Organization and execution of the epithelial polarity programme

Key Points

  • The epithelium is the first tissue to develop during phylogenesis and ontogenesis; the evolutionary appearance of modern epithelia reflects the requirement of Metazoa for a tissue structure that can segregate their internal medium from the outside environment.

  • Epithelial cells form tight monolayers with an apical junctional complex, which segregate apical and basolateral plasma membrane domains with different lipids and protein composition that are required to act as active barriers between the body and the environment.

  • In higher vertebrates there are more than 150 different types of epithelia that form the key functional components of most body organs; in part because of their exposure to external noxa, epithelia are the main sources of cancer and other human diseases.

  • The epithelial phenotype can be lost and acquired during development through mechanisms called epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET), respectively; a process similar to EMT might account for dissemination of cancers, which, in humans, arise mainly from epithelial cells.

  • The acquisition and maintenance of the epithelial phenotype is guided by an epithelial polarity programme (EPP), which is regulated by a network of polarity proteins and lipids; although these regulators have been highly conserved during evolution, the execution of the EPP is highly variable and context dependent.

  • The EPP proteins and lipids organize themselves into primordial apical and basolateral domains in response to external cues from other cells and the substratum; execution of the EPP results in the formation of the apical junctional complex, the reorganization of the cytoskeleton and the secretory and endosomal organelles in order to generate apical–basal polarity required for vectorial transport functions.

Abstract

Epithelial cells require apical–basal plasma membrane polarity to carry out crucial vectorial transport functions and cytoplasmic polarity to generate different cell progenies for tissue morphogenesis. The establishment and maintenance of a polarized epithelial cell with apical, basolateral and ciliary surface domains is guided by an epithelial polarity programme (EPP) that is controlled by a network of protein and lipid regulators. The EPP is organized in response to extracellular cues and is executed through the establishment of an apical–basal axis, intercellular junctions, epithelial-specific cytoskeletal rearrangements and a polarized trafficking machinery. Recent studies have provided insight into the interactions of the EPP with the polarized trafficking machinery and how these regulate epithelial polarization and depolarization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Features of the polarized epithelial phenotype.
Figure 2: The epithelial polarity programme players.
Figure 3: Execution of the epithelial polarity programme.
Figure 4: Trafficking of epithelial polarity programme players during polarization of epithelial cells.
Figure 5: The primary cilium and Hedgehog signalling.

References

  1. 1

    Dickinson, D. J., Nelson, W. J. & Weis, W. I. A polarized epithelium organized by β- and α-catenin predates cadherin and metazoan origins. Science 331, 1336–1339 (2011). An important contribution to our understanding of the evolution of epithelial tissues in animals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Cereijido, M., Contreras, R. G. & Shoshani, L. Cell adhesion, polarity, and epithelia in the dawn of metazoans. Physiol. Rev. 84, 1229–1262 (2004).

    Article  CAS  Google Scholar 

  3. 3

    Magie, C. R. & Martindale, M. Q. Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis. Biol. Bull. 214, 218–232 (2008).

    Article  Google Scholar 

  4. 4

    Alberts, B. Cell biology: the endless frontier. Mol. Biol. Cell 21, 3785 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue. Nature Rev. Mol. Cell Biol. 9, 887–901 (2008).

    Article  CAS  Google Scholar 

  6. 6

    Sawyer, J. M. et al. Apical constriction: a cell shape change that can drive morphogenesis. Dev. Biol. 341, 5–19 (2010).

    Article  CAS  Google Scholar 

  7. 7

    Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Singla, V. & Reiter, J. F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629–633 (2006).

    Article  CAS  Google Scholar 

  9. 9

    Lim, J. & Thiery, J. P. Epithelial-mesenchymal transitions: insights from development. Development 139, 3471–3486 (2012).

    Article  CAS  Google Scholar 

  10. 10

    McCaffrey, L. M. & Macara, I. G. Epithelial organization, cell polarity, and tumorigenesis. Trends Cell Biol. 21, 727–735 (2011).

    Article  CAS  Google Scholar 

  11. 11

    Muthuswamy, S. K. & Xue, B. Cell polarity as a regulator of cancer cell behavior plasticity. Annu. Rev. Cell Dev. Biol. 28, 599–625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Assemat, E., Bazellieres, E., Pallesi-Pocachard, E., Le Bivic, A. & Massey-Harroche, D. Polarity complex proteins. Biochim. Biophys. Acta 1778, 614–630 (2008).

    Article  CAS  Google Scholar 

  13. 13

    Goldstein, B. & Macara, I. G. The PAR proteins: fundamental players in animal cell polarization. Dev. Cell 13, 609–622 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    St Johnston, D. & Ahringer, J. Cell polarity in eggs and epithelia: parallels and diversity. Cell 141, 757–774 (2010).

    Article  CAS  Google Scholar 

  15. 15

    Tepass, U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu. Rev. Cell Dev. Biol. 28, 655–685 (2012).

    Article  CAS  Google Scholar 

  16. 16

    Mellman, I. & Nelson, W. J. Coordinated protein sorting, targeting and distribution in polarized cells. Nature Rev. Mol. Cell Biol. 9, 833–845 (2008).

    Article  CAS  Google Scholar 

  17. 17

    Apodaca, G., Gallo, L. I. & Bryant, D. M. Role of membrane traffic in the generation of epithelial cell asymmetry. Nature Cell Biol. 14, 1235–1243 (2012).

    Article  CAS  Google Scholar 

  18. 18

    Rodriguez-Boulan, E., Kreitzer, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nature Rev. Mol. Cell Biol. 6, 233–247 (2005).

    Article  CAS  Google Scholar 

  19. 19

    Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311–320 (1988). Identification of PAR genes by an elegant screen.

    Article  CAS  Google Scholar 

  20. 20

    Munson, C. et al. Regulation of neurocoel morphogenesis by Pard6γb. Dev. Biol. 324, 41–54 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Bilder, D., Schober, M. & Perrimon, N. Integrated activity of PDZ protein complexes regulates epithelial polarity. Nature Cell Biol. 5, 53–58 (2003). The first description of genetic interactions between different groups of polarity genes.

    Article  CAS  Google Scholar 

  22. 22

    Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Laprise, P. et al. Yurt, Coracle, Neurexin IV and the Na+,K+-ATPase form a novel group of epithelial polarity proteins. Nature 459, 1141–1145 (2009). Describes the discovery of a new set of genes that is involved in epithelial polarity.

    Article  CAS  Google Scholar 

  24. 24

    Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005).

    Article  CAS  Google Scholar 

  25. 25

    Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  26. 26

    Iden, S. & Collard, J. G. Crosstalk between small GTPases and polarity proteins in cell polarization. Nature Rev. Mol. Cell Biol. 9, 846–859 (2008).

    Article  CAS  Google Scholar 

  27. 27

    Sander, E. E., ten Klooster, J. P., van Delft, S., van der Kammen, R. A. & Collard, J. G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 147, 1009–1022 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Nelson, W. J. Adaptation of core mechanisms to generate cell polarity. Nature 422, 766–774 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  Google Scholar 

  30. 30

    Gassama-Diagne, A. & Payrastre, B. Phosphoinositide signaling pathways: promising role as builders of epithelial cell polarity. Int. Rev. Cell. Mol. Biol. 273, 313–343 (2009).

    Article  CAS  Google Scholar 

  31. 31

    Krahn, M. P. & Wodarz, A. Phosphoinositide lipids and cell polarity: linking the plasma membrane to the cytocortex. Essays Biochem. 53, 15–27 (2012).

    Article  CAS  Google Scholar 

  32. 32

    Shewan, A., Eastburn, D. J. & Mostov, K. Phosphoinositides in cell architecture. Cold Spring Harb. Perspect. Biol. 3, a004796 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Gassama-Diagne, A. et al. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nature Cell Biol. 8, 963–970 (2006).

    Article  CAS  Google Scholar 

  34. 34

    Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383–397 (2007). References 33 and 34 provide evidence that phospholipids can directly alter the identity of membrane domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    von Stein, W., Ramrath, A., Grimm, A., Muller-Borg, M. & Wodarz, A. Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development 132, 1675–1686 (2005).

    Article  CAS  Google Scholar 

  36. 36

    Zhang, H. et al. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nature Cell Biol. 13, 1189–1201 (2011).

    Article  CAS  Google Scholar 

  37. 37

    Simons, K. & Gerl, M. J. Revitalizing membrane rafts: new tools and insights. Nature Rev. Mol. Cell Biol. 11, 688–699 (2010).

    Article  CAS  Google Scholar 

  38. 38

    Fairn, G. D., Hermansson, M., Somerharju, P. & Grinstein, S. Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity. Nature Cell Biol. 13, 1424–1430 (2011).

    Article  CAS  Google Scholar 

  39. 39

    Hao, Y. et al. Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical Pins. Curr. Biol. 20, 1809–1818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Smith, C. A. et al. aPKC-mediated phosphorylation regulates asymmetric membrane localization of the cell fate determinant Numb. EMBO J. 26, 468–480 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Peyre, E. et al. A lateral belt of cortical LGN and NuMA guides mitotic spindle movements and planar division in neuroepithelial cells. J. Cell Biol. 193, 141–154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Bergstralh, D. T., Lovegrove, H. E. & St Johnston, D. Discs large links spindle orientation to apical–basal polarity in Drosophila epithelia. Curr. Biol. 23, 1707–1712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Benton, R. & Johnston, D. S. Drosophila PAR-1 and 14-3-3 inhibit bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115, 691–704 (2003). One of the first papers to describe the concept of mutual exclusion by polarity proteins in different plasma membrane territories.

    Article  CAS  Google Scholar 

  44. 44

    Hurov, J. B., Watkins, J. L. & Piwnica-Worms, H. Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr. Biol. 14, 736–741 (2004).

    Article  CAS  Google Scholar 

  45. 45

    Suzuki, A. et al. aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr. Biol. 14, 1425–1435 (2004).

    Article  CAS  Google Scholar 

  46. 46

    Kusakabe, M. & Nishida, E. The polarity-inducing kinase Par-1 controls Xenopus gastrulation in cooperation with 14-3-3 and aPKC. EMBO J. 23, 4190–4201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Yamanaka, T. et al. PAR-6 regulates aPKC activity in a novel way and mediates cell-cell contact-induced formation of the epithelial junctional complex. Genes Cells 6, 721–731 (2001).

    Article  CAS  Google Scholar 

  48. 48

    Graybill, C., Wee, B., Atwood, S. X. & Prehoda, K. E. Partitioning-defective protein 6 (Par-6) activates atypical protein kinase C (aPKC) by pseudosubstrate displacement. J. Biol. Chem. 287, 21003–21011 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Qin, Y., Meisen, W. H., Hao, Y. & Macara, I. G. Tuba, a Cdc42 GEF, is required for polarized spindle orientation during epithelial cyst formation. J. Cell Biol. 189, 661–669 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Zihni, C. et al. Dbl3 drives Cdc42 signaling at the apical margin to regulate junction position and apical differentiation. J. Cell Biol. 204, 111–127 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Morais-de-Sa, E. Mirouse, V. & St Johnston, D. aPKC phosphorylation of Bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell 141, 509–523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Krahn, M. P., Buckers, J., Kastrup, L. & Wodarz, A. Formation of a Bazooka-Stardust complex is essential for plasma membrane polarity in epithelia. J. Cell Biol. 190, 751–760 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Traweger, A. et al. Protein phosphatase 1 regulates the phosphorylation state of the polarity scaffold Par-3. Proc. Natl Acad. Sci. USA 105, 10402–10407 (2008).

    Article  Google Scholar 

  54. 54

    McCaffrey, L. M., Montalbano, J., Mihai, C. & Macara, I. G. Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis. Cancer Cell 22, 601–614 (2012). Evidence that polarity proteins are important tumour growth and invasion suppressors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Wodarz, A., Hinz, U., Engelbert, M. & Knust, E. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82, 67–76 (1995).

    Article  CAS  Google Scholar 

  56. 56

    Schluter, M. A. et al. Trafficking of Crumbs3 during cytokinesis is crucial for lumen formation. Mol. Biol. Cell 20, 4652–4663 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Chartier, F. J., Hardy, E. J. & Laprise, P. Crumbs controls epithelial integrity by inhibiting Rac1 and PI3K. J. Cell Sci. 124, 3393–3398 (2011).

    Article  CAS  Google Scholar 

  58. 58

    Pece, S., Chiariello, M., Murga, C. & Gutkind, J. S. Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell-cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex. J. Biol. Chem. 274, 19347–19351 (1999).

    Article  CAS  Google Scholar 

  59. 59

    Ziomek, C. A. & Johnson, M. H. Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction. Cell 21, 935–942 (1980).

    Article  CAS  Google Scholar 

  60. 60

    Nelson, W. J. Remodeling epithelial cell organization: transitions between front-rear and apical–basal polarity. Cold Spring Harb. Perspect. Biol. 1, a000513 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61

    Mazumdar, A. & Mazumdar, M. How one becomes many: blastoderm cellularization in Drosophila melanogaster. Bioessays 24, 1012–1022 (2002).

    Article  CAS  Google Scholar 

  62. 62

    Wang, A. Z., Ojakian, G. K. & Nelson, W. J. Steps in the morphogenesis of a polarized epithelium. I. Uncoupling the roles of cell-cell and cell-substratum contact in establishing plasma membrane polarity in multicellular epithelial (MDCK) cysts. J. Cell Sci. 95, 137–151 (1990).

    PubMed  Google Scholar 

  63. 63

    Wang, A. Z., Ojakian, G. K. & Nelson, W. J. Steps in the morphogenesis of a polarized epithelium. II. Disassembly and assembly of plasma membrane domains during reversal of epithelial cell polarity in multicellular epithelial (MDCK) cysts. J. Cell Sci. 95, 153–165 (1990).

    PubMed  Google Scholar 

  64. 64

    O'Brien, L. E. et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nature Cell Biol. 3, 831–838 (2001).

    Article  CAS  Google Scholar 

  65. 65

    Yu, W. et al. β1-integrin orients epithelial polarity via Rac1 and laminin. Mol. Biol. Cell 16, 433–445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Yu, W. et al. Involvement of RhoA, ROCK I and myosin II in inverted orientation of epithelial polarity. EMBO Rep. 9, 923–929 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Bryant, D. M. et al. A molecular network for de novo generation of the apical surface and lumen. Nature Cell Biol. 12, 1035–1045 (2010). Characterization of the mechanisms involved in the establishment of the apical–basal polarity axis and lumen in MDCK cysts.

    Article  CAS  Google Scholar 

  68. 68

    Akhtar, N. & Streuli, C. H. An integrin-ILK-microtubule network orients cell polarity and lumen formation in glandular epithelium. Nature Cell Biol. 15, 17–27 (2013).

    Article  CAS  Google Scholar 

  69. 69

    Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307, 1603–1609 (2005). Discovery of a key mechanism in EMT.

    Article  CAS  Google Scholar 

  70. 70

    Li, R. & Gundersen, G. G. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nature Rev. Mol. Cell Biol. 9, 860–873 (2008).

    Article  CAS  Google Scholar 

  71. 71

    Etienne-Manneville, S. Polarity proteins in migration and invasion. Oncogene 27, 6970–6980 (2008).

    Article  CAS  Google Scholar 

  72. 72

    Gomes, E. R., Jani, S. & Gundersen, G. G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451–463 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756 (2003).

    Article  CAS  Google Scholar 

  74. 74

    Cohen, D., Brennwald, P. J., Rodriguez-Boulan, E. & Musch, A. Mammalian PAR-1 determines epithelial lumen polarity by organizing the microtubule cytoskeleton. J. Cell Biol. 164, 717–727 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Lazaro-Dieguez, F. et al. Par1b links lumen polarity with LGN-NuMA positioning for distinct epithelial cell division phenotypes. J. Cell Biol. 203, 251–264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Vestweber, D., Gossler, A., Boller, K. & Kemler, R. Expression and distribution of cell adhesion molecule uvomorulin in mouse preimplantation embryos. Dev. Biol. 124, 451–456 (1987).

    Article  CAS  Google Scholar 

  77. 77

    Adams, C. L., Nelson, W. J. & Smith, S. J. Quantitative analysis of cadherin-catenin-actin reorganization during development of cell-cell adhesion. J. Cell Biol. 135, 1899–1911 (1996).

    Article  CAS  Google Scholar 

  78. 78

    Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. & Weis, W. I. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123, 903–915 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Yamada, S., Pokutta, S., Drees, F., Weis, W. I. & Nelson, W. J. Deconstructing the cadherin-catenin-actin complex. Cell 123, 889–901 (2005). References 78 and 79 propose an alternative to the 'standard' mechanism that links E-cadherin to the actin cytoskeleton.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    McGill, M. A., McKinley, R. F. & Harris, T. J. Independent cadherin-catenin and Bazooka clusters interact to assemble adherens junctions. J. Cell Biol. 185, 787–796 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Lock, J. G. & Stow, J. L. Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol. Biol. Cell 16, 1744–1755 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Leibfried, A., Fricke, R., Morgan, M. J., Bogdan, S. & Bellaiche, Y. Drosophila Cip4 and WASp define a branch of the Cdc42-Par6-aPKC pathway regulating E-cadherin endocytosis. Curr. Biol. 18, 1639–1648 (2008).

    Article  CAS  Google Scholar 

  83. 83

    Georgiou, M., Marinari, E., Burden, J. & Baum, B. Cdc42, Par6, and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability. Curr. Biol. 18, 1631–1638 (2008).

    Article  CAS  Google Scholar 

  84. 84

    Wu, X. et al. Cdc42 controls progenitor cell differentiation and beta-catenin turnover in skin. Genes Dev. 20, 571–585 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Qin, Y., Capaldo, C., Gumbiner, B. M. & Macara, I. G. The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J. Cell Biol. 171, 1061–1071 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Rajasekaran, A. K., Hojo, M., Huima, T. & Rodriguez-Boulan, E. Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J. Cell Biol. 132, 451–463 (1996).

    Article  CAS  Google Scholar 

  87. 87

    Chen, X. & Macara, I. G. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nature Cell Biol. 7, 262–269 (2005). Describes a role for PAR3 in tight junction assembly.

    Article  CAS  Google Scholar 

  88. 88

    Wang, Q., Chen, X. W. & Margolis, B. PALS1 regulates E-cadherin trafficking in mammalian epithelial cells. Mol. Biol. Cell 18, 874–885 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89

    Fogg, V. C., Liu, C. J. & Margolis, B. Multiple regions of Crumbs3 are required for tight junction formation in MCF10A cells. J. Cell Sci. 118, 2859–2869 (2005).

    Article  CAS  Google Scholar 

  90. 90

    Matter, K. & Balda, M. S. Biogenesis of tight junctions: the C-terminal domain of occludin mediates basolateral targeting. J. Cell Sci. 111, 511–519 (1998).

    CAS  PubMed  Google Scholar 

  91. 91

    Roeth, J. F., Sawyer, J. K., Wilner, D. A. & Peifer, M. Rab11 helps maintain apical crumbs and adherens junctions in the Drosophila embryonic ectoderm. PLoS ONE 4, e7634 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Gumbiner, B. & Simons, K. The role of uvomorulin in the formation of epithelial occluding junctions. Ciba Found. Symp. 125, 168–186 (1987).

    CAS  PubMed  Google Scholar 

  93. 93

    Nejsum, L. N. & Nelson, W. J. A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity. J. Cell Biol. 178, 323–335 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Jenkins, P. M. et al. E-cadherin polarity is determined by a multifunction motif mediating lateral membrane retention through ankyrin-G and apical–lateral transcytosis through clathrin. J. Biol. Chem. 288, 14018–14031 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Baas, A. F. et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116, 457–466 (2004). Provides evidence that polarization can occur in the absence of cell–cell contacts.

    Article  CAS  Google Scholar 

  96. 96

    Buendia, B., Bre, M. H., Griffiths, G. & Karsenti, E. Cytoskeletal control of centrioles movement during the establishment of polarity in Madin-Darby canine kidney cells. J. Cell Biol. 110, 1123–1135 (1990).

    Article  CAS  Google Scholar 

  97. 97

    Bre, M. H., Kreis, T. E. & Karsenti, E. Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules. J. Cell Biol. 105, 1283–1296 (1987).

    Article  CAS  Google Scholar 

  98. 98

    Oriolo, A. S., Wald, F. A., Canessa, G. & Salas, P. J. GCP6 binds to intermediate filaments: a novel function of keratins in the organization of microtubules in epithelial cells. Mol. Biol. Cell 18, 781–794 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Meng, W., Mushika, Y., Ichii, T. & Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell 135, 948–959 (2008).

    Article  CAS  Google Scholar 

  100. 100

    Chausovsky, A., Bershadsky, A. D. & Borisy, G. G. Cadherin-mediated regulation of microtubule dynamics. Nature Cell Biol. 2, 797–804 (2000).

    Article  CAS  Google Scholar 

  101. 101

    Jaulin, F. & Kreitzer, G. KIF17 stabilizes microtubules and contributes to epithelial morphogenesis by acting at MT plus ends with EB1 and APC. J. Cell Biol. 190, 443–460 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Reilein, A. & Nelson, W. J. APC is a component of an organizing template for cortical microtubule networks. Nature Cell Biol. 7, 463–473 (2005).

    Article  CAS  Google Scholar 

  103. 103

    Bacallao, R. et al. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J. Cell Biol. 109, 2817–2832 (1989).

    Article  CAS  Google Scholar 

  104. 104

    Gilbert, T., Le Bivic, A., Quaroni, A. & Rodriguez-Boulan, E. Microtubular organization and its involvement in the biogenetic pathways of plasma membrane proteins in Caco-2 intestinal epithelial cells. J. Cell Biol. 113, 275–288 (1991).

    Article  CAS  Google Scholar 

  105. 105

    Jaulin, F., Xue, X., Rodriguez-Boulan, E. & Kreitzer, G. Polarization-dependent selective transport to the apical membrane by KIF5B in MDCK cells. Dev. Cell 13, 511–522 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Perez Bay, A. E. et al. The kinesin KIF16B mediates apical transcytosis of transferrin receptor in AP-1B-deficient epithelia. EMBO J. 32, 2125–2139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Chabin-Brion, K. et al. The Golgi complex is a microtubule-organizing organelle. Mol. Biol. Cell 12, 2047–2060 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Efimov, A. et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev. Cell 12, 917–930 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Weisz, O. A. & Rodriguez-Boulan, E. Apical trafficking in epithelial cells: signals, clusters and motors. J. Cell Sci. 122, 4253–4266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Nance, J. PAR proteins and the establishment of cell polarity during C. elegans development. Bioessays 27, 126–135 (2005).

    Article  CAS  Google Scholar 

  111. 111

    Shulman, J. M., Benton, R. & St Johnston, D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell 101, 377–388 (2000).

    Article  CAS  Google Scholar 

  112. 112

    Tepass, U. FERM proteins in animal morphogenesis. Curr. Opin. Genet. Dev. 19, 357–367 (2009).

    Article  CAS  Google Scholar 

  113. 113

    ten Klooster, J. P. et al. Mst4 and Ezrin induce brush borders downstream of the Lkb1/Strad/Mo25 polarization complex. Dev. Cell 16, 551–562 (2009).

    Article  CAS  Google Scholar 

  114. 114

    Hebert, A. M., DuBoff, B., Casaletto, J. B., Gladden, A. B. & McClatchey, A. I. Merlin/ERM proteins establish cortical asymmetry and centrosome position. Genes Dev. 26, 2709–2723 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Viswanatha, R., Ohouo, P. Y., Smolka, M. B. & Bretscher, A. Local phosphocycling mediated by LOK/SLK restricts ezrin function to the apical aspect of epithelial cells. J. Cell Biol. 199, 969–984 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Nelson, W. J., Drees, F. & Yamada, S. Interaction of cadherin with the actin cytoskeleton. Novartis Found. Symp. 269, 159–168; discussion 168 77, 223–230 (2005).

    CAS  PubMed  Google Scholar 

  117. 117

    Erickson, J. W., Zhang, C., Kahn, R. A., Evans, T. & Cerione, R. A. Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J. Biol. Chem. 271, 26850–26854 (1996).

    Article  CAS  Google Scholar 

  118. 118

    Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8–13 (1999).

    Article  CAS  Google Scholar 

  119. 119

    Musch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J. 20, 2171–2179 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Salvarezza, S. B. et al. LIM kinase 1 and cofilin regulate actin filament population required for dynamin-dependent apical carrier fission from the trans-Golgi network. Mol. Biol. Cell 20, 438–451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Hediger, M. A. et al. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch. 447, 465–468 (2004).

    Article  CAS  Google Scholar 

  122. 122

    Scheiffele, P., Peranen, J. & Simons, K. N-glycans as apical sorting signals in epithelial cells. Nature 378, 96–98 (1995).

    Article  CAS  Google Scholar 

  123. 123

    Yeaman, C. et al. The O-glycosylated stalk domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells. J. Cell Biol. 139, 929–940 (1997). References 122 and 123 describe the role of N - and O -glycans as apical sorting signals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Scheiffele, P., Roth, M. G. & Simons, K. Interaction of influenza virus hemagglutinin with sphingolipid-cholesterol membrane rafts via its transmembrane domain. EMBO J. 16, 5501–5508 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Lisanti, M., Caras, I. P., Davitz, M. A. & Rodriguez-Boulan, E. A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. J. Cell Biol. 109, 2145–2156 (1989).

    Article  CAS  Google Scholar 

  126. 126

    Powell, S. K., Cunningham, B. A., Edelman, G. M. & Rodriguez-Boulan, E. Transmembrane and GPI anchored forms of NCAM are targeted to opposite domains of a polarized epithelial cell. Nature 353, 76–77 (1991).

    Article  CAS  Google Scholar 

  127. 127

    Sung, C. H. & Tai, A. W. Rhodopsin trafficking and its role in retinal dystrophies. Int. Rev. Cytol. 195, 215–267 (2000).

    Article  CAS  Google Scholar 

  128. 128

    Tai, A. W., Chuang, J. Z., Bode, C., Wolfrum, U. & Sung, C. H. Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97, 877–887 (1999).

    Article  CAS  Google Scholar 

  129. 129

    Tai, A. W., Chuang, J. Z. & Sung, C. H. Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport. J. Cell Biol. 153, 1499–1509 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Takeda, T., Yamazaki, H. & Farquhar, M. G. Identification of an apical sorting determinant in the cytoplasmic tail of megalin. Am. J. Physiol. Cell Physiol. 284, C1105–c1113 (2003).

    Article  CAS  Google Scholar 

  131. 131

    Marzolo, M. P. et al. Differential distribution of low-density lipoprotein-receptor-related protein (LRP) and megalin in polarized epithelial cells is determined by their cytoplasmic domains. Traffic 4, 273–288 (2003).

    Article  CAS  Google Scholar 

  132. 132

    Stechly, L. et al. Galectin-4-regulated delivery of glycoproteins to the brush border membrane of enterocyte-like cells. Traffic 10, 438–450 (2009).

    Article  CAS  Google Scholar 

  133. 133

    Mishra, R., Grzybek, M., Niki, T., Hirashima, M. & Simons, K. Galectin-9 trafficking regulates apical–basal polarity in Madin-Darby canine kidney epithelial cells. Proc. Natl Acad. Sci. USA 107, 17633–17638 (2010). References 132 and 133 Identify a role of galectins in apical trafficking, thus consolidating the concept of glycans as apical sorting signals.

    Article  Google Scholar 

  134. 134

    Puertollano, R. et al. The MAL proteolipid is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin in Madin-Darby canine kidney cells. J. Cell Biol. 145, 141–151 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Paladino, S. et al. Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J. Cell Biol. 167, 699–709 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Hannan, L. A., Lisanti, M. P., Rodriguez-Boulan, E. & Edidin, M. Correctly sorted molecules of a GPI-anchored protein are clustered and immobile when they arrive at the apical surface of MDCK cells. J. Cell Biol. 120, 353–358 (1993).

    Article  CAS  Google Scholar 

  137. 137

    Schuck, S. & Simons, K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J. Cell Sci. 117, 5955–5964 (2004).

    Article  CAS  Google Scholar 

  138. 138

    Cheong, K. H., Zacchetti, D., Schneeberger, E. E. & Simons, K. VIP17/MAL, a lipid raft-associated protein, is involved in apical transport in MDCK cells. Proc. Natl Acad. Sci. USA 96, 6241–6248 (1999).

    Article  CAS  Google Scholar 

  139. 139

    Gonzalez, A. & Rodriguez-Boulan, E. Clathrin and AP1B: key roles in basolateral trafficking through trans-endosomal routes. FEBS Lett. 583, 3784–3795 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Bonifacino, J. S. & Traub, L. M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447 (2003).

    Article  CAS  Google Scholar 

  141. 141

    Deborde, S. et al. Clathrin is a key regulator of basolateral polarity. Nature 452, 719–723 (2008). Reports a major role of clathrin in basolateral trafficking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Carvajal-Gonzalez, J. M. et al. Basolateral sorting of the coxsackie and adenovirus receptor through interaction of a canonical YXXPhi motif with the clathrin adaptors AP-1A and AP-1B. Proc. Natl Acad. Sci. USA 109, 3820–3825 (2012).

    Article  Google Scholar 

  143. 143

    Ohno, H. et al. Mu1B, a novel adaptor medium chain expressed in polarized epithelial cells. FEBS Lett. 449, 215–220 (1999).

    Article  CAS  Google Scholar 

  144. 144

    Folsch, H., Ohno, H., Bonifacino, J. S. & Mellman, I. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 99, 189–198 (1999). References 143 and 144 report the discovery of the first basolateral sorting adaptor.

    Article  CAS  Google Scholar 

  145. 145

    Rodriguez-Boulan, E., Perez-Bay, A., Schreiner, R. & Gravotta, D. Response: the “tail” of the twin adaptors. Dev. Cell 27, 247–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Bonifacino, J. S. Adaptor proteins involved in polarized sorting. J. Cell Biol. 204, 7–17 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Guo, X. et al. The adaptor protein-1 mu1B subunit expands the repertoire of basolateral sorting signal recognition in epithelial cells. Dev. Cell 27, 353–366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Gan, Y., McGraw, T. E. & Rodriguez-Boulan, E. The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane. Nature Cell Biol. 4, 605–609 (2002).

    Article  CAS  Google Scholar 

  149. 149

    Cancino, J. et al. Antibody to AP1B adaptor blocks biosynthetic and recycling routes of basolateral proteins at recycling endosomes. Mol. Biol. Cell 18, 4872–4884 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Gravotta, D. et al. AP1B sorts basolateral proteins in recycling and biosynthetic routes of MDCK cells. Proc. Natl Acad. Sci. USA 104, 1564–1569 (2007).

    Article  CAS  Google Scholar 

  151. 151

    Gravotta, D. et al. The clathrin adaptor AP-1A mediates basolateral polarity. Dev. Cell 22, 811–823 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Koivisto, U. M., Hubbard, A. L. & Mellman, I. A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL receptor. Cell 105, 575–585 (2001).

    Article  CAS  Google Scholar 

  153. 153

    Diaz, F. et al. Clathrin adaptor AP1B controls adenovirus infectivity of epithelial cells. Proc. Natl Acad. Sci. USA 106, 11143–11148 (2009).

    Article  Google Scholar 

  154. 154

    Schreiner, R. et al. The absence of a clathrin adapter confers unique polarity essential to proximal tubule function. Kidney Int. 78, 382–388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Farias, G. G. et al. Signal-mediated, AP-1/clathrin-dependent sorting of transmembrane receptors to the somatodendritic domain of hippocampal neurons. Neuron 75, 810–823 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Odorizzi, G. & Trowbridge, I. S. Structural requirements for basolateral sorting of the human transferrin receptor in the biosynthetic and endocytic pathways of Madin-Darby canine kidney cells. J. Cell Biol. 137, 1255–1264 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Deora, A. A. et al. The basolateral targeting signal of CD147 (EMMPRIN) consists of a single leucine and is not recognized by retinal pigment epithelium. Mol. Biol. Cell 15, 4148–4165 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Simmen, T., Honing, S., Icking, A., Tikkanen, R. & Hunziker, W. AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nature Cell Biol. 4, 154–159 (2002).

    Article  CAS  Google Scholar 

  159. 159

    Nishimura, N., Plutner, H., Hahn, K. & Balch, W. E. The delta subunit of AP-3 is required for efficient transport of VSV-G from the trans-Golgi network to the cell surface. Proc. Natl Acad. Sci. USA 99, 6755–6760 (2002).

    Article  CAS  Google Scholar 

  160. 160

    Kang, R. S. & Folsch, H. ARH cooperates with AP-1B in the exocytosis of LDLR in polarized epithelial cells. J. Cell Biol. 193, 51–60 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Li, C. et al. Naked2 acts as a cargo recognition and targeting protein to ensure proper delivery and fusion of TGF-α containing exocytic vesicles at the lower lateral membrane of polarized MDCK cells. Mol. Biol. Cell 18, 3081–3093 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  162. 162

    Yeaman, C. et al. Protein kinase D regulates basolateral membrane protein exit from trans-Golgi network. Nature Cell Biol. 6, 106–112 (2004).

    Article  CAS  Google Scholar 

  163. 163

    Bonazzi, M. et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nature Cell Biol. 7, 570–580 (2005).

    Article  CAS  Google Scholar 

  164. 164

    Thunauer, R. et al. Four-dimensional live imaging of apical biosynthetic trafficking reveals a post-Golgi sorting role of apical endosomal intermediates. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1304168111 (2014).

  165. 165

    Lafont, F., Burkhardt, J. K. & Simons, K. Involvement of microtubule motors in basolateral and apical transport in kidney cells. Nature 372, 801–803 (1994).

    Article  CAS  Google Scholar 

  166. 166

    Noda, Y. et al. KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J. Cell Biol. 155, 77–88 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. 167

    Xue, X., Jaulin, F., Espenel, C. & Kreitzer, G. PH-domain-dependent selective transport of p75 by kinesin-3 family motors in non-polarized MDCK cells. J. Cell Sci. 123, 1732–1741 (2010). References 101 and 167 show that the same apical plasma membrane protein may be carried by different kinesin motors in non-polarized and in polarized epithelial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. 168

    Musch, A., Cohen, D. & Rodriguez-Boulan, E. Myosin II is involved in the production of constitutive transport vesicles from the TGN. J. Cell Biol. 138, 291–306 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. 169

    Au, J. S., Puri, C., Ihrke, G., Kendrick-Jones, J. & Buss, F. Myosin VI is required for sorting of AP-1B-dependent cargo to the basolateral domain in polarized MDCK cells. J. Cell Biol. 177, 103–114 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Roland, J. T. et al. Rab GTPase-Myo5B complexes control membrane recycling and epithelial polarization. Proc. Natl Acad. Sci. USA 108, 2789–2794 (2011).

    Article  Google Scholar 

  171. 171

    Ruemmele, F. M. et al. Loss-of-function of MYO5B is the main cause of microvillus inclusion disease: 15 novel mutations and a CaCo-2 RNAi cell model. Hum. Mutat. 31, 544–551 (2010).

    Article  CAS  Google Scholar 

  172. 172

    Grindstaff, K. K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93, 731–740 (1998).

    Article  CAS  Google Scholar 

  173. 173

    Oztan, A. et al. Exocyst requirement for endocytic traffic directed toward the apical and basolateral poles of polarized MDCK cells. Mol. Biol. Cell 18, 3978–3992 (2007). References 172 and 173 report the involvement of the exocyst in apical and basolateral trafficking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. 174

    Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nature Cell Biol. 5, 126–136 (2003).

    Article  CAS  Google Scholar 

  175. 175

    Sharma, N., Low, S. H., Misra, S., Pallavi, B. & Weimbs, T. Apical targeting of syntaxin 3 is essential for epithelial cell polarity. J. Cell Biol. 173, 937–948 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. 176

    Reales, E., Sharma, N., Low, S. H., Folsch, H. & Weimbs, T. Basolateral sorting of syntaxin 4 is dependent on its N-terminal domain and the AP1B clathrin adaptor, and required for the epithelial cell polarity. PLoS ONE 6, e21181 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. 177

    Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).

    Article  CAS  Google Scholar 

  178. 178

    Hutagalung, A. H. & Novick, P. J. Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91, 119–149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. 179

    Zeigerer, A. et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature 485, 465–470 (2012). RAB5 as a master endosomal organizer.

    Article  CAS  Google Scholar 

  180. 180

    Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nature Cell Biol. 9, 1066–1073 (2007). Screen reveals a link between polarity proteins and vesicle traffic.

    Article  CAS  Google Scholar 

  181. 181

    Winter, J. F. et al. Caenorhabditis elegans screen reveals role of PAR-5 in RAB-11-recycling endosome positioning and apicobasal cell polarity. Nature Cell Biol. 14, 666–676 (2012).

    Article  CAS  Google Scholar 

  182. 182

    Harris, K. P. & Tepass, U. Cdc42 and Par proteins stabilize dynamic adherens junctions in the Drosophila neuroectoderm through regulation of apical endocytosis. J. Cell Biol. 183, 1129–1143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. 183

    Zuo, X., Guo, W. & Lipschutz, J. H. The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro. Mol. Biol. Cell 20, 2522–2529 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. 184

    Galvez-Santisteban, M. et al. Synaptotagmin-like proteins control the formation of a single apical membrane domain in epithelial cells. Nature Cell Biol. 14, 838–849 (2012).

    Article  CAS  Google Scholar 

  185. 185

    Meder, D., Shevchenko, A., Simons, K. & Fullekrug, J. Gp135/podocalyxin and NHERF-2 participate in the formation of a preapical domain during polarization of MDCK cells. J. Cell Biol. 168, 303–313 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. 186

    Blankenship, J. T., Fuller, M. T. & Zallen, J. A. The Drosophila homolog of the Exo84 exocyst subunit promotes apical epithelial identity. J. Cell Sci. 120, 3099–3110 (2007).

    Article  CAS  Google Scholar 

  187. 187

    Fletcher, G. C., Lucas, E. P., Brain, R., Tournier, A. & Thompson, B. J. Positive feedback and mutual antagonism combine to polarize Crumbs in the Drosophila follicle cell epithelium. Curr. Biol. 22, 1116–1122 (2012).

    Article  CAS  Google Scholar 

  188. 188

    Pocha, S. M., Wassmer, T., Niehage, C., Hoflack, B. & Knust, E. Retromer controls epithelial cell polarity by trafficking the apical determinant Crumbs. Curr. Biol. 21, 1111–1117 (2011).

    Article  CAS  Google Scholar 

  189. 189

    Grusche, F. A., Richardson, H. E. & Harvey, K. F. Upstream regulation of the hippo size control pathway. Curr. Biol. 20, R574–582 (2010).

    Article  CAS  Google Scholar 

  190. 190

    Pedersen, L. B. & Rosenbaum, J. L. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr. Top. Dev. Biol. 85, 23–61 (2008).

    Article  CAS  Google Scholar 

  191. 191

    Hu, Q. et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329, 436–439 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. 192

    Kee, H. L. et al. A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nature Cell Biol. 14, 431–437 (2012). References 191 and 192 identify key protein complexes that control ciliary access.

    Article  CAS  Google Scholar 

  193. 193

    Wong, S. Y. & Reiter, J. F. The primary cilium at the crossroads of mammalian hedgehog signaling. Curr. Top. Dev. Biol. 85, 225–260 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. 194

    Ding, B. S. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468, 310–315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. 195

    Ding, B. S. et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147, 539–553 (2011). References 194 and 195 identify regulatory roles of endothelial cells in epithelial regeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. 196

    Nasonkin, I. O. et al. Conditional knockdown of DNA methyltransferase 1 reveals a key role of retinal pigment epithelium integrity in photoreceptor outer segment morphogenesis. Development 140, 1330–1341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. 197

    Ezratty, E. J. et al. A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell 145, 1129–1141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. 198

    Pruliere, G., Cosson, J., Chevalier, S., Sardet, C. & Chenevert, J. Atypical protein kinase C controls sea urchin ciliogenesis. Mol. Biol. Cell 22, 2042–2053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. 199

    Fan, S. et al. Polarity proteins control ciliogenesis via kinesin motor interactions. Curr. Biol. 14, 1451–1461 (2004).

    Article  CAS  Google Scholar 

  200. 200

    Atwood, S. X., Li, M., Lee, A., Tang, J. Y. & Oro, A. E. GLI activation by atypical protein kinase C iota/lambda regulates the growth of basal cell carcinomas. Nature 494, 484–488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. 201

    Delous, M. et al. Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum. Mol. Genet. 18, 4711–4723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. 202

    Fogelgren, B. et al. The exocyst protein Sec10 interacts with Polycystin-2 and knockdown causes PKD-phenotypes. PLoS Genet. 7, e1001361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. 203

    Perret, E., Lakkaraju, A., Deborde, S., Schreiner, R. & Rodriguez-Boulan, E. Evolving endosomes: how many varieties and why? Curr. Opin. Cell Biol. 17, 423–434 (2005).

    Article  CAS  Google Scholar 

  204. 204

    Wang, E. et al. Apical and basolateral endocytic pathways of MDCK cells meet in acidic common endosomes distinct from a nearly-neutral apical recycling endosome. Traffic 1, 480–493 (2000).

    Article  CAS  Google Scholar 

  205. 205

    Brown, P. S. et al. Definition of distinct compartments in polarized Madin-Darby canine kidney (MDCK) cells for membrane-volume sorting, polarized sorting and apical recycling. Traffic 1, 124–140 (2000).

    Article  CAS  Google Scholar 

  206. 206

    Parton, R. G., Prydz, K., Bomsel, M., Simons, K. & Griffiths, G. Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes. J. Cell Biol. 109, 3259–3272 (1989).

    Article  CAS  Google Scholar 

  207. 207

    Lakkaraju, A. & Rodriguez-Boulan, E. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol. 18, 199–209 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. 208

    Futter, C. E., Connolly, C. N., Cutler, D. F. & Hopkins, C. R. Newly synthesized transferrin receptors can be detected in the endosome before they appear on the cell surface. J. Biol. Chem. 270, 10999–11003 (1995).

    Article  CAS  Google Scholar 

  209. 209

    Ang, A. L. et al. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J. Cell Biol. 167, 531–543 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. 210

    Cresawn, K. O. et al. Differential involvement of endocytic compartments in the biosynthetic traffic of apical proteins. EMBO J. 26, 3737–3748 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. 211

    Buendia, B., Antony, C., Verde, F., Bornens, M. & Karsenti, E. A centrosomal antigen localized on intermediate filaments and mitotic spindle poles. J. Cell Sci. 97, 259–271 (1990).

    PubMed  Google Scholar 

  212. 212

    Musch, A. et al. Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin-Darby canine kidney cells. Mol. Biol. Cell 13, 158–168 (2002).

    Article  CAS  Google Scholar 

  213. 213

    Lu, H. & Bilder, D. Endocytic control of epithelial polarity and proliferation in Drosophila. Nature Cell Biol. 7, 1232–1239 (2005).

    Article  CAS  Google Scholar 

  214. 214

    Yamada, S. & Nelson, W. J. Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. J. Cell Biol. 178, 517–527 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. 215

    Ivanov, A. I., Hunt, D., Utech, M., Nusrat, A. & Parkos, C. A. Differential roles for actin polymerization and a myosin II motor in assembly of the epithelial apical junctional complex. Mol. Biol. Cell 16, 2636–2650 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. 216

    Burkhardt, J. K., Echeverri, C. J., Nilsson, T. & Vallee, R. B. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139, 469–484 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. 217

    Hoepfner, S. et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 121, 437–450 (2005).

    Article  CAS  Google Scholar 

  218. 218

    Delevoye, C. et al. AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis. J. Cell Biol. 187, 247–264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. 219

    Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol. 3, 723–729 (2001).

    Article  CAS  Google Scholar 

  220. 220

    Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  Google Scholar 

  221. 221

    Waterman-Storer, C. M., Worthylake, R. A., Liu, B. P., Burridge, K. & Salmon, E. D. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nature Cell Biol. 1, 45–50 (1999).

    Article  CAS  Google Scholar 

  222. 222

    Sheff, D. R., Daro, E. A., Hull, M. & Mellman, I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol. 145, 123–139 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. 223

    Bucci, C. et al. Rab5a is a common component of the apical and basolateral endocytic machinery in polarized epithelial cells. Proc. Natl Acad. Sci. USA 91, 5061–5065 (1994).

    Article  CAS  Google Scholar 

  224. 224

    Miserey-Lenkei, S. et al. Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nature Cell Biol. 12, 645–654 (2010).

    Article  CAS  Google Scholar 

  225. 225

    Huber, L. A. et al. Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J. Cell Biol. 123, 35–45 (1993).

    Article  CAS  Google Scholar 

  226. 226

    Ang, A. L., Folsch, H., Koivisto, U. M., Pypaert, M. & Mellman, I. The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J. Cell Biol. 163, 339–350 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. 227

    Kaplan, O. I. et al. The AP-1 clathrin adaptor facilitates cilium formation and functions with RAB-8 in C. elegans ciliary membrane transport. J. Cell Sci. 123, 3966–3977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. 228

    Moritz, O. L. et al. Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. Mol. Biol. Cell 12, 2341–2351 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. 229

    Schuck, S. et al. Rab10 is involved in basolateral transport in polarized Madin-Darby canine kidney cells. Traffic 8, 47–60 (2007).

    Article  CAS  Google Scholar 

  230. 230

    Casanova, J. E. et al. Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 10, 47–61 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. 231

    Leung, S. M., Ruiz, W. G. & Apodaca, G. Sorting of membrane and fluid at the apical pole of polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 11, 2131–2150 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. 232

    Su, T. et al. A kinase cascade leading to Rab11-FIP5 controls transcytosis of the polymeric immunoglobulin receptor. Nature Cell Biol. 12, 1143–1153 (2010).

    Article  CAS  Google Scholar 

  233. 233

    Nokes, R. L., Fields, I. C., Collins, R. N. & Folsch, H. Rab13 regulates membrane trafficking between TGN and recycling endosomes in polarized epithelial cells. J. Cell Biol. 182, 845–853 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. 234

    Hunziker, W. & Peters, P. J. Rab17 localizes to recycling endosomes and regulates receptor-mediated transcytosis in epithelial cells. J. Biol. Chem. 273, 15734–15741 (1998).

    Article  CAS  Google Scholar 

  235. 235

    Zacchi, P. et al. Rab17 regulates membrane trafficking through apical recycling endosomes in polarized epithelial cells. J. Cell Biol. 140, 1039–1053 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. 236

    Tzaban, S. et al. The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity. J. Cell Biol. 185, 673–684 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. 237

    Xu, J. et al. Mechanism of polarized lysosome exocytosis in epithelial cells. J. Cell Sci. 125, 5937–5943 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. 238

    Chih, B. et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nature Cell Biol. 14, 61–72 (2011).

    Article  CAS  Google Scholar 

  239. 239

    Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biol. 12, 19–30 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. 240

    Mikawa, T., Poh, A. M., Kelly, K. A., Ishii, Y. & Reese, D. E. Induction and patterning of the primitive streak, an organizing center of gastrulation in the amniote. Dev Dyn. 229, 422–32 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

Research in E.R.B.'s laboratory was supported by US National Institutes of Health (NIH) grants EY08538, EY022165 and GM34107, and by the Dyson, Research to Prevent Blindness, Beckman and Starr Foundations. Research in I.G.M.'s laboratory was supported by NIH grants CA132898 and GM50526, and by a grant from the Susan Komen Breast Cancer Foundation.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Enrique Rodriguez-Boulan or Ian G. Macara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Phylogenesis

Refers to the evolutionary history of species. Embryo development reflects the course of evolution, partially supporting Hackel's proposal that ontogenesis recapitulates phylogenesis; however, the more generalized form of this concept has been mostly discredited.

Polarized trafficking machinery

The special configuration that has been adopted by the secretory pathway and endosomes in polarized epithelia cells.

Ontogenesis

The origin and development of an organism from the fertilized egg to mature form.

Primary cilium

A protrusion at the free surface of most interphase vertebrate cells that disassembles during mitosis. It is based on nine pairs of microtubules that emerge from a basal body. It houses a number of signalling pathways that are important for development, such as Hedgehog.

Planar polarity

The polarization of epithelial cells along the plane of the epithelium (orthogonal to the apical–basal axis), which directs the orientation of cell shape, division, movement and differentiation. Non-epithelial cells can also exhibit planar polarity.

Epithelial–mesenchymal transition

(EMT). A developmental programme during which epithelial cells adopt a mesenchymal phenotype that is marked by the loss of intercellular adhesion and by increased cell migration. During EMT, markers such as epithelial cadherin (E-cadherin), Crumbs and cytokeratins are downregulated, whereas mesenchymal markers such as vimentin are upregulated.

MDCK

(Madin Darby canine kidney). A polarized epithelial cell line that is widely used for the study of polarity, membrane trafficking and cell adhesion.

Apical–basal polarity

The polarity axis along the apical (uppermost) and basal plasma membrane domains. In epithelial cells the two plasma membrane domains have different protein and lipid composition, which are required to carry out directional transport of nutrients and waste between the two sides of the epithelium.

Basement membrane

The condensation of extracellular matrix components (collagens, laminins, distroglycans, elastins and others) that are secreted partly by epithelial cells and underlie connective tissue and vascular cells, to which epithelial cells attach through integrin receptors.

Integrin

Transmembrane proteins composed of two (α- and β-) subunits that link the actin cytoskeleton with extracellular components such as the basement membrane.

Front–rear polarity

A morphological characteristic of migratory cells wherein the front (leading edge) and the rear (uropod) show morphological and functional asymmetry.

Apical junctional complex

A belt-like structure at the border between apical and lateral domains that are formed by adherens junctions with a predominantly adhesive function and tight junctions (septate junctions in invertebrates) with a predominantly sealing role. Both junctions are formed by adhesive transmembrane proteins (claudin and occludin for tight junctions and E-cadherin for adherens junctions) and cytoplasmic 'plaque' proteins that link these junctions with the actin cytoskeleton.

Microvilli

Small plasma membrane protrusions at the surface of cells that increase the surface area and facilitate absorption and secretion.

Clathrin-mediated endocytosis

Formation of some types of endocytic vesicles at the plasma membrane, which is mediated by clathrin and clathrin adaptors such as adaptor protein 2 (AP-2).

Exosomes

Small vesicles that are released from cells by fusion of multivesicular bodies with the plasma membrane. They have multiple communication roles between cells.

Microtubule motors

A family of plus end and minus end directed kinesins and minus end directed dyneins that move transport vesicles and organelles along the cytoskeleton and across the viscous cytoplasm using ATP as an energy source.

Exocyst

A highly conserved octameric protein complex, which is part of a large group of 'tethering factors', that regulates the docking and fusion of transport vesicles with the plasma membrane.

SNAREs

Proteins that regulate secretory vesicle fusion.

Coat protein

Eukaryotic cells express coatomer protein and the clathrin family of coat proteins; they fold membranes to generate transport vesicles in cooperation with adaptors selecting specific cargo proteins that will be passengers during the transport to a different membrane.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rodriguez-Boulan, E., Macara, I. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 15, 225–242 (2014). https://doi.org/10.1038/nrm3775

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing