Review Article | Published:

Mechanisms and principles of homology search during recombination

Nature Reviews Molecular Cell Biology volume 15, pages 369383 (2014) | Download Citation

Abstract

Homologous recombination is crucial for genome stability and for genetic exchange. Although our knowledge of the principle steps in recombination and its machinery is well advanced, homology search, the critical step of exploring the genome for homologous sequences to enable recombination, has remained mostly enigmatic. However, recent methodological advances have provided considerable new insights into this fundamental step in recombination that can be integrated into a mechanistic model. These advances emphasize the importance of genomic proximity and nuclear organization for homology search and the critical role of homology search mediators in this process. They also aid our understanding of how homology search might lead to unwanted and potentially disease-promoting recombination events.

Key points

  • Homology search is the crucial step during homologous recombination that involves the encounter of two homologous sequences, the constant probing for homology and the final recognition of the homologous site.

  • The mechanism of homology search, which was previously considered to be one of the most enigmatic processes in DNA double-strand break (DSB) repair, is now partially understood owing to several methodological advances.

  • The proposed 'accelerated random search model' suggests that homology search functions by a random probing mechanism that is carried out by the RecA or RAD51 presynaptic nucleoprotein filament in three dimensions. However, the model further suggests that probing is accelerated by engaging multiple contacts of the filament with DNA and by sliding of the filament along DNA.

  • As spatial proximity seems to be a key determinant of efficient homology search, chromatin architecture and nuclear organization have a decisive role during the search process.

  • Mediators of homology search are either proteins or structures that restrict and guide the search to donor sequences, or factors that actively facilitate homology probing in the context of chromatin and histones.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113–139 (2010).

  2. 2.

    Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu. Rev. Genet. 47, 563–599 (2013).

  3. 3.

    Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191, 33–64 (2012).

  4. 4.

    A mechanism for gene conversion in fungi. Genet. Res. 5, 282–304 (1964).

  5. 5.

    , & Recombinational DNA repair in a cellular context: a search for the homology search. Nature Rev. Microbiol. 7, 748–755 (2009). This important review argues against a genome-wide homology search, mainly on the basis of theoretical considerations.

  6. 6.

    & Finding a match: how do homologous sequences get together for recombination? Nature Rev. Genet. 9, 27–37 (2008).

  7. 7.

    & DSB repair: the yeast paradigm. DNA Repair 3, 797–815 (2004).

  8. 8.

    , , & Single-molecule views on homologous recombination. Q. Rev. Biophys. 46, 323–348 (2013).

  9. 9.

    & Chromatin movement in the maintenance of genome stability. Cell 152, 1355–1364 (2013).

  10. 10.

    & DNA in motion during double-strand break repair. Trends Cell Biol. 23, 529–536 (2013).

  11. 11.

    & Homologous recombination proteins in prokaryotes and eukaryotes. Annu. Rev. Genet. 29, 509–552 (1995).

  12. 12.

    & Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247–271 (2011).

  13. 13.

    , , , & Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337, 1222–1225 (2012).

  14. 14.

    & The specificity of the secondary DNA binding site of RecA protein defines its role in DNA strand exchange. Proc. Natl Acad. Sci. USA 93, 10673–10678 (1996).

  15. 15.

    & The function of the secondary DNA-binding site of RecA protein during DNA strand exchange. EMBO J. 17, 1161–1168 (1998).

  16. 16.

    et al. Mechanism of homology recognition in DNA recombination from dual-molecule experiments. Mol. Cell 46, 616–624 (2012). A dual molecule manipulation study, which suggests that only a pre-existing single-stranded bubble of the target DNA is bound by the RecA secondary binding site during homology probing.

  17. 17.

    & Synaptic complex revisited; a homologous recombinase flips and switches bases. Mol. Cell 15, 846–847 (2004).

  18. 18.

    , , , & Exchange of DNA base pairs that coincides with recognition of homology promoted by E. coli RecA protein. Mol. Cell 15, 965–975 (2004).

  19. 19.

    , , , & Rapid exchange of A:T base pairs is essential for recognition of DNA homology by human Rad51 recombination protein. Mol. Cell 4, 705–714 (1999).

  20. 20.

    , & Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures. Nature 453, 489–484 (2008). Provides the first crystallographic snapshot of RecA–ssDNA and RecA–heteroduplex filaments, and provides evidence for their non-uniform extension.

  21. 21.

    , , , & Structure of human Rad51 protein filament from molecular modeling and site-specific linear dichroism spectroscopy. Proc. Natl Acad. Sci. USA 106, 13248–13253 (2009).

  22. 22.

    & RecA-mediated homology search as a nearly optimal signal detection system. Mol. Cell 40, 388–396 (2010).

  23. 23.

    et al. The differential extension in dsDNA bound to Rad51 filaments may play important roles in homology recognition and strand exchange. Nucleic Acids Res. 42, 526–533 (2014).

  24. 24.

    et al. RecA homology search is promoted by mechanical stress along the scanned duplex DNA. Nucleic Acids Res. 40, 1717–1727 (2012).

  25. 25.

    , & The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA. Proc. Natl Acad. Sci. USA 89, 6492–6496 (1992).

  26. 26.

    , , & Rad51 recombinase and recombination mediators. J. Biol. Chem. 278, 42729–42732 (2003).

  27. 27.

    , , , & Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function. DNA Repair 5, 381–391 (2006).

  28. 28.

    , & Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis. Proc. Natl Acad. Sci. USA 87, 21–25 (1990).

  29. 29.

    & Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J. Biol. Chem. 271, 27983–27986 (1996).

  30. 30.

    et al. Complementary strand relocation may play vital roles in RecA-based homology recognition. Nucleic Acids Res. 40, 10441–10451 (2012).

  31. 31.

    , & Real-time observation of strand exchange reaction with high spatiotemporal resolution. Structure 19, 1064–1073 (2011).

  32. 32.

    , & Regulation of DNA strand exchange in homologous recombination. DNA Repair 9, 1264–1272 (2010).

  33. 33.

    Biochemistry of genetic recombination: energetics and mechanism of DNA strand exchange. Annu. Rev. Biophys. Biophys. Chem. 20, 539–575 (1991).

  34. 34.

    , & On the mechanism of pairing of single- and double-stranded DNA molecules by the recA and single-stranded DNA binding proteins of Escherichia coli. J. Biol. Chem. 261, 1025–1030 (1986).

  35. 35.

    & By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology. Cell 34, 647–654 (1983).

  36. 36.

    & & Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20, 6929–6948 (1981).

  37. 37.

    An end to 40 years of mistakes in DNA–protein association kinetics? Biochem. Soc. Trans. 37, 343–348 (2009).

  38. 38.

    No sliding during homology search by RecA protein. J. Biol. Chem. 273, 31565–31573 (1998).

  39. 39.

    , & RecA filament sliding on DNA facilitates homology search. eLife 1, e00067 (2012). Using single-molecule three-colour fluorescence resonance energy transfer (FRET) experiments, this study provides the first evidence for one-dimensional sliding of the presynaptic nucleoprotein filament on target DNA during recombination.

  40. 40.

    et al. Homologous recombination in real time: DNA strand exchange by RecA. Mol. Cell 30, 530–538 (2008).

  41. 41.

    & Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. Nature 482, 423–427 (2012). This in vitro study provides a direct visualization of short-lived non-homologous contacts and proposes a crucial role for intersegmental contact sampling in homology recognition.

  42. 42.

    & Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J. 27, 1875–1885 (2008).

  43. 43.

    & Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9, 663–673 (1990).

  44. 44.

    , , & Monitoring homology search during DNA double-strand break repair in vivo. Mol. Cell 50, 261–272 (2013). Uses, for the first time, a method that visualizes homology search in vivo. Shows that nuclear organization and spatial proximity are guiding forces for homology search in vivo.

  45. 45.

    , & Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229–257 (2008).

  46. 46.

    & Maintaining genome stability at the replication fork. Naure. Rev. Mol. Cell Biol. 11, 208–219 (2010).

  47. 47.

    The hidden talents of SPO11. Dev. Cell 24, 123–124 (2013).

  48. 48.

    & Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).

  49. 49.

    et al. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol. 2, E259 (2004).

  50. 50.

    , & Chromosomal addresses of the cohesin component Mcd1p. J. Cell Biol. 151, 1047–1056 (2000).

  51. 51.

    et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

  52. 52.

    et al. Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination. PLoS Genet. 6, e1001228 (2010).

  53. 53.

    et al. Double-strand breaks associated with repetitive DNA can reshape the genome. Proc. Natl Acad. Sci. USA 105, 11845–11850 (2008).

  54. 54.

    , & Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair 5, 1010–1020 (2006).

  55. 55.

    Transpositions and translocations induced by site-specific double-strand breaks in budding yeast. DNA Repair 5, 998–1009 (2006).

  56. 56.

    , , , & Effect of nuclear architecture on the efficiency of double-strand break repair. Nature Cell Biol. 15, 694–699 (2013).

  57. 57.

    , & Saccharomyces cerevisiae donor preference during mating-type switching is dependent on chromosome architecture and organization. Genetics 173, 1197–1206 (2006).

  58. 58.

    , , & Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 1403–1417 (2003).

  59. 59.

    & Collisions between yeast chromosomal loci in vivo are governed by three layers of organization. Genes Dev. 13, 1871–1883 (1999).

  60. 60.

    & Homology search and choice of homologous partner during mitotic recombination. Mol. Cell. Biol. 19, 4134–4142 (1999).

  61. 61.

    & Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc. Natl Acad. Sci. USA 93, 13949–13954 (1996).

  62. 62.

    & Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae. Genetics 123, 261–268 (1989).

  63. 63.

    , & In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell 12, 209–219 (2003).

  64. 64.

    & The emerging role of nuclear architecture in DNA repair and genome maintenance. Nature Rev. Mol. Cell Biol. 10, 243–254 (2009).

  65. 65.

    , & The cellular etiology of chromosome translocations. Curr. Opin. Cell Biol. 25, 357–364 (2013).

  66. 66.

    & The origin of recurrent translocations in recombining lymphocytes: a balance between break frequency and nuclear proximity. Curr. Opin. Cell Biol. 25, 365–371 (2013).

  67. 67.

    et al. Spatial dynamics of chromosome translocations in living cells. Science 341, 660–664 (2013).

  68. 68.

    et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148, 908–921 (2012).

  69. 69.

    et al. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature 484, 69–74 (2012).

  70. 70.

    et al. Close proximity to Igh is a contributing factor to AID-mediated translocations. Mol. Cell 47, 873–885 (2012).

  71. 71.

    et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147, 107–119 (2011).

  72. 72.

    et al. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147, 95–106 (2011).

  73. 73.

    , , , & Spatial proximity of translocation-prone gene loci in human lymphomas. Nature Genet. 34, 287–291 (2003).

  74. 74.

    , , & Analysis of repair mechanism choice during homologous recombination. Nucleic Acids Res. 37, 5081–5092 (2009).

  75. 75.

    et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010). The first high-resolution three-dimensional model of the yeast nucleus that provides evidence for the priority of intrachromosomal interactions over interchromosomal interactions and shows that interchromosomal interactions occur preferentially around centromeres.

  76. 76.

    Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32, 561–599 (1998).

  77. 77.

    & Monitoring DNA recombination initiated by HO endonuclease. Methods Mol. Biol. 920, 349–370 (2012).

  78. 78.

    et al. Regulation of budding yeast mating-type switching donor preference by the FHA domain of Fkh1. PLoS Genet. 8, e1002630 (2012).

  79. 79.

    & A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Cell 87, 277–285 (1996).

  80. 80.

    & MATa donor preference in yeast mating-type switching: activation of a large chromosomal region for recombination. Genes Dev. 9, 1922–1932 (1995).

  81. 81.

    & Principles of chromosomal organization: lessons from yeast. J. Cell Biol. 192, 723–733 (2011).

  82. 82.

    , & Centromere clustering is a major determinant of yeast interphase nuclear organization. J. Cell. Sci. 113, 1903–1912 (2000).

  83. 83.

    , & How to build a yeast nucleus. Nucleus 4, 361–366 (2013).

  84. 84.

    , & How broken DNA finds its template for repair: a computational approach. Prog. Theor. Phys. Suppl. 191, 20–29 (2011).

  85. 85.

    , , , & Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nature Cell Biol. 14, 502–509 (2012).

  86. 86.

    & Increased chromosome mobility facilitates homology search during recombination. Nature Cell Biol. 14, 510–517 (2012).

  87. 87.

    , & Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage. Genes Dev. 27, 1999–2008 (2013).

  88. 88.

    , , , & Cohesin and the nucleolus constrain the mobility of spontaneous repair foci. EMBO Rep. 14, 984–991 (2013).

  89. 89.

    et al. Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev. 26, 369–383 (2012). Reports, for the first time, that chromatin has an increased mobility at the site of a DSB and also describes the role of the chromatin remodeller INO80 in this process.

  90. 90.

    & Chromatin and the genome integrity network. Nature Rev. Genet. 14, 62–75 (2013).

  91. 91.

    , , & RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506, 249–253 (2014).

  92. 92.

    & Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. Biochim. Biophys. Acta 1809, 509–523 (2011).

  93. 93.

    , , , & Rad54 protein is targeted to pairing loci by the Rad51 nucleoprotein filament. Mol. Cell 6, 583–592 (2000).

  94. 94.

    , & Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393, 91–94 (1998). Demonstrates the importance of Rad54 for Rad51-dependent homologous pairing, which is mediated by direct protein–protein interactions that stimulate the ATPase activity of Rad54.

  95. 95.

    , & Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Mol. Cell 23, 143–148 (2006).

  96. 96.

    , & Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51–ssDNA nucleoprotein filament. Nature Struct. Biol. 10, 182–186 (2003).

  97. 97.

    , , & Homology-driven chromatin remodeling by human RAD54. Nature Struct. Mol. Biol. 14, 397–405 (2007).

  98. 98.

    , , , & Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J. Biol. Chem. 278, 9212–9218 (2003).

  99. 99.

    , & Promotion of Rad51-dependent D-loop formation by yeast recombination factor Rdh54/Tid1. Genes Dev. 14, 2206–2215 (2000).

  100. 100.

    et al. A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh54 displays processive translocation and extrudes DNA loops. J. Mol. Biol. 369, 940–953 (2007).

  101. 101.

    , , & Single molecule imaging of Tid1/Rdh54, a Rad54 homolog that translocates on duplex DNA and can disrupt joint molecules. J. Biol. Chem. 282, 30776–30784 (2007).

  102. 102.

    et al. ATP-dependent chromatin remodeling by the Saccharomyces cerevisiae homologous recombination factor Rdh54. J. Biol. Chem. 283, 10445–10452 (2008).

  103. 103.

    , , , & Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54. Mol. Cell 6, 563–572 (2000).

  104. 104.

    , , , & Mechanism of RecA-mediated homologous recombination revisited by single molecule nanomanipulation. EMBO J. 25, 4293–4304 (2006).

  105. 105.

    & A Rad51 presynaptic filament is sufficient to capture nucleosomal homology during recombinational repair of a DNA double-strand break. Mol. Cell 30, 803–810 (2008).

  106. 106.

    & ATP-dependent and ATP-independent roles for the Rad54 chromatin remodeling enzyme during recombinational repair of a DNA double strand break. J. Biol. Chem. 280, 10855–10860 (2005).

  107. 107.

    , & Real-time analysis of double-strand DNA break repair by homologous recombination. Proc. Natl Acad. Sci. USA 108, 3108–3115 (2011).

  108. 108.

    & Rad54 functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation. Mol. Cell 53, 420–432 (2014).

  109. 109.

    , , , & Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling. Cell 138, 1109–1121 (2009).

  110. 110.

    & Chromatin modifications and chromatin remodeling during DNA repair in budding yeast. Curr. Opin. Genet. Dev. 23, 166–173 (2013).

  111. 111.

    et al. INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination. DNA Repair 8, 360–369 (2009).

  112. 112.

    , , & Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 19, 1656–1661 (2005).

  113. 113.

    et al. High-resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome. EMBO J. 29, 1446–1457 (2010).

  114. 114.

    , , & Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003–1015 (2004).

  115. 115.

    , & γH2AX spreading linked to homology search. Cell Cycle 12, 2526–2527 (2013).

  116. 116.

    , , & Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break. Nature Struct. Mol. Biol. 21, 103–109 (2014).

  117. 117.

    , & DNA repair choice defines a common pathway for recruitment of chromatin regulators. Nature Commun. 4, 2084 (2013).

  118. 118.

    At the heart of the chromosome: SMC proteins in action. Nature Rev. Mol. Cell Biol. 7, 311–322 (2006).

  119. 119.

    & CTCF and cohesin: linking gene regulatory elements with their targets. Cell 152, 1285–1297 (2013).

  120. 120.

    & Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991–995 (2001).

  121. 121.

    , & DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317, 245–248 (2007).

  122. 122.

    et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242–245 (2007).

  123. 123.

    et al. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell 1, 759–770 (2001).

  124. 124.

    et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16, 991–1002 (2004).

  125. 125.

    et al. Smc5–Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nature Cell Biol. 8, 1032–1034 (2006).

  126. 126.

    , & Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 25, 3377–3388 (2006).

  127. 127.

    , , & Cohesin is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes. PLoS Genet. 6, e1001006 (2010).

  128. 128.

    et al. Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition. Genetics 189, 1225–1233 (2011).

  129. 129.

    & The hierarchy of the 3D genome. Mol. Cell 49, 773–782 (2013).

  130. 130.

    et al. Double-strand break repair by interchromosomal recombination: an in vivo repair mechanism utilized by multiple somatic tissues in mammals. PLoS ONE 8, e84379 (2013).

  131. 131.

    & The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. Genetics 144, 43–55 (1996).

  132. 132.

    et al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144, 732–744 (2011).

  133. 133.

    et al. DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res. 39, 6489–6499 (2011).

  134. 134.

    , , , & Heterochromatin is refractory to γ-H2AX modification in yeast and mammals. J. Cell Biol. 178, 209–218 (2007).

  135. 135.

    et al. The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nature Cell Biol. 9, 923–931 (2007).

  136. 136.

    & Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112, 441–457 (1986).

  137. 137.

    & Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol. Cell. Biol. 22, 6384–6392 (2002).

  138. 138.

    , & Homologous recombination in hybridoma cells: dependence on time and fragment length. Mol. Cell. Biol. 10, 4466–4472 (1990).

  139. 139.

    , & The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol. 11, 5586–5591 (1991).

  140. 140.

    , , & Nascent DNA synthesis during homologous recombination is synergistically promoted by the Rad51 recombinase and DNA homology. Genetics (2014).

  141. 141.

    , , , & Srs2 and Sgs1–Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401–411 (2003).

  142. 142.

    et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322, 597–602 (2008).

  143. 143.

    , & Chromosome-wide Rad51 spreading and SUMO–H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol. Cell 33, 335–343 (2009).

  144. 144.

    , , , & Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev. 23, 912–927 (2009).

  145. 145.

    , , , & Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152, 417–429 (2013).

  146. 146.

    & Recombination centres and the orchestration of V(D)J recombination. Nature Rev. Immunol. 11, 251–263 (2011).

  147. 147.

    , , & Genetics of Borrelia burgdorferi. Annu. Rev. Genet. 46, 515–536 (2012).

  148. 148.

    & Focusing homologous recombination: pilin antigenic variation in the pathogenic Neisseria. Mol. Microbiol. 81, 1136–1143 (2011).

  149. 149.

    et al. Antigenic variation in African trypanosomes: the importance of chromosomal and nuclear context in VSG expression control. Cell. Microbiol. 15, 1984–1993 (2013).

  150. 150.

    & Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum. Cell. Microbiol. 15, 718–726 (2013).

  151. 151.

    , , & Repetitive sequences in complex genomes: structure and evolution. Annu. Rev. Genom. Hum. Genet. 8, 241–259 (2007).

  152. 152.

    & The MRE11 complex: starting from the ends. Nature Rev. Mol. Cell Biol. 12, 90–103 (2011).

  153. 153.

    , & In vitro assays for DNA pairing and recombination-associated DNA synthesis. Methods Mol. Biol. 745, 363–383 (2011).

  154. 154.

    , & Kinetic analysis of pairing and strand exchange catalyzed by RecA. Detection by fluorescence energy transfer. J. Biol. Chem. 272, 14672–14682 (1997).

  155. 155.

    , , & Caught in the act: the lifetime of synaptic intermediates during the search for homology on DNA. Nucleic Acids Res. 38, 2036–2043 (2010).

  156. 156.

    & Single-molecule imaging brings Rad51 nucleoprotein filaments into focus. Trends Cell Biol. 20, 269–276 (2010).

  157. 157.

    , & Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–8106 (1994).

  158. 158.

    , , , & Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol. Cell. Biol. 14, 1293–1301 (1994).

  159. 159.

    & Genome architecture: domain organization of interphase chromosomes. Cell 152, 1270–1284 (2013).

  160. 160.

    & Nuclear organization in the nematode C. elegans. Curr. Opin. Cell Biol. 25, 395–402 (2013).

  161. 161.

    , & Organization and segregation of bacterial chromosomes. Nature Rev. Genet. 14, 191–203 (2013).

  162. 162.

    Yeast chromosomal interactions and nuclear architecture. Curr. Opin. Cell Biol. 22, 298–304 (2010).

  163. 163.

    & Advancing our understanding of functional genome organisation through studies in the fission yeast. Curr. Genet. 57, 1–12 (2011).

  164. 164.

    & Chromosome territories. Cold Spring Harb. Perspect. Biol. 2, a003889 (2010).

  165. 165.

    & Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev. Genet. 2, 292–301 (2001).

  166. 166.

    , & A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010).

  167. 167.

    , & Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nature Rev. Genet. 14, 390–403 (2013).

  168. 168.

    & Genomics tools for unraveling chromosome architecture. Nature Biotech. 28, 1089–1095 (2010).

  169. 169.

    & Functional implications of genome topology. Nature Struct. Mol. Biol. 20, 290–299 (2013).

  170. 170.

    , & Nuclear organization: taking a position on gene expression. Curr. Opin. Cell Biol. 23, 354–359 (2011).

  171. 171.

    , , & Gene regulation through nuclear organization. Nature Struct. Mol. Biol. 14, 1049–1055 (2007).

  172. 172.

    & Nuclear organization of the genome and the potential for gene regulation. Nature 447, 413–417 (2007).

  173. 173.

    et al. High-resolution statistical mapping reveals gene territories in live yeast. Nature Methods 5, 1031–1037 (2008).

  174. 174.

    , , , & Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J. Cell Biol. 168, 375–387 (2005).

  175. 175.

    et al. A predictive computational model of the dynamic 3D interphase yeast nucleus. Curr. Biol. 22, 1881–1890 (2012).

  176. 176.

    , , & Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Res. 22, 1295–1305 (2012).

Download references

Acknowledgements

S.J. is supported by the Max Planck Society, Deutsche Forschungsgemeinschaft, Center for Integrated Protein Science Munich, RUBICON EU Network of Excellence, European Research Council (ERC) Advanced Grant and the Louis-Jeantet Foundation. J.R. was supported by a Boehringer Ingelheim Fonds PhD stipend.

Author information

Author notes

    • Jörg Renkawitz

    Present address: Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria.

    • Jörg Renkawitz
    •  & Claudio A. Lademann

    These authors contributed equally to this work.

Affiliations

  1. Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.

    • Jörg Renkawitz
    • , Claudio A. Lademann
    •  & Stefan Jentsch

Authors

  1. Search for Jörg Renkawitz in:

  2. Search for Claudio A. Lademann in:

  3. Search for Stefan Jentsch in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Stefan Jentsch.

Glossary

Mating-type switching

A process by which yeast cells switch their mating-type through programmed homologous recombination.

Strand exchange

A continuous establishment of base pairing between the recombinase-coated single-stranded DNA (ssDNA), at the DNA double-strand break (DSB), and the complementary strand of the homologous DNA.

Heteroduplex

Double-stranded DNA that consists of two single DNA strands of different origin.

B-DNA

Standard conformation of DNA as it exists in most functional organisms.

Repetitive elements

Genetic elements, such as satellite DNA or retrotransposons, that are present in multiple copies in a genome and/or consist of small repetitive building blocks.

Ectopic homologous recombination

Recombination with a homologous sequence that is located in a genomic location other than the corresponding allele on the sister chromatid or homologous chromosome.

Recombination enhancer

A specific sequence that is present in the genome of the yeast Saccharomyces cerevisiae, which enables the establishment of a large chromosomal loop to facilitate recombination in cells of mating-type a (MATa).

Chromosome conformation capture

A method to analyze the spatial interaction frequency of either selected genomic loci or of loci on a genome-wide level. It is based on the chemical crosslinking of samples, which is followed by their restriction digest and a subsequent ligation procedure.

Displacement loop

(D-loop). A structure in which the two strands of a DNA duplex are separated by the binding of a third strand to one of these strands.

ATP-dependent chromatin remodelling complexes

Protein complexes that use the energy of ATP to reposition nucleosomes, evict histones or incorporate new histone variants.

Structural maintenance of chromosome proteins

(SMC proteins). A conserved ATPase protein family that coordinates many aspects of chromosome organization, for example sister-chromatid cohesion and chromosome condensation in mitosis.

V(D)J recombination

Combination of variable (V), diverse (D) and joining(J) gene segments during a programmed recombination event in lymphoid cells to form diverse immunoglobulins and T cell receptors.

Class switch recombination

Programmed recombination in B lymphocytes to generate different antibody subtypes with the same antigen specificity.

Surface protein gene arrangements

A mechanism that enables some pathogens to evade the host adaptive immune system by altering their immunogenic epitopes (antigenic variation) through recombination-mediated switching between several different surface protein variants.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nrm3805

Further reading