Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling

Key Points

  • Epithelial morphogenesis is regulated by the modulation of intercellular junctions, which are known as adherens junctions (AJs).

  • AJs comprise cadherin receptors and associated proteins, including actomyosin filaments.

  • The interactions between cadherins and actomyosin are mediated by α-catenin and vinculin (VCL) through complex mechanisms.

  • The control of AJ-associated actomyosin by small GTPases is important for maintaining and remodelling the AJ.

  • RHO-associated protein kinase (ROCK), an effector of RHO GTPases, induces the contraction of AJ-linked actomyosin networks, which leads to various forms of epithelial remodelling.

  • AJs are also modulated by other mechanisms, including cadherin turnover, sliding of the junctions and transcriptional control of junction regulators.

Abstract

Epithelial cells display dynamic behaviours, such as rearrangement, movement and shape changes, particularly during embryonic development and in equivalent processes in adults. Accumulating evidence suggests that the remodelling of cell junctions, especially adherens junctions (AJs), has major roles in controlling these behaviours. AJs comprise cadherin adhesion receptors and cytoplasmic proteins that associate with them, including catenins and actin filaments, and exhibit various forms, such as linear or punctate. Remodelling of AJs induces epithelial reshaping in various ways, including by planar-polarized apical constriction that is driven by the contraction of AJ-associated actomyosin and that occurs during neural plate bending and germband extension. RHO GTPases and their effectors regulate actin polymerization and actomyosin contraction at AJs during the epithelial reshaping processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular architecture of adherens junctions.
Figure 2: Structural details of adherens junctions.
Figure 3: Hypothetical differences between various cadherin-based cell–cell contacts.
Figure 4: Pathways to regulate actomyosin attachment to the cadherin–catenin complex.
Figure 5: Various forms of adherens junction modulation induce epithelial reshaping.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lecuit, T. Adhesion remodeling underlying tissue morphogenesis. Trends Cell Biol. 15, 34–42 (2005).

    CAS  PubMed  Google Scholar 

  2. Baum, B. & Georgiou, M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J. Cell Biol. 192, 907–917 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Oda, H. & Takeichi, M. Evolution: structural and functional diversity of cadherin at the adherens junction. J. Cell Biol. 193, 1137–1146 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hirano, S. & Takeichi, M. Cadherins in brain morphogenesis and wiring. Physiol. Rev. 92, 597–634 (2012).

    CAS  PubMed  Google Scholar 

  5. Lynch, A. M. et al. A genome-wide functional screen shows MAGI 1 is an L1CAM dependent stabilizer of apical junctions in C. elegans. Curr. Biol. 22, 1891–1899 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Truong Quang, B. A., Mani, M., Markova, O., Lecuit, T. & Lenne, P. F. Principles of E-adherin supramolecular organization in vivo. Curr. Biol. 23, 2197–2207 (2013).

    CAS  PubMed  Google Scholar 

  7. Farquhar, M. G. & Palade, G. E. Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Taguchi, K., Ishiuchi, T. & Takeichi, M. Mechanosensitive EPLIN-dependent remodeling of adherens junctions regulates epithelial reshaping. J. Cell Biol. 194, 643–656 (2011). Shows that epithelial linear junctions are converted into a punctate type at colony peripheries, where radial actin filaments prevent EPLIN from binding to AJs.

    PubMed  PubMed Central  Google Scholar 

  9. Kametani, Y. & Takeichi, M. Basal to apical cadherin flow at cell junctions. Nature Cell Biol. 9, 92–98 (2007).

    CAS  PubMed  Google Scholar 

  10. Brasch, J., Harrison, O. J., Honig, B. & Shapiro, L. Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol. 22, 299–310 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hirano, S., Kimoto, N., Shimoyama, Y., Hirohashi, S. & Takeichi, M. Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell 70, 293–301 (1992).

    CAS  PubMed  Google Scholar 

  12. Watabe-Uchida, M. et al. α-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. J. Cell Biol. 142, 847–857 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rimm, D. L., Koslov, E. R., Kebriaei, P., Cianci, C. D. & Morrow, J. S. α1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F actin to the membrane adhesion complex. Proc. Natl Acad. Sci. USA 92, 8813–8817 (1995).

    CAS  PubMed  Google Scholar 

  14. Hansen, S. D. et al. αE-catenin actin-binding domain alters actin filament conformation and regulates binding of nucleation and disassembly factors. Mol. Biol. Cell 24, 3710–3720 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamada, S., Pokutta, S., Drees, F., Weis, W. I. & Nelson, W. J. Deconstructing the cadherin–catenin–actin complex. Cell 123, 889–901 (2005). Reports the unexpected finding that, despite the well-known ability of α-catenin to bind to F-actin, the cadherin–α-catenin complex does not do so.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. & Weis, W. I. α-catenin is a molecular switch that binds E cadherin-β-catenin and regulates actin-filament assembly. Cell 123, 903–915 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwiatkowski, A. V. et al. In vitro and in vivo reconstitution of the cadherin–catenin–actin complex from Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 107, 14591–14596 (2010).

    CAS  PubMed  Google Scholar 

  18. Yonemura, S. Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. α-Catenin as a tension transducer that induces adherens junction development. Nature Cell Biol. 12, 533–542 (2010). First to propose that the binding of VCL to α-catenin is inhibited by self-folding of α-catenin, and this autoinhibited state is reversed by a force that pulls the α-catenin C-terminal domain.

    CAS  PubMed  Google Scholar 

  19. Desai, R. et al. Monomeric α-catenin links cadherin to the actin cytoskeleton. Nature Cell Biol. 15, 261–273 (2013).

    CAS  PubMed  Google Scholar 

  20. le Duc, Q. et al. Vinculin potentiates E cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II dependent manner. J. Cell Biol. 189, 1107–1115 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Twiss, F. et al. Vinculin-dependent cadherin mechanosensing regulates efficient epithelial barrier formation. Biol. Open 1, 1128–1140 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ishiyama, N. et al. An autoinhibited structure of α-catenin and its implications for vinculin recruitment to adherens junctions. J. Biol. Chem. 288, 15913–15925 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Maddugoda, M. P., Crampton, M. S., Shewan, A. M. & Yap, A. S. Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell cell contacts in mammalian epithelial cells. J. Cell Biol. 178, 529–540 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Peng, X., Cuff, L. E., Lawton, C. D. & DeMali, K. A. Vinculin regulates cell-surface E cadherin expression by binding to β-catenin. J. Cell Sci. 123, 567–577 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rangarajan, E. S. & Izard, T. Dimer asymmetry defines α-catenin interactions. Nature Struct. Mol. Biol. 20, 188–193 (2013).

    CAS  Google Scholar 

  26. Choi, H. J. et al. αE catenin is an autoinhibited molecule that coactivates vinculin. Proc. Natl Acad. Sci. USA 109, 8576–8581 (2012).

    CAS  PubMed  Google Scholar 

  27. Rangarajan, E. S. & Izard, T. The cytoskeletal protein α-catenin unfurls upon binding to vinculin. J. Biol. Chem. 287, 18492–18499 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell 100, 209–219 (2000).

    CAS  PubMed  Google Scholar 

  29. Imamura, Y., Itoh, M., Maeno, Y., Tsukita, S. & Nagafuchi, A. Functional domains of α-catenin required for the strong state of cadherin-based cell adhesion. J. Cell Biol. 144, 1311–1322 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Huveneers, S. et al. Vinculin associates with endothelial VE cadherin junctions to control force-dependent remodeling. J. Cell Biol. 196, 641–652 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Millan, J. et al. Adherens junctions connect stress fibres between adjacent endothelial cells. BMC Biol. 8, 11 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. Maul, R. S. et al. EPLIN regulates actin dynamics by cross-linking and stabilizing filaments. J. Cell Biol. 160, 399–407 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Abe, K. & Takeichi, M. EPLIN mediates linkage of the cadherin–catenin complex to F actin and stabilizes the circumferential actin belt. Proc. Natl Acad. Sci. USA 105, 13–19 (2008).

    CAS  PubMed  Google Scholar 

  34. Tamada, M., Perez, T. D., Nelson, W. J. & Sheetz, M. P. Two distinct modes of myosin assembly and dynamics during epithelial wound closure. J. Cell Biol. 176, 27–33 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chervin-Petinot, A. et al. Epithelial protein lost in neoplasm (EPLIN) interacts with α-catenin and actin filaments in endothelial cells and stabilizes vascular capillary network in vitro. J. Biol. Chem. 287, 7556–7572 (2012).

    CAS  PubMed  Google Scholar 

  36. Palacios, F., Schweitzer, J. K., Boshans, R. L. & D'Souza-Schorey, C. ARF6 GTP recruits Nm23 H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nature Cell Biol. 4, 929–936 (2002).

    CAS  PubMed  Google Scholar 

  37. Delva, E. & Kowalczyk, A. P. Regulation of cadherin trafficking. Traffic 10, 259–267 (2009).

    CAS  PubMed  Google Scholar 

  38. Davis, M. A., Ireton, R. C. & Reynolds, A. B. A core function for p120 catenin in cadherin turnover. J. Cell Biol. 163, 525–534 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiao, K. et al. Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells. J. Cell Biol. 163, 535–545 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Myster, S. H., Cavallo, R., Anderson, C. T., Fox, D. T. & Peifer, M. Drosophila p120catenin plays a supporting role in cell adhesion but is not an essential adherens junction component. J. Cell Biol. 160, 433–449 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pettitt, J., Cox, E. A., Broadbent, I. D., Flett, A. & Hardin, J. The Caenorhabditis elegans p120 catenin homologue, JAC 1, modulates cadherin-catenin function during epidermal morphogenesis. J. Cell Biol. 162, 15–22 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nanes, B. A. et al. p120 catenin binding masks an endocytic signal conserved in classical cadherins. J. Cell Biol. 199, 365–380 (2012). Dissects the core p120 catenin-binding region of VE-cadherin and identifies a specific sequence that is masked by this catenin to prevent cadherin internalization.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Miyashita, Y. & Ozawa, M. Increased internalization of p120 uncoupled E cadherin and a requirement for a dileucine motif in the cytoplasmic domain for endocytosis of the protein. J. Biol. Chem. 282, 11540–11548 (2007).

    CAS  PubMed  Google Scholar 

  44. de Beco, S., Gueudry, C., Amblard, F. & Coscoy, S. Endocytosis is required for E cadherin redistribution at mature adherens junctions. Proc. Natl Acad. Sci. USA 106, 7010–7015 (2009).

    CAS  PubMed  Google Scholar 

  45. Troyanovsky, R. B., Sokolov, E. P. & Troyanovsky, S. M. Endocytosis of cadherin from intracellular junctions is the driving force for cadherin adhesive dimer disassembly. Mol. Biol. Cell 17, 3484–3493 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kane, D. A., McFarland, K. N. & Warga, R. M. Mutations in half baked/E cadherin block cell behaviors that are necessary for teleost epiboly. Development 132, 1105–1116 (2005).

    CAS  PubMed  Google Scholar 

  47. Song, S. et al. Pou5f1-dependent EGF expression controls E cadherin endocytosis, cell adhesion, and zebrafish epiboly movements. Dev. Cell 24, 486–501 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ulrich, F. et al. Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E cadherin. Dev. Cell 9, 555–564 (2005).

    CAS  PubMed  Google Scholar 

  49. Arboleda-Estudillo, Y. et al. Movement directionality in collective migration of germ layer progenitors. Curr. Biol. 20, 161–169 (2010).

    CAS  PubMed  Google Scholar 

  50. Tang, V. W. & Brieher, W. M. α-Actinin 4/FSGS1 is required for Arp2/3 dependent actin assembly at the adherens junction. J. Cell Biol. 196, 115–130 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Verma, S. et al. A WAVE2 Arp2/3 actin nucleator apparatus supports junctional tension at the epithelial zonula adherens. Mol. Biol. Cell 23, 4601–4610 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Georgiou, M., Marinari, E., Burden, J. & Baum, B. Cdc42, Par6, and aPKC regulate Arp2/3 mediated endocytosis to control local adherens junction stability. Curr. Biol. 18, 1631–1638 (2008).

    CAS  PubMed  Google Scholar 

  53. Kovacs, E. M. et al. N-WASP regulates the epithelial junctional actin cytoskeleton through a non-canonical post-nucleation pathway. Nature Cell Biol. 13, 934–943 (2011).

    CAS  PubMed  Google Scholar 

  54. Otani, T., Ichii, T., Aono, S. & Takeichi, M. Cdc42 GEF Tuba regulates the junctional configuration of simple epithelial cells. J. Cell Biol. 175, 135–146 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ivanov, A. I. et al. A unique role for nonmuscle myosin heavy chain IIa in regulation of epithelial apical junctions. PLoS ONE 2, e658 (2007).

    PubMed  PubMed Central  Google Scholar 

  56. McCormack, J., Welsh, N. J. & Braga, V. M. Cycling around cell–cell adhesion with Rho GTPase regulators. J. Cell Sci. 126, 379–391 (2013).

    CAS  PubMed  Google Scholar 

  57. Citi, S., Spadaro, D., Schneider, Y., Stutz, J. & Pulimeno, P. Regulation of small GTPases at epithelial cell–cell junctions. Mol. Membr. Biol. 28, 427–444 (2011).

    CAS  PubMed  Google Scholar 

  58. Goode, B. L. & Eck, M. J. Mechanism and function of formins in the control of actin assembly. Annu. Rev. Biochem. 76, 593–627 (2007).

    CAS  PubMed  Google Scholar 

  59. Carramusa, L., Ballestrem, C., Zilberman, Y. & Bershadsky, A. D. Mammalian diaphanous-related formin Dia1 controls the organization of E cadherin-mediated cell–cell junctions. J. Cell Sci. 120, 3870–3882 (2007).

    CAS  PubMed  Google Scholar 

  60. Sahai, E. & Marshall, C. J. ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nature Cell Biol. 4, 408–415 (2002).

    CAS  PubMed  Google Scholar 

  61. Homem, C. C. & Peifer, M. Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis. Development 135, 1005–1018 (2008).

    CAS  PubMed  Google Scholar 

  62. Kobielak, A., Pasolli, H. A. & Fuchs, E. Mammalian formin 1 participates in adherens junctions and polymerization of linear actin cables. Nature Cell Biol. 6, 21–30 (2004).

    CAS  PubMed  Google Scholar 

  63. Riento, K. & Ridley, A. J. Rocks: multifunctional kinases in cell behaviour. Nature Rev. Mol. Cell Biol. 4, 446–456 (2003).

    CAS  Google Scholar 

  64. Ishiuchi, T. & Takeichi, M. Willin and Par3 cooperatively regulate epithelial apical constriction through aPKC-mediated ROCK phosphorylation. Nature Cell Biol. 13, 860–866 (2011).

    CAS  PubMed  Google Scholar 

  65. Fanning, A. S., Van Itallie, C. M. & Anderson, J. M. Zonula occludens 1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia. Mol. Biol. Cell 23, 577–590 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ayollo, D. V., Zhitnyak, I. Y., Vasiliev, J. M. & Gloushankova, N. A. Rearrangements of the actin cytoskeleton and E cadherin-based adherens junctions caused by neoplasic transformation change cell–cell interactions. PLoS ONE 4, e8027 (2009).

    PubMed  PubMed Central  Google Scholar 

  67. Smutny, M. et al. Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nature Cell Biol. 12, 696–702 (2010).

    CAS  PubMed  Google Scholar 

  68. Warner, S. J. & Longmore, G. D. Distinct functions for Rho1 in maintaining adherens junctions and apical tension in remodeling epithelia. J. Cell Biol. 185, 1111–1125 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Herder, C. et al. ArhGEF18 regulates RhoA Rock2 signaling to maintain neuro-epithelial apico–basal polarity and proliferation. Development 140, 2787–2797 (2013).

    CAS  PubMed  Google Scholar 

  70. Nakajima, H. & Tanoue, T. Lulu2 regulates the circumferential actomyosin tensile system in epithelial cells through p114RhoGEF. J. Cell Biol. 195, 245–261 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Terry, S. J. et al. Spatially restricted activation of RhoA signalling at epithelial junctions by p114RhoGEF drives junction formation and morphogenesis. Nature Cell Biol. 13, 159–166 (2011).

    CAS  PubMed  Google Scholar 

  72. Ngok, S. P. et al. TEM4 is a junctional Rho GEF required for cell–cell adhesion, monolayer integrity and barrier function. J. Cell Sci. 126, 3271–3277 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ratheesh, A. et al. Centralspindlin and α-catenin regulate Rho signalling at the epithelial zonula adherens. Nature Cell Biol. 14, 818–828 (2012). Describes an unforeseen pathway that recruits a RHO GEF to cell junctions; this pathway includes proteins that are involved in cytokinesis.

    CAS  PubMed  Google Scholar 

  74. Aijaz, S., D'Atri, F., Citi, S., Balda, M. S. & Matter, K. Binding of GEF H1 to the tight junction-associated adaptor cingulin results in inhibition of Rho signaling and G1/S phase transition. Dev. Cell 8, 777–786 (2005).

    CAS  PubMed  Google Scholar 

  75. Kolsch, V., Seher, T., Fernandez-Ballester, G. J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 315, 384–386 (2007).

    PubMed  Google Scholar 

  76. Nishimura, T., Honda, H. & Takeichi, M. Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149, 1084–1097 (2012). Demonstrates that, in the bending neural plate, the cadherin CELSR1 induces contraction of AJ-associated actomyosin along the mediolateral axis, which leads to the polarized bending of the plate.

    CAS  PubMed  Google Scholar 

  77. Zebda, N. et al. Interaction of p190RhoGAP with C terminal domain of p120 catenin modulates endothelial cytoskeleton and permeability. J. Biol. Chem. 288, 18290–18299 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Holeiter, G. et al. The RhoGAP protein Deleted in Liver Cancer 3 (DLC3) is essential for adherens junctions integrity. Oncogenesis 1, e13 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tripathi, V., Popescu, N. C. & Zimonjic, D. B. DLC1 interaction with α-catenin stabilizes adherens junctions and enhances DLC1 antioncogenic activity. Mol. Cell. Biol. 32, 2145–2159 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sousa, S. et al. ARHGAP10 is necessary for α-catenin recruitment at adherens junctions and for Listeria invasion. Nature Cell Biol. 7, 954–960 (2005).

    CAS  PubMed  Google Scholar 

  81. Kooistra, M. R., Dube, N. & Bos, J. L. Rap1: a key regulator in cell–cell junction formation. J. Cell Sci. 120, 17–22 (2007).

    CAS  PubMed  Google Scholar 

  82. Hogan, C. et al. Rap1 regulates the formation of E cadherin-based cell–cell contacts. Mol. Cell. Biol. 24, 6690–6700 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Price, L. S. et al. Rap1 regulates E cadherin-mediated cell–cell adhesion. J. Biol. Chem. 279, 35127–35132 (2004).

    CAS  PubMed  Google Scholar 

  84. Knox, A. L. & Brown, N. H. Rap1 GTPase regulation of adherens junction positioning and cell adhesion. Science 295, 1285–1288 (2002).

    CAS  PubMed  Google Scholar 

  85. Dube, N. et al. The RapGEF PDZ GEF2 is required for maturation of cell–cell junctions. Cell. Signal. 20, 1608–1615 (2008).

    CAS  PubMed  Google Scholar 

  86. Ando, K. et al. Rap1 potentiates endothelial cell junctions by spatially controlling myosin II activity and actin organization. J. Cell Biol. 202, 901–916 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mandai, K., Rikitake, Y., Shimono, Y. & Takai, Y. Afadin/AF 6 and canoe: roles in cell adhesion and beyond. Prog. Mol. Biol. Transl. Sci. 116, 433–454 (2013).

    CAS  PubMed  Google Scholar 

  88. Hoshino, T. et al. Regulation of E cadherin endocytosis by nectin through afadin, Rap1, and p120ctn. J. Biol. Chem. 280, 24095–24103 (2005).

    CAS  PubMed  Google Scholar 

  89. Hildebrand, J. D. & Soriano, P. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99, 485–497 (1999).

    CAS  PubMed  Google Scholar 

  90. Ernst, S. et al. Shroom3 is required downstream of FGF signalling to mediate proneuromast assembly in zebrafish. Development 139, 4571–4581 (2012).

    CAS  PubMed  Google Scholar 

  91. Chung, M. I., Nascone-Yoder, N. M., Grover, S. A., Drysdale, T. A. & Wallingford, J. B. Direct activation of Shroom3 transcription by Pitx proteins drives epithelial morphogenesis in the developing gut. Development 137, 1339–1349 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Haigo, S. L., Hildebrand, J. D., Harland, R. M. & Wallingford, J. B. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr. Biol. 13, 2125–2137 (2003).

    CAS  PubMed  Google Scholar 

  93. Bolinger, C., Zasadil, L., Rizaldy, R. & Hildebrand, J. D. Specific isoforms of drosophila shroom define spatial requirements for the induction of apical constriction. Dev. Dyn. 239, 2078–2093 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Plageman, T. F. et al. Pax6 dependent Shroom3 expression regulates apical constriction during lens placode invagination. Development 137, 405–415 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hildebrand, J. D. Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network. J. Cell Sci. 118, 5191–5203 (2005).

    CAS  PubMed  Google Scholar 

  96. Mohan, S. et al. Structure of Shroom domain 2 reveals a three-segmented coiled-coil required for dimerization, Rock binding, and apical constriction. Mol. Biol. Cell 23, 2131–2142 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Nishimura, T. & Takeichi, M. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development 135, 1493–1502 (2008).

    CAS  PubMed  Google Scholar 

  98. Simoes Sde, M., Mainieri, A. & Zallen, J. A. Rho GTPase and Shroom direct planar polarized actomyosin contractility during convergent extension. J. Cell Biol. 204, 575–589 (2014).

    PubMed  Google Scholar 

  99. Plageman, T. F. Jr et al. A Trio-RhoA Shroom3 pathway is required for apical constriction and epithelial invagination. Development 138, 5177–5188 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chu, C. W., Gerstenzang, E., Ossipova, O. & Sokol, S. Y. Lulu regulates Shroom-induced apical constriction during neural tube closure. PLoS ONE 8, e81854 (2013).

    PubMed  PubMed Central  Google Scholar 

  101. Wei, L. et al. Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development 128, 2953–2962 (2001).

    CAS  PubMed  Google Scholar 

  102. Ybot-Gonzalez, P. et al. Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 134, 789–799 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kinoshita, N., Sasai, N., Misaki, K. & Yonemura, S. Apical accumulation of Rho in the neural plate is important for neural plate cell shape change and neural tube formation. Mol. Biol. Cell 19, 2289–2299 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Usui, T. et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98, 585–595 (1999).

    CAS  PubMed  Google Scholar 

  105. Gray, R. S., Roszko, I. & Solnica-Krezel, L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev. Cell 21, 120–133 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Dawes-Hoang, R. E. et al. folded gastrulation, cell shape change and the control of myosin localization. Development 132, 4165–4178 (2005).

    CAS  PubMed  Google Scholar 

  107. Barrett, K., Leptin, M. & Settleman, J. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell 91, 905–915 (1997).

    CAS  PubMed  Google Scholar 

  108. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457, 495–499 (2009). Reports that the actomyosin networks at the apical cortex of cells display pulsed contractions, which eventually induce apical constriction of the cells owing to a linkage between cortical actomyosins and cell edges.

    CAS  PubMed  Google Scholar 

  109. Spahn, P., Ott, A. & Reuter, R. The PDZ-GEF protein Dizzy regulates the establishment of adherens junctions required for ventral furrow formation in Drosophila. J. Cell Sci. 125, 3801–3812 (2012).

    CAS  PubMed  Google Scholar 

  110. Solon, J., Kaya-Copur, A., Colombelli, J. & Brunner, D. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331–1342 (2009).

    PubMed  Google Scholar 

  111. Blanchard, G. B., Murugesu, S., Adams, R. J., Martinez-Arias, A. & Gorfinkiel, N. Cytoskeletal dynamics and supracellular organisation of cell shape fluctuations during dorsal closure. Development 137, 2743–2752 (2010).

    CAS  PubMed  Google Scholar 

  112. David, D. J., Tishkina, A. & Harris, T. J. The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila. Development 137, 1645–1655 (2010).

    CAS  PubMed  Google Scholar 

  113. Roh-Johnson, M. et al. Triggering a cell shape change by exploiting preexisting actomyosin contractions. Science 335, 1232–1235 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sawyer, J. K., Harris, N. J., Slep, K. C., Gaul, U. & Peifer, M. The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction. J. Cell Biol. 186, 57–73 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sawyer, J. K. et al. A contractile actomyosin network linked to adherens junctions by Canoe/afadin helps drive convergent extension. Mol. Biol. Cell 22, 2491–2508 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kurita, S., Yamada, T., Rikitsu, E., Ikeda, W. & Takai, Y. Binding between the junctional proteins afadin and PLEKHA7 and implication in the formation of adherens junction in epithelial cells. J. Biol. Chem. 288, 29356–29368 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004).

    CAS  PubMed  Google Scholar 

  118. Zallen, J. A. & Wieschaus, E. Patterned gene expression directs bipolar planar polarity in Drosophila. Dev. Cell 6, 343–355 (2004).

    CAS  PubMed  Google Scholar 

  119. Simoes Sde, M. et al. Rho-kinase directs Bazooka/Par 3 planar polarity during Drosophila axis elongation. Dev. Cell 19, 377–388 (2010).

    PubMed  Google Scholar 

  120. Blankenship, J. T., Backovic, S. T., Sanny, J. S. P., Weitz, O. & Zallen, J. A. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11, 459–470 (2006).

    CAS  PubMed  Google Scholar 

  121. Fernandez-Gonzalez, R., Simoes, S. D., Roper, J. C., Eaton, S. & Zallen, J. A. Myosin, I. I. Dynamics are regulated by tension in intercalating cells. Dev. Cell 17, 736–743 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Simoes, S. et al. The role of Bazooka/Par3 in epithelial intercalation - a live imaging approach. Mech. Dev. 126, S81 (2009).

    Google Scholar 

  123. Rauzi, M., Lenne, P. F. & Lecuit, T. Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468, 1110–1114 (2010).

    CAS  PubMed  Google Scholar 

  124. Levayer, R. & Lecuit, T. Oscillation and polarity of E cadherin asymmetries control actomyosin flow patterns during morphogenesis. Dev. Cell 26, 162–175 (2013). Links two subcellular events, movement of cortical actomyosin networks and E-cadherin endocytosis, to explain how the shrinkage of polarized junctions occurs.

    CAS  PubMed  Google Scholar 

  125. Levayer, R., Pelissier-Monier, A. & Lecuit, T. Spatial regulation of Dia and Myosin II by RhoGEF2 controls initiation of E cadherin endocytosis during epithelial morphogenesis. Nature Cell Biol. 13, 529–540 (2011).

    CAS  PubMed  Google Scholar 

  126. Tamada, M., Farrell, D. L. & Zallen, J. A. Abl regulates planar polarized junctional dynamics through β-catenin tyrosine phosphorylation. Dev. Cell 22, 309–319 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Walck-Shannon, E. & Hardin, J. Cell intercalation from top to bottom. Nature Rev. Mol. Cell Biol. 15, 34–48 (2013).

    Google Scholar 

  128. Wang, Y. C., Khan, Z., Kaschube, M. & Wieschaus, E. F. Differential positioning of adherens junctions is associated with initiation of epithelial folding. Nature 484, 390–393 (2012). Finds a novel mechanism for epithelial reshaping in which the sliding, rather than contraction, of AJs is crucial for apical constriction in certain tissues.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, Y. C., Khan, Z. & Wieschaus, E. F. Distinct Rap1 activity states control the extent of epithelial invagination via α-catenin. Dev. Cell 25, 299–309 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Taniguchi, K. et al. Chirality in planar cell shape contributes to left-right asymmetric epithelial morphogenesis. Science 333, 339–341 (2011).

    CAS  PubMed  Google Scholar 

  131. Davis, N. M. et al. The chirality of gut rotation derives from left-right asymmetric changes in the architecture of the dorsal mesentery. Dev. Cell 15, 134–145 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kurpios, N. A. et al. The direction of gut looping is established by changes in the extracellular matrix and in cell:cell adhesion. Proc. Natl Acad. Sci. USA 105, 8499–8506 (2008).

    CAS  PubMed  Google Scholar 

  133. Plageman, T. F., Zacharias, A. L., Gage, P. J. & Lang, R. A. Shroom3 and a Pitx2 N cadherin pathway function cooperatively to generate asymmetric cell shape changes during gut morphogenesis. Dev. Biol. 357, 227–234 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Welsh, I. C. et al. Integration of left-right Pitx2 transcription and Wnt signaling drives asymmetric gut morphogenesis via Daam2. Dev. Cell 26, 629–644 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Wu, S. K. et al. Cortical F actin stabilization generates apical-lateral patterns of junctional contractility that integrate cells into epithelia. Nature Cell Biol. 16, 167–178 (2014).

    CAS  PubMed  Google Scholar 

  136. Alatortsev, V. E., Kramerova, I. A., Frolov, M. V., Lavrov, S. A. & Westphal, E. D. Vinculin gene is non-essential in Drosophila melanogaster. FEBS Lett. 413, 197–201 (1997).

    CAS  PubMed  Google Scholar 

  137. Xu, W., Baribault, H. & Adamson, E. D. Vinculin knockout results in heart and brain defects during embryonic development. Development 125, 327–337 (1998).

    CAS  PubMed  Google Scholar 

  138. Torres, M. et al. An α E catenin gene trap mutation defines its function in preimplantation development. Proc. Natl Acad. Sci. USA 94, 901–906 (1997).

    CAS  PubMed  Google Scholar 

  139. Mason, F. M., Tworoger, M. & Martin, A. C. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction. Nature Cell Biol. 15, 926–936 (2013).

    CAS  PubMed  Google Scholar 

  140. Stehbens, S. J. et al. Dynamic microtubules regulate the local concentration of E cadherin at cell–cell contacts. J. Cell Sci. 119, 1801–1811 (2006).

    CAS  PubMed  Google Scholar 

  141. Meng, W., Mushika, Y., Ichii, T. & Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell–cell contacts. Cell 135, 948–959 (2008).

    CAS  PubMed  Google Scholar 

  142. Harris, T. J. & Peifer, M. aPKC controls microtubule organization to balance adherens junction symmetry and planar polarity during development. Dev. Cell 12, 727–738 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Shaw, R. M. et al. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128, 547–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ligon, L. A., Karki, S., Tokito, M. & Holzbaur, E. L. Dynein binds to β-catenin and may tether microtubules at adherens junctions. Nature Cell Biol. 3, 913–917 (2001).

    CAS  PubMed  Google Scholar 

  145. Bellett, G. et al. Microtubule plus-end and minus-end capture at adherens junctions is involved in the assembly of apico–basal arrays in polarised epithelial cells. Cell Motil. Cytoskeleton 66, 893–908 (2009).

    CAS  PubMed  Google Scholar 

  146. Harrison, O. J. et al. The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19, 244–256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ishiyama, N. et al. Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell–cell adhesion. Cell 141, 117–128 (2010).

    CAS  PubMed  Google Scholar 

  148. Huber, A. H. & Weis, W. I. The structure of the β-catenin/E cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell 105, 391–402 (2001).

    CAS  PubMed  Google Scholar 

  149. Pokutta, S. & Weis, W. I. Structure of the dimerization and β-catenin-binding region of α-catenin. Mol. Cell 5, 533–543 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks T. Nishimura for critical comments on the manuscript, K. Taguchi for editing the movie and S. Ito for suggestions on references. The author's laboratory is supported by the programme Grants-in-Aid for Specially Promoted Research of the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Takeichi.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (movie)

EPLIN stabilizes the ZA. Time-lapse images of DLD1 cells transfected with Kusabira Orange-tagged epithelial cadherin (E‑cadherin). Left, control cells; right, epithelial protein lost in neoplasm (EPLIN)-depleted cells. Frames were taken every minute for 20 minutes. Frame rate, 2.1 frames/s. Scale bar, 20 µm. Details of the experiments are described in REF. 1. Adherens junctions (AJs) in EPLIN-depleted cells are much more unstable and more mobile than those in wild-type cells, which suggests that EPLIN-mediated actin assembly is essential for the formation of the zonula adherens (ZA). © 2011 Taguchi et al. Journal of Cell Biology. 194:643–656. 10.1083/jcb.201104124. 1. Taguchi, K., Ishiuchi, T. & Takeichi, M. Mechanosensitive EPLIN-dependent remodeling of adherens junctions regulates epithelial reshaping. J. Cell Biol. 194, 643–656 (2011). (MOV 3128 kb)

PowerPoint slides

Glossary

Apical constriction

A process to induce the bending of epithelial sheets during various morphogenetic processes, such as gastrulation and neural tube formation. Epithelial cells shrink specifically at the apical ends in response to external or internal signals, and as a result their sheets bend towards the apical ends.

Zonula adherens

(ZA). A cell–cell adherens junction that forms a circumferential belt around the apical pole of epithelial cells.

Tight junctions

Circumferential rings at the apex of epithelial cells that seal adjacent cells to one another. Tight junctions regulate solute and ion flux between adjacent epithelial cells.

Desmosomes

Junctional structures that are formed by transmembrane proteins that are homologous to cadherins and are called desmocollins and desmogleins. These are linked to plakoglobin and desmoplakin, and are anchored to intermediate filaments.

Actomyosin cables

Subcellular structures that consist of accumulated actin filaments and myosin II. Sliding of myosin II motors along the actin filaments provides a force to contract the cables. These contracting cables have various roles in cell shape changes, which are dependent on where the cables are anchored.

Guanine nucleotide exchange factors

(GEFs). Proteins that facilitate the exchange of GDP for GTP in the nucleotide-binding pocket of a GTP-binding protein.

GTPase-activating proteins

(GAPs). Proteins that inactivate small GTP-binding proteins, such as RAS family members, by increasing their rate of GTP hydrolysis.

Planar cell polarity

A mechanism of cellular organization by which cells acquire information about their orientation within the tissue in the plane of the epithelium. It is distinct from apical–basal polarity.

Amnioserosa cells

Cells that form the amnioserosa, an extra-embryonic epithelial sheet that covers the dorsal side of fly embryos at the blastoderm stage.

Dorsal folds

Epithelial structures that form on the dorsal side of the gastrulating Drosophila melanogaster embryo. Dorsal epithelial sheets are folded at an anterior and posterior portion of the embryo during development. The anterior fold is shallower than the posterior fold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeichi, M. Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 15, 397–410 (2014). https://doi.org/10.1038/nrm3802

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3802

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing