & Herskowitz, I. Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84, 711–722 (1996).

    CAS  PubMed  Google Scholar 

  111. Takizawa, P. A., Sil, A., Swedlow, J. R., Herskowitz, I. & Vale, R. D. Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389, 90–93 (1997).

    CAS  PubMed  Google Scholar 

  112. Gonsalvez, G. B., Urbinati, C. R. & Long, R. M. RNA localization in yeast: moving towards a mechanism. Biol. Cell 97, 75–86 (2005).

    CAS  PubMed  Google Scholar 

  113. Heym, R. G. & Niessing, D. Principles of mRNA transport in yeast. Cell. Mol. Life Sci. 69, 1843–1853 (2012).

    CAS  PubMed  Google Scholar 

  114. Zarnack, K. & Feldbrugge, M. mRNA trafficking in fungi. Mol. Genet. Genom. 278, 347–359 (2007).

    CAS  Google Scholar 

  115. Powrie, E. A., Zenklusen, D. & Singer, R. H. A nucleoporin, Nup60p, affects the nuclear and cytoplasmic localization of ASH1 mRNA in S. cerevisiae. RNA 17, 134–144 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Paquin, N. et al. Local activation of yeast ASH1 mRNA translation through phosphorylation of Khd1p by the casein kinase Yck1p. Mol. Cell 26, 795–809 (2007).

    CAS  PubMed  Google Scholar 

  117. Gu, W., Deng, Y., Zenklusen, D. & Singer, R. H. A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev. 18, 1452–1465 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Shahbabian, K., Jeronimo, C., Forget, A., Robert, F. & Chartrand, P. Co-transcriptional recruitment of Puf6 by She2 couples translational repression to mRNA localization. Nucleic Acids Res. 42, 8692–8704 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Deng, Y., Singer, R. H. & Gu, W. Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev. 22, 1037–1050 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zipor, G. et al. Localization of mRNAs coding for peroxisomal proteins in the yeast, Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 106, 19848–19853 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gadir, N., Haim-Vilmovsky, L., Kraut-Cohen, J. & Gerst, J. E. Localization of mRNAs coding for mitochondrial proteins in the yeast Saccharomyces cerevisiae. RNA 17, 1551–1565 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Margeot, A. et al. In Saccharomyces cerevisiae, ATP2 mRNA sorting to the vicinity of mitochondria is essential for respiratory function. EMBO J. 21, 6893–6904 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kraut-Cohen, J. et al. Translation- and SRP-independent mRNA targeting to the endoplasmic reticulum in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 24, 3069–3084 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kilchert, C. & Spang, A. Cotranslational transport of ABP140 mRNA to the distal pole of S. cerevisiae. EMBO J. 30, 3567–3580 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Simpson, C. E., Lui, J., Kershaw, C. J., Sims, P. F. & Ashe, M. P. mRNA localization to Pbodies in yeast is biphasic with many mRNAs captured in a late Bfr1pdependent wave. J. Cell Sci. 127, 1254–1262 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Andoh, T., Oshiro, Y., Hayashi, S., Takeo, H. & Tani, T. Visual screening for localized RNAs in yeast revealed novel RNAs at the bud-tip. Biochem. Biophys. Res. Commun. 351, 999–1004 (2006).

    CAS  PubMed  Google Scholar 

  127. Aronov, S. et al. mRNAs encoding polarity and exocytosis factors are cotransported with the cortical endoplasmic reticulum to the incipient bud in Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 3441–3455 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Shepard, K. A. et al. Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc. Natl Acad. Sci. USA 100, 11429–11434 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Gelin-Licht, R., Paliwal, S., Conlon, P., Levchenko, A. & Gerst, J. E. Scp160-dependent mRNA trafficking mediates pheromone gradient sensing and chemotropism in yeast. Cell Rep. 1, 483–494 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Miller, O. L. Jr, Hamkalo, B. A. & Thomas, C. A. Jr. Visualization of bacterial genes in action. Science 169, 392–395 (1970).

    PubMed  Google Scholar 

  131. Nevo-Dinur, K., Nussbaum-Shochat, A., Ben-Yehuda, S. & Amster-Choder, O. Translation-independent localization of mRNA in E. coli. Science 331, 1081–1084 (2011). This paper demonstrated for the first time that mRNAs in bacteria can localize to specific subcellular sites.

    CAS  PubMed  Google Scholar 

  132. Prilusky, J. & Bibi, E. Studying membrane proteins through the eyes of the genetic code revealed a strong uracil bias in their coding mRNAs. Proc. Natl Acad. Sci. USA 106, 6662–6666 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Martin, K. C., Barad, M. & Kandel, E. R. Local protein synthesis and its role in synapse-specific plasticity. Curr. Opin. Neurobiol. 10, 587–592 (2000).

    CAS  PubMed  Google Scholar 

  134. Miyashiro, K., Dichter, M. & Eberwine, J. On the nature and differential distribution of mRNAs in hippocampal neurites: implications for neuronal functioning. Proc. Natl Acad. Sci. USA 91, 10800–10804 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Poon, M. M., Choi, S. H., Jamieson, C. A., Geschwind, D. H. & Martin, K. C. Identification of process-localized mRNAs from cultured rodent hippocampal neurons. J. Neurosci. 26, 13390–13399 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Puthanveettil, S. V. et al. A strategy to capture and characterize the synaptic transcriptome. Proc. Natl Acad. Sci. USA 110, 7464–7469 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Knowles, R. B. et al. Translocation of RNA granules in living neurons. J. Neurosci. 16, 7812–7820 (1996). Live imaging and tracking of RNA material in neurons reveals oscillatory behaviour and altered movement in response to stimulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Davis, L., Banker, G. A. & Steward, O. Selective dendritic transport of RNA in hippocampal neurons in culture. Nature 330, 477–479 (1987).

    CAS  PubMed  Google Scholar 

  139. Tubing, F. et al. Dendritically localized transcripts are sorted into distinct ribonucleoprotein particles that display fast directional motility along dendrites of hippocampal neurons. J. Neurosci. 30, 4160–4170 (2010).

    PubMed  PubMed Central  Google Scholar 

  140. Ling, S. C., Fahrner, P. S., Greenough, W. T. & Gelfand, V. I. Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein. Proc. Natl Acad. Sci. USA 101, 17428–17433 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Estes, P. S., O'Shea, M., Clasen, S. & Zarnescu, D. C. Fragile X protein controls the efficacy of mRNA transport in Drosophila neurons. Mol. Cell Neurosci. 39, 170–179 (2008). The quantification of mRNA movements in neurons with altered FMRP expression demonstrates protein-enhanced processivity and transport of mRNA.

    CAS  PubMed  Google Scholar 

  142. Doyle, M. & Kiebler, M. A. Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J. 30, 3540–3552 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Krichevsky, A. M. & Kosik, K. S. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 32, 683–696 (2001).

    CAS  PubMed  Google Scholar 

  144. Mayford, M., Baranes, D., Podsypanina, K. & Kandel, E. R. The 3′-untranslated region of CaMKII α is a cis-acting signal for the localization and translation of mRNA in dendrites. Proc. Natl Acad. Sci. USA 93, 13250–13255 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Miller, S. et al. Disruption of dendritic translation of CaMKIIα impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36, 507–519 (2002).

    CAS  PubMed  Google Scholar 

  146. Perry, R. B. et al. Subcellular knockout of importin β1 perturbs axonal retrograde signaling. Neuron 75, 294–305 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Yoon, B. C. et al. Local translation of extranuclear lamin B promotes axon maintenance. Cell 148, 752–764 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014). This is the first demonstration of in situ RNA sequencing, which allows localization analysis of multiple RNA species in cells at the single-molecule level.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Slobodin, B. & Gerst, J. E. RaPID: an aptamer-based mRNA affinity purification technique for the identification of RNA and protein factors present in ribonucleoprotein complexes. Methods Mol. Biol. 714, 387–406 (2011).

    CAS  PubMed  Google Scholar 

  150. Rodriguez, A. J., Shenoy, S. M., Singer, R. H. & Condeelis, J. Visualization of mRNA translation in living cells. J. Cell Biol. 175, 67–76 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Dieterich, D. C. et al. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nature Neurosci. 13, 897–905 (2010).

    CAS  PubMed  Google Scholar 

  152. Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

    CAS  PubMed  Google Scholar 

  153. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    CAS  PubMed  Google Scholar 

  154. Haimovich, G. et al. Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis. Cell 153, 1000–1011 (2013).

    CAS  PubMed  Google Scholar 

  155. Zenklusen, D., Larson, D. R. & Singer, R. H. Single-RNA counting reveals alternative modes of gene expression in yeast. Nature Struct. Mol. Biol. 15, 1263–1271 (2008).

    CAS  Google Scholar 

  156. Mueller, F. et al. FISH-quant: automatic counting of transcripts in 3D FISH images. Nature Methods 10, 277–278 (2013).

    CAS  PubMed  Google Scholar 

  157. Park, H. Y., Trcek, T., Wells, A. L., Chao, J. A. & Singer, R. H. An unbiased analysis method to quantify mRNA localization reveals its correlation with cell motility. Cell Rep. 1, 179–184 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Park, H. Y., Buxbaum, A. R. & Singer, R. H. Single mRNA tracking in live cells. Methods Enzymol. 472, 387–406 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nature Methods 5, 695–702 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Meijering, E., Dzyubachyk, O. & Smal, I. Methods for cell and particle tracking. Methods Enzymol. 504, 183–200 (2012).

    PubMed  Google Scholar 

  161. Chenouard, N. et al. Objective comparison of particle tracking methods. Nature Meth 11, 281–289 (2014). This paper describes a multigroup collaborative effort to compare particle-tracking methods.

    CAS  Google Scholar 

  162. Oleynikov, Y. & Singer, R. H. Real-time visualization of ZBP1 association with β-actin mRNA during transcription and localization. Curr. Biol. 13, 199–207 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Latham, V. M., Yu, E. H., Tullio, A. N., Adelstein, R. S. & Singer, R. H. A. Rho-dependent signaling pathway operating through myosin localizes β-actin mRNA in fibroblasts. Curr. Biol. 11, 1010–1016 (2001).

    CAS  PubMed  Google Scholar 

  164. Eom, T., Antar, L. N., Singer, R. H. & Bassell, G. J. Localization of a β-actin messenger ribonucleoprotein complex with zipcode-binding protein modulates the density of dendritic filopodia and filopodial synapses. J. Neurosci. 23, 10433–10444 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Ferrandon, D., Koch, I., Westhof, E. & Nusslein-Volhard, C. RNA–RNA interaction is required for the formation of specific bicoid mRNA 3′ UTR-STAUFEN ribonucleoprotein particles. EMBO J. 16, 1751–1758 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Macdonald, P. M. & Kerr, K. Redundant RNA recognition events in bicoid mRNA localization. RNA 3, 1413–1420 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Macdonald, P. M., Kerr, K., Smith, J. L. & Leask, A. RNA regulatory element BLE1 directs the early steps of bicoid mRNA localization. Development 118, 1233–1243 (1993).

    CAS  PubMed  Google Scholar 

  168. Bashirullah, A., Cooperstock, R. L. & Lipshitz, H. D. Spatial and temporal control of RNA stability. Proc. Natl Acad. Sci. USA 98, 7025–7028 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Zaessinger, S., Busseau, I. & Simonelig, M. Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4. Development 133, 4573–4583 (2006).

    CAS  PubMed  Google Scholar 

  170. Jain, R. A. & Gavis, E. R. The Drosophila hnRNP M homolog Rumpelstiltskin regulates nanos mRNA localization. Development 135, 973–982 (2008).

    CAS  PubMed  Google Scholar 

  171. Becalska, A. N. et al. Aubergine is a component of a nanos mRNA localization complex. Dev. Biol. 349, 46–52 (2011).

    CAS  PubMed  Google Scholar 

  172. Chang, P. et al. Localization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulum. Mol. Biol. Cell 15, 4669–4681 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Gavis, E. R. & Lehmann, R. Translational regulation of nanos by RNA localization. Nature 369, 315–318 (1994).

    CAS  PubMed  Google Scholar 

  174. dos Santos, V. T., Bisson-Filho, A. W. & Gueiros-Filho, F. J. DivIVA-mediated polar localization of ComN, a posttranscriptional regulator of Bacillus subtilis. J. Bacteriol. 194, 3661–3669 (2012).

    PubMed  PubMed Central  Google Scholar 

  175. Bohl, F., Kruse, C., Frank, A., Ferring, D. & Jansen, R. P. She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J. 19, 5514–5524 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Parton, R. M. et al. A PAR-1-dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte. J. Cell Biol. 194, 121–135 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Castello, A et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    CAS  PubMed  Google Scholar 

  178. Baltz, A. G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674–690 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to T. Trcek, R. Lehmann and O. Amster-Choder for contributing their images for Figure 1. The authors also thank E. Tutucci, Y. J. Yoon, S. Preibisch and B. Wu for comments on the manuscript. R.H.S. is funded by the US National Institutes of Health (NIH) grants NIH/NIGMS 2R01GM057071, NIH/NIBIB 5R01EB013571 and NIH/NINDS 9R01NS083085. G.H. is funded by the Gruss Lipper postdoctoral fellowship (EGL charitable foundation) (Albert Einstein College of Medicine), Dean of faculty fellowship (Weizmann Institute of Science (WIS)) and Clore postdoctoral fellowship (WIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Singer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Supplementary information

Supplementary information S1 (figure)

Fluorescence in situ hybridization (FISH) technique variations. (PDF 113 kb)

Supplementary information S2 (table)

Visualizing single mRNAs in fixed and live cells (PDF 307 kb)

Supplementary information S3 (movie)

Altered β-actin mRNA behaviour in different cell types. (AVI 13171 kb)

Related links

Related links

FURTHER INFORMATION

FISH-quant

RBP database

Glossary

Single-molecule FISH

(smFISH). A fluorescence in situ hybridization (FISH) technique that uses multiple unique short probes against a single mRNA, which greatly increases signal-to-noise ratio and enables detection of single mRNA molecules.

SNAP tag

A protein fusion tag derived from the human enzyme O6-methylguanine DNA methyltransferase. The protein can covalently bind to a synthetic chemical ligand that can be labelled with a fluorescent dye.

Aptamers

Short nucleic acid sequences with unique folding properties that can bind to a specific target molecule and be used for fluorescent tagging.

Myosin

A family of actin-based, ATP-dependent motor proteins.

Kinesin

A class of molecular motors that use ATP to move along microtubule filaments and that transport many cellular components. There are 14 subtypes in the kinesin superfamily, most of which transport cargo to the plus ends of microtubules.

Dynein

A motor protein family that uses ATP to transport cargo along microtubules, typically towards their minus ends. Axonemal dynein has roles in cilia and flagella, whereas cytoplasmic dynein transports mRNAs, among other cargos.

Syncytial blastoderms

A specific stage of Drosophila spp. embryogenesis during which the embryo becomes a single multinucleated cell.

Vegetal cortex

The lower pole on the animal vegetal axis of oocytes where the yolk resides.

Bud tip

The point opposite to the bud neck (which connects the bud to the mother cell) in budding yeast.

Mating type

The budding yeast has two mating types, a and α. Mating of a and α haploid cells produces a diploid cell that can later undergo meiosis to form spores. Haploid cells can switch mating types.

Processing bodies

(P-bodies). Cytoplasmic granules that contain mRNA-degrading proteins, full-length mRNAs and mRNA fragments. Their function is unclear but is related to mRNA degradation.

Synaptic plasticity

Changes in the strength of synaptic transmission in response to changes in synaptic activity, possibly during learning and memory formation.

Long-term potentiation

Long-lasting increase in the efficacy of synaptic transmission between two neurons owing to enhanced neuronal signalling or activity.

HaloTag

A protein fusion tag derived from the enzyme DhaA from Rhodococcus rhodochrous. The protein can covalently bind to a synthetic chemical ligand that can be labelled with a fluorescent dye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buxbaum, A., Haimovich, G. & Singer, R. In the right place at the right time: visualizing and understanding mRNA localization. Nat Rev Mol Cell Biol 16, 95–109 (2015). https://doi.org/10.1038/nrm3918

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3918

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing