CELL CYCLE

Accurate chromosome segregation

microtubules. Kinetochores often

during mitosis depends on the correct

attachment of kinetochores to spindle

first bind to the side of microtubules

Forming healthy attachments

"

an Aurora Bindependent mechanism to control kinetochoremicrotubule attachments

STOCKBYTE

The authors visualized chromosome dynamics during the first division of Caenorhabditis elegans embryos to assess the formation of end-bound microtubule attachments. RZZ normally recruits dynein to kinetochores via Spindly, and together these proteins mediate initial lateral microtubule capture. The authors found that co-depletion of RZZ and Spindly allowed the formation of end-coupled attachments with only a slight delay, similar to that seen in the absence of dynein (which accelerates microtubule capture). However, if only Spindly was removed (and consequently dynein), end-bound attachments and chromosome segregation were inhibited, which suggests that RZZ inhibits the formation of end-bound attachments mediated by NDC-80.

By performing two-hybrid analysis with truncated versions of NDC-80 and ROD-1, and partially reconstituted RZZ complexes, Cheerambathur et al. found that RZZ directly interacts with NDC-80 via the ROD-1 amino-terminal domain and the NDC-80 N-terminal basic tail. The NDC-80 basic tail is normally phosphorylated by Aurora B, and this inhibits the interaction of NDC-80 with microtubules (which involves an adjacent CH domain). Here, the authors found that ROD-1 binding to the NDC-80 tail suppressed NDC-80 binding to microtubules in vitro independently of Aurora B.

To investigate the mechanisms underlying RZZ-dependent NDC-80 inhibition in vivo, the

authors used mutant versions of NDC-80, either lacking the basic tail or bearing a mutated tail that mimics Aurora B-dependent phosphorylation (that is, a version that fails to bind to microtubules in vitro). NDC-80 that lacks the tail was resistant to persistent RZZ-mediated inhibition when Spindly was removed. Importantly, phosphorylation-mimicking NDC-80 responded to Spindly depletion (and thus RZZ inhibition) *in vivo* in the same way as wild-type NDC-80: it could form end-coupled microtubule attachments (although with a delay) in the absence of RZZ, but this ability was entirely suppressed when Spindly was removed. Thus, RZZ regulates NDC-80 by interacting with its N-terminal tail, but this effect is independent of the direct contribution that the tail makes to NDC-80 microtubule binding in vitro.

This works uncovers an Aurora Bindependent mechanism to control kinetochore-microtubule attachments that depends on crosstalk between NDC-80 and RZZ. This may be a direct mechanism to prevent NDC-80-mediated end-coupled attachment during the initial phase of lateral capture and thus might minimise the risk of a kinetochore being erroneously linked to both spindle poles, leading to chromosome missegregation.

Kim Baumann

ORIGINAL RESEARCH PAPER Cheerambathur D. K. et al. Crosstalk between microtubule attachment complexes ensures accurate chromosome segregation. Science http://dx.doi. org/10.1126/science.1246232 (2013)