Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signalling dynamics in vertebrate segmentation

Key Points

  • Vertebrate segmentation depends on an oscillator (the segmentation clock) controlling periodic signalling activities of the Notch, WNT and fibroblast growth factor (FGF) pathways, which act on precursors of the somites in the presomitic mesoderm.

  • Spacing of the response to the periodic signal of the clock is controlled by a system of travelling posterior gradients of FGF and WNT signalling. This system leads to the successive determination of embryonic segments along the anteroposterior axis.

  • Although the pacemaker of the oscillator has not been fully characterized, delayed negative-feedback loops have been shown to be involved in the control of oscillations in mouse and zebrafish embryos.

  • Notch signalling is involved in the synchronization of individual cellular oscillators, resulting in coordinated waves travelling along the presomitic mesoderm.

  • Segmental determination occurs in the presomitic mesoderm when segmentation genes such as mesoderm posterior 2 (MESP2) are activated in a striped domain in response to the clock signal. This striped domain specifies the future boundaries of the somite.

Abstract

Segmentation of the paraxial mesoderm is a major event of vertebrate development that establishes the metameric patterning of the body axis. This process involves the periodic formation of sequential units, termed somites, from the presomitic mesoderm. Somite formation relies on a molecular oscillator, the segmentation clock, which controls the rhythmic activation of several signalling pathways and leads to the oscillatory expression of a subset of genes in the presomitic mesoderm. The response to the periodic signal of the clock, leading to the establishment of the segmental pre-pattern, is gated by a system of travelling signalling gradients, often referred to as the wavefront. Recent studies have advanced our understanding of the molecular mechanisms involved in the generation of oscillations and how they interact and are coordinated to activate the segmental gene expression programme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Paraxial mesoderm segmentation.
Figure 2: The clock-and-wavefront model.
Figure 3: Formation of a segment.

Similar content being viewed by others

References

  1. Ward, A. B. & Mehta, R. S. Axial elongation in fishes: using morphological approaches to elucidate developmental mechanisms in studying body shape. Integr. Comp. Biol. 50, 1106–1119 (2011).

    Article  Google Scholar 

  2. Benazeraf, B. & Pourquie, O. Formation and segmentation of the vertebrate body axis. Annu. Rev. Cell Dev. Biol. 29, 1–26 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Chapman, D. L. & Papaioannou, V. E. Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6. Nature 391, 695–697 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Yoon, J. K., Moon, R. T. & Wold, B. The bHLH class protein pMesogenin1 can specify paraxial mesoderm phenotypes. Dev. Biol. 222, 376–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Nowotschin, S., Ferrer-Vaquer, A., Concepcion, D., Papaioannou, V. E. & Hadjantonakis, A. K. Interaction of Wnt3a, Msgn1 and Tbx6 in neural versus paraxial mesoderm lineage commitment and paraxial mesoderm differentiation in the mouse embryo. Dev. Biol. 367, 1–14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peel, A. D., Chipman, A. D. & Akam, M. Arthropod segmentation: beyond the Drosophila paradigm. Nature Rev. Genet. 6, 905–916 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Chal, J. & Pourquie, O. in The Skeletal System (ed. Pourquie, O.) 41–116 (Cold Spring Harbor Laboratory Press, 2009).

    Google Scholar 

  8. Tam, P. P. The control of somitogenesis in mouse embryos. J. Embryol. Exp. Morphol. 65 (Suppl.), 103–128 (1981).

    PubMed  Google Scholar 

  9. Schroter, C. et al. Dynamics of zebrafish somitogenesis. Dev. Dyn. 237, 545–553 (2008).

    Article  PubMed  Google Scholar 

  10. Muller, F. & O'Rahilly, R. Somitic-vertebral correlation and vertebral levels in the human embryo. Am. J. Anat. 177, 3–19 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquié, O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–648 (1997). Reports the identification of periodic expression of the cyclic gene HAIRY1 in the PSM of the chicken embryo, demonstrating the existence of an oscillator linked to vertebrate segmentation.

    Article  CAS  PubMed  Google Scholar 

  12. Dequeant, M. L. et al. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314, 1595–1598 (2006). A microarray time series spanning one oscillation of the segmentation clock is used to identify cyclic genes in the mouse at the transcriptome level. This led to the identification of a network of negative-feedback inhibitors expressed cyclically in the mouse PSM.

    Article  CAS  PubMed  Google Scholar 

  13. Dubrulle, J., McGrew, M. J. & Pourquie, O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219–232 (2001). Together with reference 22, reports the first identification of the molecular nature of the wavefront, showing that segment position is defined in response to a gradient of FGF signalling in the PSM.

    Article  CAS  PubMed  Google Scholar 

  14. Aulehla, A. et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev. Cell 4, 395–406 (2003). Identifies WNT signalling as an important element of the wavefront.

    Article  CAS  PubMed  Google Scholar 

  15. Saga, Y., Hata, N., Koseki, H. & Taketo, M. M. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev. 11, 1827–1839 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi, Y. et al. Mesp2 initiates somite segmentation through the Notch signalling pathway. Nature Genet. 25, 390–396 (2000). Provides a genetic analysis of the role of MESP2 in segmentation and somite anteroposterior patterning.

    Article  CAS  PubMed  Google Scholar 

  17. Cooke, J. & Zeeman, E. C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58, 455–476 (1976). This is the first paper to propose the existence of an oscillator to explain segment formation in vertebrates.

    Article  CAS  PubMed  Google Scholar 

  18. Cooke, J. A gene that resuscitates a theory-somitogenesis and a molecular oscillator. Trends. Genet. 14, 85–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Kusumi, K., May, C. M. & Eckalbar, W. L. A large-scale view of the evolution of amniote development: insights from somitogenesis in reptiles. Curr. Opin. Genet. Dev. 23, 491–497 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Pourquie, O. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 145, 650–663 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krol, A. J. et al. Evolutionary plasticity of segmentation clock networks. Development 138, 2783–2792 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sawada, A. et al. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development 128, 4873–4880 (2001). Together with reference 13, identifies the role of FGF signalling in the wavefront involved in the periodic spacing of segments.

    CAS  PubMed  Google Scholar 

  23. Naiche, L. A., Holder, N. & Lewandoski, M. FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis. Proc. Natl Acad. Sci. USA 108, 4018–4023 (2011).

    Article  PubMed  Google Scholar 

  24. Aulehla, A. & Pourquie, O. Signaling gradients during paraxial mesoderm development. Cold Spring Harb. Perspect. Biol. 2, a000869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vermot, J. et al. Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo. Science 308, 563–566 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Dubrulle, J. & Pourquie, O. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 427, 419–422 (2004). Identifies an original mechanism involving mRNA decay for the generation of the posterior FGF gradient. This mechanism ensures coordination between axis elongation and segmentation.

    Article  CAS  PubMed  Google Scholar 

  27. Nagano, T., Takehara, S., Takahashi, M., Aizawa, S. & Yamamoto, A. Shisa2 promotes the maturation of somitic precursors and transition to the segmental fate in Xenopus embryos. Development 133, 4643–4654 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Satoh, W., Gotoh, T., Tsunematsu, Y., Aizawa, S. & Shimono, A. Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis. Development 133, 989–999 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Saga, Y. The mechanism of somite formation in mice. Curr. Opin. Genet. Dev. 22, 331–338 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Oginuma, M., Niwa, Y., Chapman, D. L. & Saga, Y. Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis. Development 135, 2555–2562 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Oginuma, M., Hirata, T. & Saga, Y. Identification of presomitic mesoderm (PSM)-specific Mesp1 enhancer and generation of a PSM-specific Mesp1/Mesp2-null mouse using BAC-based rescue technology. Mech. Dev. 125, 432–440 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Dahmann, C., Oates, A. C. & Brand, M. Boundary formation and maintenance in tissue development. Nature Rev. Genet. 12, 43–55 (2010).

    Article  CAS  Google Scholar 

  33. Dias, A. S., de Almeida, I., Belmonte, J. M., Glazier, J. A. & Stern, C. D. Somites without a clock. Science 343, 791–795 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Burgess, R., Rawls, A., Brown, D., Bradley, A. & Olson, E. N. Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Nature 384, 570–573 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Schroter, C. & Oates, A. C. Segment number and axial identity in a segmentation clock period mutant. Curr. Biol. 20, 1254–1258 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Harima, Y., Takashima, Y., Ueda, Y., Ohtsuka, T. & Kageyama, R. Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene. Cell Rep. 3, 1–7 (2012). Shows that deleting introns of the Hes7 gene leads to an acceleration of the segmentation clock, thus supporting models based on delayed negative-feedback loops.

    Article  CAS  PubMed  Google Scholar 

  37. Sasai, Y., Kageyama, R., Tagawa, Y., Shigemoto, R. & Nakanishi, S. Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev. 6, 2620–2634 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Kageyama, R., Ohtsuka, T. & Kobayashi, T. The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 134, 1243–1251 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Giudicelli, F., Ozbudak, E. M., Wright, G. J. & Lewis, J. Setting the tempo in development: an investigation of the zebrafish somite clock mechanism. PLoS Biol. 5, e150 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Takebayashi, K. et al. Structure, chromosomal locus, and promoter analysis of the gene encoding the mouse helix-loop-helix factor HES-1. Negative autoregulation through the multiple N box elements. J. Biol. Chem. 269, 5150–5156 (1994).

    CAS  PubMed  Google Scholar 

  41. Hirata, H. et al. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840–843 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Bessho, Y., Hirata, H., Masamizu, Y. & Kageyama, R. Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev. 17, 1451–1456 (2003). This is the first paper to establish the key role of HES7 in mouse segmentation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goldbeter, A. & Pourquie, O. Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways. J. Theor. Biol. 252, 574–585 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Evrard, Y. A., Lun, Y., Aulehla, A., Gan, L. & Johnson, R. L. lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394, 377–381 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Dale, J. K. et al. Periodic Notch inhibition by Lunatic Fringe underlies the chick segmentation clock. Nature 421, 275–278 (2003). Shows the implication of a negative-feedback loop driven by LFNG in the control of the segmentation clock oscillations.

    Article  CAS  PubMed  Google Scholar 

  46. Morimoto, M., Takahashi, Y., Endo, M. & Saga, Y. The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 435, 354–359 (2005). Characterizes the role of MESP2 and Notch signalling in segment determination.

    Article  CAS  PubMed  Google Scholar 

  47. Huppert, S. S., Ilagan, M. X., De Strooper, B. & Kopan, R. Analysis of Notch function in presomitic mesoderm suggests a gamma-secretase-independent role for presenilins in somite differentiation. Dev. Cell 8, 677–688 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Niwa, H. How is pluripotency determined and maintained? Development 134, 635–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Aulehla, A. et al. A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nature Cell Biol. 10, 186–193 (2008). Introduces the first GFP-based reporter to visualize clock oscillations in mouse and shows that forced activation of β-catenin does not abrogate oscillations of Notch and WNT cyclic genes.

    Article  CAS  PubMed  Google Scholar 

  50. Fongang, B. & Kudlicki, A. The precise timeline of transcriptional regulation reveals causation in mouse somitogenesis network. BMC Dev. Biol. 13, 42 (2013).

  51. Lewis, J. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398–1408 (2003). First description of the negative feedback with delay model based on her gene repression acting as a pacemaker controlling clock oscillations.

    Article  CAS  PubMed  Google Scholar 

  52. Monk, N. A. M. Oscillatory expression of Hes1, 53 and NF-κB driven by transcriptional time delays. Curr. Biol. 13, 1409–1413 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Hanisch, A. et al. The elongation rate of RNA polymerase II in zebrafish and its significance in the somite segmentation clock. Development 140, 444–453 (2012).

    Article  CAS  Google Scholar 

  54. Hoyle, N. P. & Ish-Horowicz, D. Transcript processing and export kinetics are rate-limiting steps in expressing vertebrate segmentation clock genes. Proc. Natl Acad. Sci. USA 110, E4316–E4324 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Stauber, M., Laclef, C., Vezzaro, A., Page, M. E. & Ish-Horowicz, D. Modifying transcript lengths of cycling mouse segmentation genes. Mech. Dev. 129, 61–72 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Takashima, Y., Ohtsuka, T., Gonzalez, A., Miyachi, H. & Kageyama, R. Intronic delay is essential for oscillatory expression in the segmentation clock. Proc. Natl Acad. Sci. USA 108, 3300–3305 (2011).

    Article  PubMed  Google Scholar 

  57. Ay, A., Knierer, S., Sperlea, A., Holland, J. & Ozbudak, E. M. Short-lived Her proteins drive robust synchronized oscillations in the zebrafish segmentation clock. Development 140, 3244–3253 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Hirata, H. et al. Instability of Hes7 protein is crucial for the somite segmentation clock. Nature Genet. 36, 750–754 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Hilgers, V., Pourquie, O. & Dubrulle, J. In vivo analysis of mRNA stability using the Tet-Off system in the chicken embryo. Dev. Biol. 284, 292–300 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Nitanda, Y. et al. 3′-UTR-dependent regulation of mRNA turnover is critical for differential distribution patterns of cyclic gene mRNAs. FEBS J. 281, 146–156 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Chen, J., Kang, L. & Zhang, N. Negative feedback loop formed by Lunatic fringe and Hes7 controls their oscillatory expression during somitogenesis. Genesis 43, 196–204 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Riley, M. F., Bochter, M. S., Wahi, K., Nuovo, G. J. & Cole, S. E. Mir-125a-5p-mediated regulation of Lfng is essential for the avian segmentation clock. Dev. Cell 24, 554–561 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Giraldez, A. J. et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833–838 (2005).

    Article  CAS  Google Scholar 

  64. Zhang, Z. et al. The microRNA-processing enzyme Dicer is dispensable for somite segmentation but essential for limb bud positioning. Dev. Biol. 351, 254–265 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chalamalasetty, R. B. et al. The Wnt3a/β-catenin target gene Mesogenin1 controls the segmentation clock by activating a Notch signalling program. Nature Commun. 2, 390 (2011).

    Article  CAS  Google Scholar 

  66. Gonzalez, A., Manosalva, I., Liu, T. & Kageyama, R. Control of Hes7 expression by Tbx6, the Wnt pathway and the chemical Gsk3 inhibitor LiCl in the mouse segmentation clock. PLoS ONE 8, e53323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bessho, Y., Miyoshi, G., Sakata, R. & Kageyama, R. Hes7: a bHLH-type repressor gene regulated by Notch and expressed in the presomitic mesoderm. Genes Cells 6, 175–185 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Fischer, A., Schumacher, N., Maier, M., Sendtner, M. & Gessler, M. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev. 18, 901–911 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Niwa, Y. et al. The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and notch signaling in the somite segmentation clock. Dev. Cell 13, 298–304 (2007). Shows that HES7 oscillations are controlled by FGF in the posterior PSM and by Notch more anteriorly.

    Article  CAS  PubMed  Google Scholar 

  70. Ferjentsik, Z. et al. Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites. PLoS Genet. 5, e1000662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hayashi, S. et al. Sprouty4, an FGF inhibitor, displays cyclic gene expression under the control of the notch segmentation clock in the mouse PSM. PLoS ONE 4, e5603 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Feller, J., Schneider, A., Schuster-Gossler, K. & Gossler, A. Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation. Genes Dev. 22, 2166–2171 (2008). Demonstrates that Notch constitutive activation in the mouse PSM does not abrogate WNT or Notch gene oscillation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dunty, W. C. Jr et al. Wnt3a/β-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development 135, 85–94 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Gibb, S. et al. Interfering with Wnt signalling alters the periodicity of the segmentation clock. Dev. Biol. 330, 21–31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Niwa, Y. et al. Different types of oscillations in Notch and Fgf signaling regulate the spatiotemporal periodicity of somitogenesis. Genes Dev. 25, 1115–1120 (2011). Shows that FGF and Notch oscillation are initially in phase in the posterior PSM and become out of phase anteriorly. The authors propose a segmentation model based on this phase shift.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ishikawa, A. et al. Mouse Nkd1, a Wnt antagonist, exhibits oscillatory gene expression in the PSM under the control of Notch signaling. Mech. Dev. 121, 1443–1453 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Wahl, M. B., Deng, C., Lewandoski, M. & Pourquie, O. FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis. Development 134, 4033–4041 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Aulehla, A. & Pourquie, O. Oscillating signaling pathways during embryonic development. Curr. Opin. Cell Biol. 20, 632–637 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Oates, A. C. & Ho, R. K. Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish. Development 129, 2929–2946 (2002).

    CAS  PubMed  Google Scholar 

  80. Schroter, C. et al. Topology and dynamics of the zebrafish segmentation clock core circuit. PLoS Biol. 10, e1001364 (2012). Analyses the role of dimers of her genes in the control of zebrafish oscillations and proposes a dimer cloud model for the clock pacemaker.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Trofka, A. et al. The Her7 node modulates the network topology of the zebrafish segmentation clock via sequestration of the Hes6 hub. Development 139, 940–947 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shankaran, S. S. et al. Completing the set of h/E(spl) cyclic genes in zebrafish: her12 and her15 reveal novel modes of expression and contribute to the segmentation clock. Dev. Biol. 304, 615–632 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Gajewski, M., Elmasri, H., Girschick, M., Sieger, D. & Winkler, C. Comparative analysis of her genes during fish somitogenesis suggests a mouse/chick-like mode of oscillation in medaka. Dev. Genes Evol. 216, 315–332 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Barrantes, I. B. et al. Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse. Curr. Biol. 9, 470–480 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Takahashi, Y., Inoue, T., Gossler, A. & Saga, Y. Feedback loops comprising Dll1, Dll3 and Mesp2, and differential involvement of Psen1 are essential for rostrocaudal patterning of somites. Development 130, 4259–4268 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Yasuhiko, Y. et al. Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression. Proc. Natl Acad. Sci. USA 103, 3651–3656 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Durbin, L. et al. Anteroposterior patterning is required within segments for somite boundary formation in developing zebrafish. Development 127, 1703–1713 (2000).

    CAS  PubMed  Google Scholar 

  88. Sawada, A. et al. Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites. Development 127, 1691–1702 (2000).

    CAS  PubMed  Google Scholar 

  89. Delfini, M. C., Dubrulle, J., Malapert, P., Chal, J. & Pourquie, O. Control of the segmentation process by graded MAPK/ERK activation in the chick embryo. Proc. Natl Acad. Sci. USA 102, 11343–11348 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Bajard, L. et al. Wnt-regulated dynamics of positional information in zebrafish somitogenesis. Development 141, 1381–1391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Akiyama, R., Masuda, M., Tsuge, S., Bessho, Y. & Matsui, T. An anterior limit of FGF/Erk signal activity marks the earliest future somite boundary in zebrafish. Development 141, 1104–1109 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Elsdale, T., Pearson, M. & Whitehead, M. Abnormalities in somite segmentation following heat shock to Xenopus embryos. J. Embryol. Exp. Morphol. 35, 625–635 (1976).

    CAS  PubMed  Google Scholar 

  93. Primmett, D. R., Norris, W. E., Carlson, G. J., Keynes, R. J. & Stern, C. D. Periodic segmental anomalies induced by heat shock in the chick embryo are associated with the cell cycle. Development. 105, 119–130 (1989).

    CAS  PubMed  Google Scholar 

  94. Rossant, J., Zirngibl, R., Cado, D., Shago, M. & Giguere, V. Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev. 5, 1333–1344 (1991).

    Article  CAS  PubMed  Google Scholar 

  95. Shimozono, S., Iimura, T., Kitaguchi, T., Higashijima, S. & Miyawaki, A. Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 496, 363–366 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Niederreither, K., McCaffery, P., Drager, U. C., Chambon, P. & Dolle, P. Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech. Dev. 62, 67–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Sakai, Y. et al. The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev. 15, 213–225 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Niederreither, K. et al. Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development. Nature Genet. 31, 84–88 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Diez del Corral, R. et al. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40, 65–79 (2003). The first report to show that the anterior retinoic acid gradient in the PSM antagonizes the FGF gradient to position the determination front.

    Article  CAS  PubMed  Google Scholar 

  100. Moreno, T. A. & Kintner, C. Regulation of segmental patterning by retinoic acid signaling during Xenopus somitogenesis. Dev. Cell 6, 205–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Kawakami, Y., Raya, A., Raya, R. M., Rodriguez-Esteban, C. & Belmonte, J. C. Retinoic acid signalling links left-right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature 435, 165–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Niederreither, K., Subbarayan, V., Dolle, P. & Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nature Genet. 21, 444–448 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Echeverri, K. & Oates, A. C. Coordination of symmetric cyclic gene expression during somitogenesis by Suppressor of Hairless involves regulation of retinoic acid catabolism. Dev. Biol. 301, 388–403 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Vilhais-Neto, G. C. et al. Rere controls retinoic acid signalling and somite bilateral symmetry. Nature 463, 953–957 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Hornstein, E. & Tabin, C. J. Developmental biology: asymmetrical threat averted. Nature 435, 155–156 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Brent, A. E. Somite formation: where left meets right. Curr. Biol. 15, R468–470 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Baker, R. E., Schnell, S. & Maini, P. K. A clock and wavefront mechanism for somite formation. Dev. Biol. 293, 116–126 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Goldbeter, A., Gonze, D. & Pourquie, O. Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling. Dev. Dyn. 236, 1495–1508 (2007). Introduces bi-stability as a means to synchronize the response to the segmentation clock.

    Article  CAS  PubMed  Google Scholar 

  109. Oginuma, M. et al. The oscillation of Notch activation, but not its boundary, is required for somite border formation and rostral-caudal patterning within a somite. Development 137, 1515–1522 (2010). Shows how the travelling wave of Notch activation can control both segment determination and anteroposterior patterning of the somite.

    Article  CAS  PubMed  Google Scholar 

  110. Meinhardt, H. Models of biological pattern formation (Academic Press, 1982).

    Google Scholar 

  111. Kaern, M., Menzinger, M. & Hunding, A. Segmentation and somitogenesis derived from phase dynamics in growing oscillatory media. J. Theor. Biol. 207, 473–493 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Jaeger, J. & Goodwin, B. C. A cellular oscillator model for periodic pattern formation. J. Theor. Biol. 213, 171–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Morelli, L. G. et al. Delayed coupling theory of vertebrate segmentation. HFSP J. 3, 55–66 (2009). Theoretical description of the clock-and-wavefront model in zebrafish.

    Article  PubMed  Google Scholar 

  114. Meinhardt, H. in Somites in Developing Embryos (eds Bellairs, R., Ede, D. A. & Lash, J. W.) 179–191 (Plenum Press, 1986).

    Book  Google Scholar 

  115. Nomura-Kitabayashi, A. et al. Hypomorphic Mesp allele distinguishes establishment of rostrocaudal polarity and segment border formation in somitogenesis. Development 129, 2473–2481 (2002).

    CAS  PubMed  Google Scholar 

  116. Francois, P. & Siggia, E. D. Phenotypic models of evolution and development: geometry as destiny. Curr. Opin. Genet. Dev. 22, 627–633 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kawamura, A. et al. Groucho-associated transcriptional repressor ripply1 is required for proper transition from the presomitic mesoderm to somites. Dev. Cell 9, 735–744 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Morimoto, M. et al. The negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite. Development 134, 1561–1569 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Takahashi, J. et al. Analysis of Ripply1/2-deficient mouse embryos reveals a mechanism underlying the rostro-caudal patterning within a somite. Dev. Biol. 342, 134–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Sasaki, N., Kiso, M., Kitagawa, M. & Saga, Y. The repression of Notch signaling occurs via the destabilization of mastermind-like 1 by Mesp2 and is essential for somitogenesis. Development 138, 55–64 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Jiang, Y. J. et al. Notch signalling and the synchronization of the somite segmentation clock. Nature 408, 475–479 (2000). First proposed the role of Notch signalling in the control of the synchronization of oscillations among nearby cells.

    Article  CAS  PubMed  Google Scholar 

  122. Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S. & Takeda, H. Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441, 719–723 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Mara, A. & Holley, S. A. Oscillators and the emergence of tissue organization during zebrafish somitogenesis. Trends Cell Biol. 17, 593–599 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Delaune, E. A., Francois, P., Shih, N. P. & Amacher, S. L. Single-cell-resolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics. Dev. Cell 23, 995–1005 (2012). Describes the first fluorescent report for clock oscillations in zebrafish and its use to demonstrate the role of Notch in the synchronization of oscillations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Riedel-Kruse, I. H., Muller, C. & Oates, A. C. Synchrony dynamics during initiation, failure, and rescue of the segmentation clock. Science 317, 1911–1915 (2007). Provides a theoretical and experimental framework testing the role of Notch signalling in the control of oscillations.

    Article  CAS  PubMed  Google Scholar 

  126. Ozbudak, E. M. & Lewis, J. Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries. PLoS Genet. 4, e15 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Uriu, K., Morishita, Y. & Iwasa, Y. Random cell movement promotes synchronization of the segmentation clock. Proc. Natl Acad. Sci. USA 107, 4979–4984 (2010).

    Article  PubMed  Google Scholar 

  128. Okubo, Y. et al. Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of Notch signalling. Nature Commun. 3, 1141 (2012).

    Article  CAS  Google Scholar 

  129. Donoviel, D. B. et al. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 13, 2801–2810 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Masamizu, Y. et al. Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc. Natl Acad. Sci. USA 103, 1313–1318 (2006). Describes the first reporter that allows visualization of the segmentation oscillations using luciferase detection in the mouse embryo.

    Article  CAS  PubMed  Google Scholar 

  131. Maroto, M., Dale, J. K., Dequeant, M. L., Petit, A. C. & Pourquie, O. Synchronised cycling gene oscillations in presomitic mesoderm cells require cell-cell contact. Int. J. Dev. Biol. 49, 309–315 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Herrgen, L. et al. Intercellular coupling regulates the period of the segmentation clock. Curr. Biol. 20, 1244–1253 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Soza-Ried, C., Ozturk, E., Ish-Horowicz, D. & Lewis, J. Pulses of Notch activation synchronise oscillating somite cells and entrain the zebrafish segmentation clock. Development 141, 1780–1788 (2014). Demonstrates that pulses of Notch signalling can resynchronize the clock in zebrafish Notch mutants.

    Article  CAS  PubMed  Google Scholar 

  134. Kim, W. et al. The period of the somite segmentation clock is sensitive to Notch activity. Mol. Biol. Cell 22, 3541–3549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Soroldoni, D. et al. Genetic oscillations. A Doppler effect in embryonic pattern formation. Science 345, 222–225 (2014). By using a fluorescent reporter to visualize clock oscillations, these authors identified a difference in clock period between posterior and anterior PSM that can be explained by a Doppler effect.

    Article  CAS  PubMed  Google Scholar 

  136. Gomez, C. et al. Control of segment number in vertebrate embryos. Nature 454, 335–339 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Kawamura, A. et al. Zebrafish hairy/enhancer of split protein links FGF signaling to cyclic gene expression in the periodic segmentation of somites. Genes Dev. 19, 1156–1161 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Oates, A. C., Morelli, L. G. & Ares, S. Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139, 625–639 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Dale, J. K. et al. Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis. Dev. Cell 10, 355–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Lauschke, V. M., Tsiairis, C. D., Francois, P. & Aulehla, A. Scaling of embryonic patterning based on phase-gradient encoding. Nature 493, 101–105 (2012). Describes an in vitro system recapitulating clock oscillations in two dimensions in which the size of the newly formed segments scales with the phase gradient of the travelling waves.

    Article  CAS  PubMed  Google Scholar 

  141. Sonnen, K. F. & Aulehla, A. Dynamic signal encoding-From cells to organisms. Semin. Cell Dev. Biol. 34C, 91–98 (2014).

    Article  Google Scholar 

  142. Sarrazin, A. F., Peel, A. D. & Averof, M. A segmentation clock with two-segment periodicity in insects. Science 336, 338–341 (2012). The first demonstration of the existence of a segmentation-clock-like oscillator in an invertebrate, thus raising the possibility that such a mechanism was already acting in Urbilateria.

    Article  CAS  PubMed  Google Scholar 

  143. Pueyo, J. I., Lanfear, R. & Couso, J. P. Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc. Natl Acad. Sci. USA 105, 16614–16619 (2008).

    Article  PubMed  Google Scholar 

  144. Martin, B. L. & Kimelman, D. Wnt signaling and the evolution of embryonic posterior development. Curr. Biol. 19, R215–R219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chesebro, J. E., Pueyo, J. I. & Couso, J. P. Interplay between a Wnt-dependent organiser and the Notch segmentation clock regulates posterior development in Periplaneta americana. Biol. Open 2, 227–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. De Robertis, E. M. The molecular ancestry of segmentation mechanisms. Proc. Natl Acad. Sci. USA 105, 16411–16412 (2008).

    Article  PubMed  Google Scholar 

  147. Moreno-Risueno, M. A. et al. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329, 1306–1311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Richmond, D. L. & Oates, A. C. The segmentation clock: inherited trait or universal design principle? Curr. Opin. Genet. Dev. 22, 600–606 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Ozbudak, E. M., Tassy, O. & Pourquie, O. Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation. Proc. Natl Acad. Sci. USA 107, 4224–4229 (2010). Identifies a compartmentalization of metabolic gene expression between the anterior and posterior PSM.

    Article  CAS  PubMed  Google Scholar 

  150. Sparrow, D. B. et al. A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell 149, 295–306 (2012). Demonstrates a striking effect of hypoxia on the control of oscillations, leading to segmental patterning defects.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Pourquié laboratory and the referees for comments on the manuscript. A.H. is the recipient of a fellowship from the French Ministry of Higher Education and Research. Research in the Pourquié laboratory is funded by grants of the European Research Council (ERC), the French Muscular Dystrophy Association (AFM), the Human Frontier Science Program (HFSP) and the French National Agency for Research (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pourquié.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Paraxial mesoderm

The mesoderm that flanks the neural tube in the embryo and that gives rise to the skeletal muscles and axial skeleton.

Marginal zone

The superficial region of the embryo that contains the precursors of the mesoderm before they ingress during gastrulation.

Primitive streak

The region where cells of the epiblast ingress into the embryo to form the mesoderm during gastrulation.

Presomitic mesoderm

(PSM). The most posterior unsegmented region of the paraxial mesoderm, where the segmentation-clock oscillations take place.

Phase of the oscillator

The position of an oscillator during its cycle, similar to the position of a hand on a watch. After one period, the oscillator returns to its initial phase.

Determination front

The level of the presomitic mesoderm where cells first acquire a defined segmental identity.

Urbilateria

The common ancestor of bilaterian animals.

Nodal signalling

A pathway downstream of the transforming growth factor-β-like growth factor Nodal that helps to control the asymmetrical development of internal organs such as the heart and liver.

Hypomorphic mutants

Mutants showing a weaker phenotype than null mutants.

Synchronization

Oscillators are synchronized when they have similar phases (that is, they are 'in phase'). Synchronization can change the oscillation period.

Coupling strength

The strength of the interaction involved in synchronizing oscillators between cells.

Travelling waves

Also known as kinematic waves. Waves without matter transport or transmission of a signal.

Doppler effect

The change of wavelength caused by the displacement of the source.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubaud, A., Pourquié, O. Signalling dynamics in vertebrate segmentation. Nat Rev Mol Cell Biol 15, 709–721 (2014). https://doi.org/10.1038/nrm3891

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing