Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Histone core modifications regulating nucleosome structure and dynamics

Subjects

Abstract

Post-translational modifications of histones regulate all DNA-templated processes, including replication, transcription and repair. These modifications function as platforms for the recruitment of specific effector proteins, such as transcriptional regulators or chromatin remodellers. Recent data suggest that histone modifications also have a direct effect on nucleosomal architecture. Acetylation, methylation, phosphorylation and citrullination of the histone core may influence chromatin structure by affecting histone–histone and histone–DNA interactions, as well as the binding of histones to chaperones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural insights into residues involved in modification-induced nucleosome stability.
Figure 2: Potential effects of histone modifications on histone–DNA and histone–histone interactions.
Figure 3: Histone methylation affects chaperone binding.

Similar content being viewed by others

References

  1. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D. & Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nature Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  Google Scholar 

  3. Musselman, C. A., Lalonde, M.-E., Côté, J. & Kutateladze, T. G. Perceiving the epigenetic landscape through histone readers. Nature Struct. Mol. Biol. 19, 1218–1227 (2012).

    Article  CAS  Google Scholar 

  4. Xu, F., Zhang, K. & Grunstein, M. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121, 375–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Ozdemir, A. Characterization of lysine 56 of histone H3 as an acetylation site in Saccharomyces cerevisiae. J. Biol. Chem. 280, 25949–25952 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Masumoto, H., Hawke, D., Kobayashi, R. & Verreault, A. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436, 294–298 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Hyland, E. M. et al. Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol. Cell. Biol. 25, 10060–10070 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu, F., Zhang, Q., Zhang, K., Xie, W. & Grunstein, M. Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast. Mol. Cell 27, 890–900 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iwasaki, W. et al. Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains. Biochemistry 50, 7822–7832 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Neumann, H. et al. A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol. Cell 36, 153–163 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Watanabe, S. et al. Structural characterization of H3K56Q nucleosomes and nucleosomal arrays. Biochim. Biophys. Acta 1799, 480–486 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simon, M. et al. Histone fold modifications control nucleosome unwrapping and disassembly. Proc. Natl Acad. Sci. USA 108, 12711–12716 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Casadio, F., Lu, X., Pollock, S. B. & LeRoy, G. H3R42me2a is a histone modification with positive transcriptional effects. Proc. Natl Acad. Sci. USA 110, 14894–14899 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hyland, E. M. et al. An evolutionarily 'young' lysine residue in histone H3 attenuates transcriptional output in Saccharomyces cerevisiae. Genes Dev. 25, 1306–1319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferreira, H., Somers, J., Webster, R., Flaus, A. & Owen-Hughes, T. Histone tails and the H3 αN helix regulate nucleosome mobility and stability. Mol. Cell. Biol. 27, 4037–4048 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Somers, J. & Owen-Hughes, T. Mutations to the histone H3 α N region selectively alter the outcome of ATP-dependent nucleosome-remodelling reactions. Nucleic Acids Res. 37, 2504–2513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hall, M. A. et al. High-resolution dynamic mapping of histone–DNA interactions in a nucleosome. Nature Struct. Mol. Biol. 16, 124–129 (2009).

    Article  CAS  Google Scholar 

  19. Hainer, S. J. & Martens, J. A. Identification of histone mutants that are defective for transcription-coupled nucleosome occupancy. Mol. Cell. Biol. 31, 3557–3568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tropberger, P. et al. Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 152, 859–872 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Di Cerbo, V. et al. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. eLife 3, e01632 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Daujat, S. et al. H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming. Nature Struct. Mol. Biol. 16, 777–781 (2009).

    Article  CAS  Google Scholar 

  23. Yu, Y. et al. Histone H3 lysine 56 methylation regulates DNA replication through its interaction with PCNA. Mol. Cell 46, 7–17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, L., Eugeni, E. E., Parthun, M. R. & Freitas, M. A. Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 112, 77–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. North, J. A. et al. Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling. Nucleic Acids Res. 39, 6465–6474 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kruger, W. et al. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 9, 2770–2779 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. North, J. A. et al. Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure. Nucleic Acids Res. 42, 4922–4933 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Christophorou, M. A. et al. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 507, 104–108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brown, D. T., Izard, T. & Misteli, T. Mapping the interaction surface of linker histone H10 with the nucleosome of native chromatin in vivo. Nature Struct. Mol. Biol. 13, 250–255 (2006).

    Article  CAS  Google Scholar 

  31. Lu, X. et al. The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nature Struct. Mol. Biol. 15, 1122–1124 (2008).

    Article  CAS  Google Scholar 

  32. Ng, H. H. et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16, 1518–1527 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schübeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vakoc, C. R., Sachdeva, M. M., Wang, H. & Blobel, G. A. Profile of histone lysine methylation across transcribed mammalian chromatin. Mol. Cell. Biol. 26, 9185–9195 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Steger, D. J. et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol. Cell. Biol. 28, 2825–2839 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ye, J. et al. Histone H4 lysine 91 acetylation. Mol. Cell 18, 123–130 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Verreault, A., Kaufman, P. D., Kobayashi, R. & Stillman, B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95–104 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Li, Q. et al. Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134, 244–255 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Winkler, D. D., Zhou, H., Dar, M. A., Zhang, Z. & Luger, K. Yeast CAF-1 assembles histone (H3-H4)2 tetramers prior to DNA deposition. Nucleic Acids Res. 40, 10139–10149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang, S. et al. Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proc. Natl Acad. Sci. USA 102, 13410–13415 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Su, D. et al. Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106. Nature 483, 104–107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zunder, R. M., Antczak, A. J., Berger, J. M. & Rine, J. Two surfaces on the histone chaperone Rtt106 mediate histone binding, replication, and silencing. Proc. Natl Acad. Sci. USA 109, E144–E153 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Bowman, A., Ward, R., El-Mkami, H., Owen-Hughes, T. & Norman, D. G. Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling. Nucleic Acids Res. 38, 695–707 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. English, C. M., Adkins, M. W., Carson, J. J., Churchill, M. E. A. & Tyler, J. K. Structural basis for the histone chaperone activity of Asf1. Cell 127, 495–508 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tessarz, P. et al. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature 505, 564–568 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. VanDemark, A. P. et al. Structural and functional analysis of the Spt16p N-terminal domain reveals overlapping roles of yFACT subunits. J. Biol. Chem. 283, 5058–5068 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. McCullough, L. et al. Insight into the mechanism of nucleosome reorganization from histone mutants that suppress defects in the FACT histone chaperone. Genetics 188, 835–846 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Formosa, T. The role of FACT in making and breaking nucleosomes. Biochim. Biophys. Acta 1819, 247–255 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Suto, R. K., Clarkson, M. J., Tremethick, D. J. & Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nature Struct. Biol. 7, 1121–1124 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Wittner, M. et al. Establishment and maintenance of alternative chromatin states at a multicopy gene locus. Cell 145, 543–554 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Fierz, B. & Muir, T. W. Chromatin as an expansive canvas for chemical biology. Nature Chem. Biol. 8, 417–427 (2012).

    Article  CAS  Google Scholar 

  52. Natsume, R. et al. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446, 338–341 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Andrews, A. J., Chen, X., Zevin, A., Stargell, L. A. & Luger, K. The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions. Mol. Cell 37, 834–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Koning, L., Corpet, A., Haber, J. E. & Almouzni, G. Histone chaperones: an escort network regulating histone traffic. Nature Struct. Mol. Biol. 14, 997–1007 (2007).

    Article  CAS  Google Scholar 

  55. Winston, F. Control of eukaryotic transcription elongation. Genome Biol. 2, reviews1006 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hondele, M. et al. Structural basis of histone H2A-H2B recognition by the essential chaperone FACT. Nature 499, 111–114 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Flaus, A. & Owen-Hughes, T. Mechanisms for ATP-dependent chromatin remodelling. Curr. Opin. Genet. Dev. 11, 148–154 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Hondele, M. & Ladurner, A. G. The chaperone–histone partnership: for the greater good of histone traffic and chromatin plasticity. Curr. Opin. Struct. Biol. 21, 698–708 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Jin, C. et al. H3.3/H2A. Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nature Genet. 41, 941–945 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Garcia, H. et al. Facilitates chromatin transcription complex is an 'accelerator' of tumor transformation and potential marker and target of aggressive cancers. CellRep. 4, 159–173 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize to their colleagues whose work could not be cited owing to space constraints. Work in the authors' laboratories was funded by a programme grant from Cancer Research UK (to T.K.), the Biotechnology and Biological Sciences Research Council (BB/K017438/1) (to P.T. and T.K.) and the Max Planck Society to (P.T.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Tessarz or Tony Kouzarides.

Ethics declarations

Competing interests

T.K. is a founder of Abcam Ltd. P.T. declares no competing interests.

Supplementary information

Supplementary information S1 (table)

Overview of histone core-modifications (PDF 208 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tessarz, P., Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 15, 703–708 (2014). https://doi.org/10.1038/nrm3890

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3890

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing