Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cellular senescence: from physiology to pathology

Key Points

  • Cellular senescence is a process that is mainly designed to eliminate unwanted cells by inducing tissue remodelling.

  • In general, cellular senescence promotes tissue remodelling through three sequential processes: a stable proliferative arrest; a secretory phenotype (SASP) that recruits immune cells and modifies the extracellular matrix; and the mobilization of nearby progenitors that repopulate the tissue. We refer to this sequence of events as the senescence–clearance–regeneration model.

  • During normal embryonic development, cellular senescence contributes to tissue remodelling and morphogenesis by the elimination of transient structures and by regulating the relative abundance of different cell populations.

  • Senescence is also activated upon cellular damage as a defence mechanism. In the case of oncogenic damage, senescence limits tumour progression. Following tissue damage, senescence coordinates tissue remodelling, thereby participating in multiple pathologies, including fibrotic diseases, vascular disorders, obesity, type 2 diabetes, renal diseases and sarcopenia.

  • In these pathologies, cellular senescence usually has antagonistic roles. Initially, it functions to limit the fibrotic response (by inducing senescence in the damaged cells and in the activated fibroblasts), and it also triggers an immune response that clears the damaged cells. However, at advanced pathological stages, senescent cells are not efficiently removed but accumulate and contribute to aggravate the pathological manifestations.

  • Both pro-senescent and antisenescent approaches can be desirable depending on the therapeutic context. Pro-senescent therapies can be useful for cancer treatment and for ongoing tissue repair processes, whereas antisenescent therapies can be beneficial to eliminate the burden of senescent cells associated with stabilized fibrotic scars that accumulate during ageing or chronic damage.

  • Proof of principle for pro-senescent and antisenescent therapies is discussed.

Abstract

Recent discoveries are redefining our view of cellular senescence as a trigger of tissue remodelling that acts during normal embryonic development and upon tissue damage. To achieve this, senescent cells arrest their own proliferation, recruit phagocytic immune cells and promote tissue renewal. This sequence of events — senescence, followed by clearance and then regeneration — may not be efficiently completed in aged tissues or in pathological contexts, thereby resulting in the accumulation of senescent cells. Increasing evidence indicates that both pro-senescent therapies and antisenescent therapies can be beneficial. In cancer and during active tissue repair, pro-senescent therapies contribute to minimize the damage by limiting proliferation and fibrosis, respectively. Conversely, antisenescent therapies may help to eliminate accumulated senescent cells and to recover tissue function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Molecular pathways of senescence.
Figure 2: Location of senescence in development and in adult diseases.
Figure 3: Unified model of senescence.

References

  1. 1

    Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    Campisi, J. & d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nature Rev. Mol. Cell Biol. 8, 729–740 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Collado, M. & Serrano, M. Senescence in tumours: evidence from mice and humans. Nature Rev. Cancer 10, 51–57 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Gorgoulis, V. G. & Halazonetis, T. D. Oncogene-induced senescence: the bright and dark side of the response. Curr. Opin. Cell Biol. 22, 816–827 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes Dev. 24, 2463–2479 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Salama, R., Sadaie, M., Hoare, M. & Narita, M. Cellular senescence and its effector programs. Genes Dev. 28, 99–114 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Chicas, A. et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 17, 376–387 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19, 107–120 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Parrinello, S. et al. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nature Cell Biol. 5, 741–747 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Passos, J. F. et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 6, 347 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14

    Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nature Cell Biol. 14, 355–365 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Kim, W. Y. & Sharpless, N. E. The regulation of INK4/ARF in cancer and aging. Cell 127, 265–275 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Gil, J. & Peters, G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nature Rev. Mol. Cell Biol. 7, 667–677 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Velimezi, G. et al. Functional interplay between the DNA-damage-response kinase ATM and ARF tumour suppressor protein in human cancer. Nature Cell Biol. 15, 967–977 (2013).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Evangelou, K. et al. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis. Cell Death Differ. 20, 1485–1497 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Passos, J. F., Simillion, C., Hallinan, J., Wipat, A. & von Zglinicki, T. Cellular senescence: unravelling complexity. Age 31, 353–363 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Debacq-Chainiaux, F., Boilan, E., Dedessus Le Moutier, J., Weemaels, G. & Toussaint, O. p38(MAPK) in the senescence of human and murine fibroblasts. Adv. Exp. Med. Biol. 694, 126–137 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Chen, Q., Fischer, A., Reagan, J. D., Yan, L. J. & Ames, B. N. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc. Natl Acad. Sci. USA 92, 4337–4341 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25

    Lee, A. C. et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 274, 7936–7940 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Macip, S. et al. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 21, 2180–2188 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Sun, P. et al. PRAK is essential for ras-induced senescence and tumor suppression. Cell 128, 295–308 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Alimonti, A. et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J. Clin. Invest. 120, 681–693 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Courtois-Cox, S. et al. A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10, 459–472 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Young, A. P. et al. VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nature Cell Biol. 10, 361–369 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Efeyan, A. & Serrano, M. p53: guardian of the genome and policeman of the oncogenes. Cell Cycle 6, 1006–1010 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Evan, G. I. & d'Adda di Fagagna, F. Cellular senescence: hot or what? Curr. Opin. Genet. Dev. 19, 25–31 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Kuilman, T. & Peeper, D. S. Senescence-messaging secretome: SMS-ing cellular stress. Nature Rev. Cancer 9, 81–94 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Hoenicke, L. & Zender, L. Immune surveillance of senescent cells—biological significance in cancer- and non-cancer pathologies. Carcinogenesis 33, 1123–1126 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biol. 15, 978–990 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Nelson, G. et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11, 345–349 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Hubackova, S., Krejcikova, K., Bartek, J. & Hodny, Z. IL1- and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine 'bystander senescence'. Aging 4, 932–951 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49

    Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013). References 48 and 49 report for the first time that senescence is a biological process during embryogenesis, which participates in morphogenesis and tissue remodelling.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50

    Nacher, V. et al. The quail mesonephros: a new model for renal senescence? J. Vasc. Res. 43, 581–586 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  51. 51

    Huang, T. & Rivera-Perez, J. A. Senescence-associated beta-galactosidase activity marks the visceral endoderm of mouse embryos but is not indicative of senescence. Genesis 52, 300–308 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Fuchs, Y. & Steller, H. Programmed cell death in animal development and disease. Cell 147, 742–758 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Ren, D. et al. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330, 1390–1393 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56

    Besancenot, R. et al. A senescence-like cell-cycle arrest occurs during megakaryocytic maturation: implications for physiological and pathological megakaryocytic proliferation. PLoS Biol. 8, e1000476 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57

    Chuprin, A. et al. Cell fusion induced by ERVWE1 or measles virus causes cellular senescence. Genes Dev. 27, 2356–2366 (2013). Shows, together with reference 56, that senescence occurs in physiological processes in adult organisms, particularly, in megakaryocytes and in placental syncytiotrophoblasts. Suggests that senescence could be a general outcome of polyploidization.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Ullah, Z., Lee, C. Y., Lilly, M. A. & DePamphilis, M. L. Developmentally programmed endoreduplication in animals. Cell Cycle 8, 1501–1509 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Kopp, H. G., Hooper, A. T., Shmelkov, S. V. & Rafii, S. β-galactosidase staining on bone marrow. The osteoclast pitfall. Histol. Histopathol. 22, 971–976 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Michaud, K. et al. Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res. 70, 3228–3238 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Thangavel, C. et al. Therapeutically activating RB: reestablishing cell cycle control in endocrine therapy-resistant breast cancer. Endocr. Relat. Cancer 18, 333–345 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Rader, J. et al. Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin. Cancer Res. 19, 6173–6182 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64

    Leonard, J. P. et al. Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood 119, 4597–4607 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65

    Guha, M. Blockbuster dreams for Pfizer's CDK inhibitor. Nature Biotech. 31, 187 (2013).

    CAS  Article  Google Scholar 

  66. 66

    Dickson, M. A. et al. Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J. Clin. Oncol. 31, 2024–2028 (2013). Demonstrates, together with references 64 and 65, clinical activity of pro-senescent chemotherapy against various cancers.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Sun, Y. et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nature Med. 18, 1359–1368 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68

    Wiemann, S. U. et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 16, 935–942 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69

    Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008). Demonstrates, for the first time, the role of senescence in limiting a fibrotic disease, in this case, chemically-induced liver fibrosis.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70

    Borkham-Kamphorst, E. et al. The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-beta signaling. Biochim. Biophys. Acta 1843, 902–914 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71

    Kim, K. H., Chen, C. C., Monzon, R. I. & Lau, L. F. Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol. Cell. Biol. 33, 2078–2090 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72

    Wolstein, J. M. et al. INK4a knockout mice exhibit increased fibrosis under normal conditions and in response to unilateral ureteral obstruction. Am. J. Physiol. Renal Physiol. 299, F1486–1495 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73

    Ramakrishna, G. et al. Role of cellular senescence in hepatic wound healing and carcinogenesis. Eur. J. Cell Biol. 91, 739–747 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Kong, X. et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology 56, 1150–1159 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Klein, S. et al. Atorvastatin inhibits proliferation and apoptosis, but induces senescence in hepatic myofibroblasts and thereby attenuates hepatic fibrosis in rats. Lab Invest. 92, 1440–1450 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76

    Jun, J. I. & Lau, L. F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nature Cell Biol. 12, 676–685 (2010). Demonstrates, in an elegant and compelling manner, the role of senescence in limiting fibrosis in skin wound healing. Shows the pivotal role of CCN1 in converting wound-activated fibroblasts into senescent fibroblasts.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77

    Jun, J. I. & Lau, L. F. Cellular senescence controls fibrosis in wound healing. Aging 2, 627–631 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Pitiyage, G. N. et al. Senescent mesenchymal cells accumulate in human fibrosis by a telomere-independent mechanism and ameliorate fibrosis through matrix metalloproteinases. J. Pathol. 223, 604–617 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  79. 79

    Naesens, M. Replicative senescence in kidney aging, renal disease, and renal transplantation. Discov. Med. 11, 65–75 (2011).

    PubMed  PubMed Central  Google Scholar 

  80. 80

    Joosten, S. A. et al. Telomere shortening and cellular senescence in a model of chronic renal allograft rejection. Am. J. Pathol. 162, 1305–1312 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    Melk, A. Senescence of renal cells: molecular basis and clinical implications. Nephrol. Dial Transplant 18, 2474–2478 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82

    Ding, G. et al. Tubular cell senescence and expression of TGF-β1 and p21(WAF1/CIP1) in tubulointerstitial fibrosis of aging rats. Exp. Mol. Pathol. 70, 43–53 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83

    Liu, J. et al. Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy. Transl. Res. 159, 454–463 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84

    Verzola, D. et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol. 295, F1563–1573 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85

    Westhoff, J. H. et al. Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16INK4a. Hypertension 52, 123–129 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86

    Clements, M. E., Chaber, C. J., Ledbetter, S. R. & Zuk, A. Increased cellular senescence and vascular rarefaction exacerbate the progression of kidney fibrosis in aged mice following transient ischemic injury. PLoS ONE 8, e70464 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Dirocco, D. et al. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury. Am. J. Physiol. Renal Physiol. 306, F379–388 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 88

    Braun, H. et al. Cellular senescence limits regenerative capacity and allograft survival. J. Am. Soc. Nephrol. 23, 1467–1473 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Zhu, F. et al. Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS ONE 8, e74535 (2013). Demonstrates the role of senescence in limiting cardiac fibrosis after myocardial infarction and the detrimental effect of loss of p53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90

    Erusalimsky, J. D. Vascular endothelial senescence: from mechanisms to pathophysiology. J. Appl. Physiol. 106, 326–332 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91

    Fyhrquist, F., Saijonmaa, O. & Strandberg, T. The roles of senescence and telomere shortening in cardiovascular disease. Nature Rev. Cardiol 10, 274–283 (2013).

    CAS  Article  Google Scholar 

  92. 92

    Wang, J. C. & Bennett, M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ. Res. 111, 245–259 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93

    Minamino, T. et al. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105, 1541–1544 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94

    Holdt, L. M. et al. Expression of Chr9p21 genes CDKN2B (p15INK4b), CDKN2A (p16INK4a, 14ARF) and MTAP in human atherosclerotic plaque. Atherosclerosis 214, 264–270 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95

    Ihling, C. et al. Topographical association between the cyclin-dependent kinases inhibitor P21, p53 accumulation, and cellular proliferation in human atherosclerotic tissue. Arterioscler Thromb. Vasc. Biol. 17, 2218–2224 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96

    Gonzalez-Navarro, H. et al. p19ARF deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis. J. Am. Coll. Cardiol 55, 2258–2268 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97

    Mercer, J., Figg, N., Stoneman, V., Braganza, D. & Bennett, M. R. Endogenous p53 protects vascular smooth muscle cells from apoptosis and reduces atherosclerosis in ApoE knockout mice. Circ. Res. 96, 667–674 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98

    Mercer, J. & Bennett, M. The role of p53 in atherosclerosis. Cell Cycle 5, 1907–1909 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Khanna, A. K. Enhanced susceptibility of cyclin kinase inhibitor p21 knockout mice to high fat diet induced atherosclerosis. J. Biomed. Sci. 16, 66 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100

    Diez-Juan, A. & Andres, V. The growth suppressor p27Kip1 protects against diet-induced atherosclerosis. FASEB J. 15, 1989–1995 (2001).

    CAS  PubMed  Article  Google Scholar 

  101. 101

    Sanz-Gonzalez, S. M. et al. Increased p53 gene dosage reduces neointimal thickening induced by mechanical injury but has no effect on native atherosclerosis. Cardiovasc. Res. 75, 803–812 (2007).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    Hayashi, T. et al. Endothelial cellular senescence is inhibited by liver X receptor activation with an additional mechanism for its atheroprotection in diabetes. Proc. Natl Acad. Sci. USA 111, 1168–1173 (2014).

    CAS  PubMed  Article  Google Scholar 

  103. 103

    Sharpless, N. E. & DePinho, R. A. How stem cells age and why this makes us grow old. Nature Rev. Mol. Cell Biol. 8, 703–713 (2007).

    CAS  Article  Google Scholar 

  104. 104

    Jeck, W. R., Siebold, A. P. & Sharpless, N. E. Review: a meta-analysis of GWAS and age-associated diseases. Aging Cell 11, 727–731 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105

    Liu, Y. et al. INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS ONE 4, e5027 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  106. 106

    Visel, A. et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464, 409–412 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107

    Kuo, C. L. et al. Cdkn2a is an atherosclerosis modifier locus that regulates monocyte/macrophage proliferation. Arterioscler Thromb. Vasc. Biol. 31, 2483–2492 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108

    Noureddine, H. et al. Pulmonary artery smooth muscle cell senescence is a pathogenic mechanism for pulmonary hypertension in chronic lung disease. Circ. Res. 109, 543–553 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109

    Mizuno, S. et al. p53 Gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 300, L753–761 (2011).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Mouraret, N. et al. Activation of lung p53 by Nutlin-3a prevents and reverses experimental pulmonary hypertension. Circulation 127, 1664–1676 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111

    Geiger, H., de Haan, G. & Florian, M. C. The ageing haematopoietic stem cell compartment. Nature Rev. Immunol. 13, 376–389 (2013).

    CAS  Article  Google Scholar 

  112. 112

    Alder, J. K. et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc. Natl Acad. Sci. USA 105, 13051–13056 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113

    Armanios, M. Y. et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med. 356, 1317–1326 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114

    Chilosi, M., Carloni, A., Rossi, A. & Poletti, V. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl. Res. 162, 156–173 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115

    Aoshiba, K., Tsuji, T. & Nagai, A. Bleomycin induces cellular senescence in alveolar epithelial cells. Eur. Respir. J. 22, 436–443 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116

    Aoshiba, K. et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp. Toxicol. Pathol. 65, 1053–1062 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117

    Minagawa, S. et al. Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-β-induced senescence of human bronchial epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 300, L391–401 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118

    Hecker, L. et al. Reversal of persistent fibrosis in aging by targeting nox4-nrf2 redox imbalance. Sci. Transl Med. 6, 231ra47 (2014). Shows that senescence aggravates lung fibrosis through a mechanism that involves NOX4-mediated ROS. Reports the proof of principle that chemical inhibitors of NOX4 can revert lung fibrosis in mice.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. 119

    Shivshankar, P. et al. Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice. Am. J. Respir. Cell. Mol. Biol. 47, 28–36 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120

    Lv, X. X. et al. Rupatadine protects against pulmonary fibrosis by attenuating PAF-mediated senescence in rodents. PLoS ONE 8, e68631 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121

    Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122

    Minamino, T. et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nature Med. 15, 1082–1087 (2009). Reports on the role of senescence in the adipose tissue and its detrimental effects on metabolism.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123

    Tchkonia, T. et al. Fat tissue, aging, and cellular senescence. Aging Cell 9, 667–684 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124

    Markowski, D. N. et al. HMGA2 expression in white adipose tissue linking cellular senescence with diabetes. Genes Nutr. 8, 449–456 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125

    Baker, D. J. et al. Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nature Cell Biol. 10, 825–836 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126

    Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011). Demonstrates, for the first time, the beneficial effects of senescent cell removal from a progeroid mouse model.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127

    Donath, M. Y., Dalmas, E., Sauter, N. S. & Boni-Schnetzler, M. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell. Metab. 17, 860–872 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128

    Sone, H. & Kagawa, Y. Pancreatic β cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia 48, 58–67 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129

    Wang, Z., Moro, E., Kovacs, K., Yu, R. & Melmed, S. Pituitary tumor transforming gene-null male mice exhibit impaired pancreatic beta cell proliferation and diabetes. Proc. Natl Acad. Sci. USA 100, 3428–3432 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. 130

    Chesnokova, V. et al. Diminished pancreatic β-cell mass in securin-null mice is caused by β-cell apoptosis and senescence. Endocrinology 150, 2603–2610 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131

    Campaner, S. et al. Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nature Cell Biol. 12, 54–59 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  132. 132

    Tavana, O., Puebla-Osorio, N., Sang, M. & Zhu, C. Absence of p53-dependent apoptosis combined with nonhomologous end-joining deficiency leads to a severe diabetic phenotype in mice. Diabetes 59, 135–142 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133

    Tavana, O. & Zhu, C. Too many breaks (brakes): pancreatic β-cell senescence leads to diabetes. Cell Cycle 10, 2471–2484 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  134. 134

    Doria, A., Patti, M. E. & Kahn, C. R. The emerging genetic architecture of type 2 diabetes. Cell. Metab. 8, 186–200 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135

    Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136

    Gonzalez-Navarro, H. et al. Increased dosage of Ink4/Arf protects against glucose intolerance and insulin resistance associated with aging. Aging Cell 12, 102–111 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. 137

    Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316–321 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138

    Cosgrove, B. D. et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nature Med. 20, 255–264 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. 139

    Du, J. et al. Aging increases CCN1 expression leading to muscle senescence. Am. J. Physiol. Cell Physiol. 306, C28–36 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. 140

    Bernet, J. D. et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nature Med. 20, 265–271 (2014). Shows, together with references 137–139, that muscle stem cells undergo senescence with ageing, and reversal of senescence rescues their regenerative potential.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141

    Iglesias-Bartolome, R. et al. mTOR inhibition prevents epithelial stem cell senescence and protects from radiation-induced mucositis. Cell Stem Cell 11, 401–414 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142

    Wei, H. et al. Changes and function of circulating endothelial progenitor cells in patients with cerebral aneurysm. J. Neurosci. Res. 89, 1822–1828 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143

    Fukazawa, R. et al. Coronary artery aneurysm induced by Kawasaki disease in children show features typical senescence. Circ. J. 71, 709–715 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  144. 144

    Yasuno, K. et al. Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nature Genet. 42, 420–425 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  145. 145

    Golledge, J. & Kuivaniemi, H. Genetics of abdominal aortic aneurysm. Curr. Opin. Cardiol 28, 290–296 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  146. 146

    Liton, P. B. et al. Cellular senescence in the glaucomatous outflow pathway. Exp. Gerontol. 40, 745–748 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. 147

    Ozel, A. B. et al. Genome-wide association study and meta-analysis of intraocular pressure. Hum. Genet. 133, 41–57 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  148. 148

    Ng, S. K., Casson, R. J., Burdon, K. P. & Craig, J. E. Chromosome 9p21 primary open-angle glaucoma susceptibility locus: a review. Clin. Experiment Ophthalmol. 42, 25–32 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  149. 149

    Bhat, R. et al. Astrocyte senescence as a component of Alzheimer's disease. PLoS ONE 7, e45069 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. 150

    Chinta, S. J. et al. Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson's disease? J. Intern. Med. 273, 429–436 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151

    Hamshere, M. L. et al. Genome-wide linkage analysis of 723 affected relative pairs with late-onset Alzheimer's disease. Hum. Mol. Genet. 16, 2703–2712 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  152. 152

    Zuchner, S. et al. Linkage and association study of late-onset Alzheimer disease families linked to 9p21.3. Ann. Hum. Genet. 72, 725–731 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153

    Fischer, B. M. et al. Increased expression of senescence markers in cystic fibrosis airways. Am. J. Physiol. Lung Cell. Mol. Physiol. 304, L394–400 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154

    Sohn, J. J. et al. Macrophages, nitric oxide and microRNAs are associated with DNA damage response pathway and senescence in inflammatory bowel disease. PLoS ONE 7, e44156 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. 155

    Martin, J. A., Brown, T. D., Heiner, A. D. & Buckwalter, J. A. Chondrocyte senescence, joint loading and osteoarthritis. Clin. Orthop. Relat. Res. 427, S96–103 (2004).

    Article  Google Scholar 

  156. 156

    Price, J. S. et al. The role of chondrocyte senescence in osteoarthritis. Aging Cell 1, 57–65 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  157. 157

    Roberts, S., Evans, E. H., Kletsas, D., Jaffray, D. C. & Eisenstein, S. M. Senescence in human intervertebral discs. Eur. Spine J. 15 (Suppl. 3), S312–316 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  158. 158

    Le Maitre, C. L., Freemont, A. J. & Hoyland, J. A. Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res. Ther. 9, R45 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  159. 159

    Mishima, K. et al. Senescence-associated β-galactosidase histochemistry for the primate eye. Invest. Ophthalmol. Vis. Sci. 40, 1590–1593 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Zhu, D., Wu, J., Spee, C., Ryan, S. J. & Hinton, D. R. BMP4 mediates oxidative stress-induced retinal pigment epithelial cell senescence and is overexpressed in age-related macular degeneration. J. Biol. Chem. 284, 9529–9539 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. 161

    Salazar, L. M. & Herrera, A. M. Fibrotic response of tissue remodeling in COPD. Lung 189, 101–109 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  162. 162

    Tsuji, T., Aoshiba, K. & Nagai, A. Cigarette smoke induces senescence in alveolar epithelial cells. Am. J. Respir. Cell. Mol. Biol. 31, 643–649 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  163. 163

    Tsuji, T., Aoshiba, K. & Nagai, A. Alveolar cell senescence exacerbates pulmonary inflammation in patients with chronic obstructive pulmonary disease. Respiration 80, 59–70 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  164. 164

    Fitzner, B. et al. Senescence determines the fate of activated rat pancreatic stellate cells. J. Cell. Mol. Med. 16, 2620–2630 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  165. 165

    Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  166. 166

    Nardella, C., Clohessy, J. G., Alimonti, A. & Pandolfi, P. P. Pro-senescence therapy for cancer treatment. Nature Rev. Cancer 11, 503–511 (2011).

    CAS  Article  Google Scholar 

  167. 167

    Collado, M. & Serrano, M. The power and the promise of oncogene-induced senescence markers. Nature Rev. Cancer 6, 472–476 (2006).

    CAS  Article  Google Scholar 

  168. 168

    Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  169. 169

    Kurz, D. J., Decary, S., Hong, Y. & Erusalimsky, J. D. Senescence-associated β-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci. 113, 3613–3622 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Young, A. R. et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 23, 798–803 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  171. 171

    Georgakopoulou, E. A. et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging 5, 37–50 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  172. 172

    Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  173. 173

    Zhang, R. et al. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev. Cell 8, 19–30 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  174. 174

    Di Micco, R. et al. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nature Cell Biol. 13, 292–302 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  175. 175

    Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. 176

    Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  177. 177

    Shimi, T. et al. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev. 25, 2579–2593 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  178. 178

    Freund, A., Laberge, R. M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  179. 179

    Herbig, U., Ferreira, M., Condel, L., Carey, D. & Sedivy, J. M. Cellular senescence in aging primates. Science 311, 1257 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  180. 180

    Wang, C. et al. DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8, 311–323 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  181. 181

    Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  182. 182

    Freund, A., Orjalo, A. V., Desprez, P. Y. & Campisi, J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238–246 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  183. 183

    Naylor, R. M., Baker, D. J. & van Deursen, J. M. Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin. Pharmacol. Ther. 93, 105–116 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  184. 184

    Campisi, J. Aging, tumor suppression and cancer: high wire-act! Mech. Ageing Dev. 126, 51–58 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  185. 185

    Rajagopalan, S. & Long, E. O. Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc. Natl Acad. Sci. USA 109, 20596–20601 (2012)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  186. 186

    Dorr, J. R. et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501, 421–425 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

D.M.-E. has been funded by the Juan de la Cierva Programme. Work in the laboratory of M.S. is funded by the Spanish National Cancer Research Centre (CNIO), by grants from the European Research Council (Advanced ERC Grant), the Framework Programme 7 of the European Union (RISK-IR), the Spanish Ministry of Economy (SAF), the Regional Government of Madrid, the Botín Foundation, the Ramón Areces Foundation and the AXA Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuel Serrano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Paracrine

Refers to a mode of signalling in which the cell responding to a signalling molecule is near the cell secreting the molecule.

Autocrine

Activation of cellular receptors by ligands produced by the same cell.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Espín, D., Serrano, M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15, 482–496 (2014). https://doi.org/10.1038/nrm3823

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing