Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Peroxisomes take shape

Subjects

Key Points

  • Peroxisomes are dynamic and diverse organelles that are found in nearly all eukaryotic cells, and the disruption of their function is linked to peroxisome-related diseases. During biogenesis, peroxisomal membrane and matrix proteins are imported into peroxisomes, and this is mediated by the capacity of peroxisomes to import protein complexes.

  • Two mechanisms of peroxisome biogenesis, de novo generation and fission from pre-existing peroxisomes, have been characterized, and one possibility is that they are conditionally and coordinately regulated.

  • The regulation of peroxisome dynamics is mediated by multifunctional peroxins, which have potential roles in coordinating peroxisome proliferation (by de novo generation and fission) with inheritance and degradation to control peroxisome size and abundance. Exciting roles of peroxins in peroxisome differentiation, motility and inheritance are also emerging.

  • An important outstanding challenge is to elucidate how the processes that contribute to peroxisome dynamics are regulated and coordinated, and systems approaches such as mathematical modelling will be essential for tackling this.

Abstract

Peroxisomes carry out various oxidative reactions that are tightly regulated to adapt to the changing needs of the cell and varying external environments. Accordingly, they are remarkably fluid and can change dramatically in abundance, size, shape and content in response to numerous cues. These dynamics are controlled by multiple aspects of peroxisome biogenesis that are coordinately regulated with each other and with other cellular processes. Ongoing studies are deciphering the diverse molecular mechanisms that underlie biogenesis and how they cooperate to dynamically control peroxisome utility. These important challenges should lead to an understanding of peroxisome dynamics that can be capitalized upon for bioengineering and the development of therapies to improve human health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peroxisome dynamics.
Figure 2: Direct targeting of proteins to peroxisomes.
Figure 3: Peroxisomes can form through two pathways.

Similar content being viewed by others

References

  1. Islinger, M., Grille, S., Fahimi, H. D. & Schrader, M. The peroxisome: an update on mysteries. Histochem. Cell Biol. 137, 547–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Pieuchot, L. & Jedd, G. Peroxisome assembly and functional diversity in eukaryotic microorganisms. Annu. Rev. Microbiol. 66, 237–263 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Kunau, W. H. Peroxisome biogenesis: end of the debate. Curr. Biol. 15, R774–R776 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, F., Lu, Y., Pieuchot, L., Dhavale, T. & Jedd, G. Import oligomers induce positive feedback to promote peroxisome differentiation and control organelle abundance. Dev. Cell 21, 457–468 (2011). Elucidates a cellular mechanism for generating two distinct subpopulations of peroxisomes in the same cell.

    Article  CAS  PubMed  Google Scholar 

  5. Till, A., Lakhani, R., Burnett, S. F. & Subramani, S. Pexophagy: the selective degradation of peroxisomes. Int. J. Cell Biol. 2012, 512721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fagarasanu, A., Mast, F. D., Knoblach, B. & Rachubinski, R. A. Molecular mechanisms of organelle inheritance: lessons from peroxisomes in yeast. Nature Rev. Mol. Cell Biol. 11, 644–654 (2010).

    Article  CAS  Google Scholar 

  7. De Duve, C. & Baudhuin, P. Peroxisomes (microbodies and related particles). Physiol. Rev. 46, 323–357 (1966).

    Article  CAS  PubMed  Google Scholar 

  8. Wanders, R. J. Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol. Genet. Metab. 83, 16–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Grabenbauer, M., Satzler, K., Baumgart, E. & Fahimi, H. D. Three-dimensional ultrastructural analysis of peroxisomes in HepG2 cells. Absence of peroxisomal reticulum but evidence of close spatial association with the endoplasmic reticulum. Cell Biochem. Biophys. 32, 37–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Schrader, M. & Fahimi, H. D. Peroxisomes and oxidative stress. Biochim. Biophys. Acta 1763, 1755–1766 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Hoivik, D. J. et al. Fibrates induce hepatic peroxisome and mitochondrial proliferation without overt evidence of cellular proliferation and oxidative stress in cynomolgus monkeys. Carcinogenesis 25, 1757–1769 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Ishizuka, M. et al. Overexpression of human acyl-CoA thioesterase upregulates peroxisome biogenesis. Exp. Cell Res. 297, 127–141 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Jung, S. et al. Global analysis of condition-specific subcellular protein distribution and abundance. Mol. Cell Proteom. 12, 1421–1435 (2013). A novel large-scale analysis of dynamic changes in protein abundance and subcellular compartmentalization in response to an environmental stimulus.

    Article  CAS  Google Scholar 

  14. Kiel, J. A., van der Klei, I. J., van den Berg, M. A., Bovenberg, R. A. & Veenhuis, M. Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum. Fungal Genet. Biol. 42, 154–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Lizana, L., Bauer, B. & Orwar, O. Controlling the rates of biochemical reactions and signaling networks by shape and volume changes. Proc. Natl Acad. Sci. USA 105, 4099–4104 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Minton, A. P. How can biochemical reactions within cells differ from those in test tubes? J. Cell Sci. 119, 2863–2869 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Watters, D. et al. Localization of a portion of extranuclear ATM to peroxisomes. J. Biol. Chem. 274, 34277–34282 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Jung, S., Marelli, M., Rachubinski, R. A., Goodlett, D. R. & Aitchison, J. D. Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress. J. Biol. Chem. 285, 6739–6749 (2010). Shows conditional redistribution of a protein among the cytosol, peroxiomes and the nucleus, and provides evidence for a mechanism to conditionally activate a peroxisomal targeting signal through phosphorylation.

    Article  CAS  PubMed  Google Scholar 

  19. Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O. & Sinclair, D. A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181–185 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beach, A. et al. Integration of peroxisomes into an endomembrane system that governs cellular aging. Front. Physiol. 3, 283 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mignarri, A. et al. Zellweger spectrum disorder with mild phenotype caused by PEX2 gene mutations. JIMD Rep. 6, 43–46 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Matsui, S., Funahashi, M., Honda, A. & Shimozawa, N. Newly identified milder phenotype of peroxisome biogenesis disorder caused by mutated PEX3 gene. Brain Dev. 35, 842–848 (2012).

    Article  PubMed  Google Scholar 

  23. Thoms, S. & Gartner, J. First PEX11β patient extends spectrum of peroxisomal biogenesis disorder phenotypes. J. Med. Genet. 49, 314–316 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Ebberink, M. S. et al. A novel defect of peroxisome division due to a homozygous non-sense mutation in the PEX11β gene. J. Med. Genet. 49, 307–313 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Yakunin, E. et al. α-synuclein abnormalities in mouse models of peroxisome biogenesis disorders. J. Neurosci. Res. 88, 866–876 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Santos, M. J. et al. Peroxisomal proliferation protects from β-amyloid neurodegeneration. J. Biol. Chem. 280, 41057–41068 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Mast, F. D. et al. A Drosophila model for the Zellweger spectrum of peroxisome biogenesis disorders. Dis. Model. Mech. 4, 659–672 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kiel, J. A., Veenhuis, M. & van der Klei, I. J. PEX genes in fungal genomes: common, rare or redundant. Traffic 7, 1291–1303 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, X. et al. Multiple targeting modules on peroxisomal proteins are not redundant: discrete functions of targeting signals within Pmp47 and Pex8p. Mol. Biol. Cell 15, 1702–1710 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walton, P. A., Hill, P. E. & Subramani, S. Import of stably folded proteins into peroxisomes. Mol. Biol. Cell 6, 675–683 (1995). Shows that stably folded proteins can be imported into peroxisomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Antonenkov, V. D., Sormunen, R. T. & Hiltunen, J. K. The rat liver peroxisomal membrane forms a permeability barrier for cofactors but not for small metabolites in vitro. J. Cell Sci. 117, 5633–5642 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Smith, J. J. & Aitchison, J. D. Regulation of peroxisome dynamics. Curr. Opin. Cell Biol. 21, 119–126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Erdmann, R. & Schliebs, W. Peroxisomal matrix protein import: the transient pore model. Nature Rev. Mol. Cell Biol. 6, 738–742 (2005).

    Article  CAS  Google Scholar 

  34. Liu, X., Ma, C. & Subramani, S. Recent advances in peroxisomal matrix protein import. Curr. Opin. Cell Biol. 24, 484–489 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Platta, H. W., Hagen, S. & Erdmann, R. The exportomer: the peroxisomal receptor export machinery. Cell. Mol. Life Sci. 70, 1393–1411 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Meinecke, M. et al. The peroxisomal importomer constitutes a large and highly dynamic pore. Nature Cell Biol. 12, 273–277 (2010). Gains mechanistic insight into how oligomeric proteins are translocated into peroxisomes. Membrane-associated import receptor Pex5, with its docking partner Pex14, forms a gated ion-conducting channel, which can be opened to a diameter of 9 nm.

    Article  CAS  PubMed  Google Scholar 

  37. Ma, C., Schumann, U., Rayapuram, N. & Subramani, S. The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p. Mol. Biol. Cell 20, 3680–3689 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gouveia, A. M., Reguenga, C., Oliveira, M. E., Sa-Miranda, C. & Azevedo, J. E. Characterization of peroxisomal Pex5p from rat liver. Pex5p in the Pex5p–Pex14p membrane complex is a transmembrane protein. J. Biol. Chem. 275, 32444–32451 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Kerssen, D. et al. Membrane association of the cycling peroxisome import receptor Pex5p. J. Biol. Chem. 281, 27003–27015 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Itoh, R. & Fujiki, Y. Functional domains and dynamic assembly of the peroxin Pex14p, the entry site of matrix proteins. J. Biol. Chem. 281, 10196–10205 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Schliebs, W. et al. Recombinant human peroxisomal targeting signal receptor PEX5. Structural basis for interaction of PEX5 with PEX14. J. Biol. Chem. 274, 5666–5673 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Niederhoff, K. et al. Yeast Pex14p possesses two functionally distinct Pex5p and one Pex7p binding sites. J. Biol. Chem. 280, 35571–35578 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Subramani, S. Hitchhiking fads en route to peroxisomes. J. Cell Biol. 156, 415–417 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gould, S. J. & Collins, C. S. Peroxisomal–protein import: is it really that complex? Nature Rev. Mol. Cell Biol. 3, 382–389 (2002).

    Article  CAS  Google Scholar 

  45. Crookes, W. J. & Olsen, L. J. The effects of chaperones and the influence of protein assembly on peroxisomal protein import. J. Biol. Chem. 273, 17236–17242 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Freitas, M. O. et al. PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the N-terminal domain of PEX14. J. Biol. Chem. 286, 40509–40519 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leon, S. et al. Dynamics of the peroxisomal import cycle of PpPex20p: ubiquitin-dependent localization and regulation. J. Cell Biol. 172, 67–78 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Platta, H. W. et al. Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. J. Cell Biol. 177, 197–204 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Platta, H. W. et al. Pex2 and pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Mol. Cell. Biol. 29, 5505–5516 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Platta, H. W., Grunau, S., Rosenkranz, K., Girzalsky, W. & Erdmann, R. Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nature Cell Biol. 7, 817–822 (2005). Identifies a role for AAA peroxins in the ADP-dependent dislocation of the PTS1-receptor from the peroxisomal membrane.

    Article  CAS  PubMed  Google Scholar 

  51. Miyata, N. & Fujiki, Y. Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol. Cell. Biol. 25, 10822–10832 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Birschmann, I. et al. Pex15p of Saccharomyces cerevisiae provides a molecular basis for recruitment of the AAA peroxin Pex6p to peroxisomal membranes. Mol. Biol. Cell 14, 2226–2236 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Matsumoto, N., Tamura, S. & Fujiki, Y. The pathogenic peroxin Pex26p recruits the Pex1p–Pex6p AAA ATPase complexes to peroxisomes. Nature Cell Biol. 5, 454–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Schliebs, W., Girzalsky, W. & Erdmann, R. Peroxisomal protein import and ERAD: variations on a common theme. Nature Rev. Mol. Cell Biol. 11, 885–890 (2010).

    Article  CAS  Google Scholar 

  55. Gabaldon, T. et al. Origin and evolution of the peroxisomal proteome. Biol. Direct 1, 8 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schluter, A. et al. The evolutionary origin of peroxisomes: an ER–peroxisome connection. Mol. Biol. Evol. 23, 838–845 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Leon, S. & Subramani, S. A conserved cysteine residue of Pichia pastoris Pex20p is essential for its recycling from the peroxisome to the cytosol. J. Biol. Chem. 282, 7424–7430 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Agrawal, G., Joshi, S. & Subramani, S. Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 108, 9113–9118 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hensel, A. et al. Cysteine-dependent ubiquitination of Pex18p is linked to cargo translocation across the peroxisomal membrane. J. Biol. Chem. 286, 43495–43505 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Glover, J. R., Andrews, D. W. & Rachubinski, R. A. Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc. Natl Acad. Sci. USA 91, 10541–10545 (1994). The first example of endogenous import of an oligomeric protein into peroxisomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, X., Purdue, P. E. & Lazarow, P. B. Eci1p uses a PTS1 to enter peroxisomes: either its own or that of a partner, Dci1p. Eur. J. Cell Biol. 80, 126–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Thoms, S., Debelyy, M. O., Nau, K., Meyer, H. E. & Erdmann, R. Lpx1p is a peroxisomal lipase required for normal peroxisome morphology. FEBS J. 275, 504–514 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Williams, C., Bener Aksam, E., Gunkel, K., Veenhuis, M. & van der Klei, I. J. The relevance of the non-canonical PTS1 of peroxisomal catalase. Biochim. Biophys. Acta 1823, 1133–1141 (2012). Shows the biological relevance of a weak peroxisomal targeting signal and the importance of oligomeric import into peroxisomes for peroxisome function.

    Article  CAS  PubMed  Google Scholar 

  64. Smith, J. J. et al. Transcriptome profiling to identify genes involved in peroxisome assembly and function. J. Cell Biol. 158, 259–271 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ma, C., Hagstrom, D., Polley, S. G. & Subramani, S. Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5. J. Biol. Chem. 288, 27220–27231 (2013). Gains mechanistic understanding of cargo release by the PTS1 receptor into the peroxisomal matrix. Also identifies a mechanism for regulation of matrix protein import in response to the environment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Theodoulou, F. L., Bernhardt, K., Linka, N. & Baker, A. Peroxisome membrane proteins: multiple trafficking routes and multiple functions? Biochem. J. 451, 345–352 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Jones, J. M., Morrell, J. C. & Gould, S. J. PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins. J. Cell Biol. 164, 57–67 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Matsuzaki, T. & Fujiki, Y. The peroxisomal membrane protein import receptor Pex3p is directly transported to peroxisomes by a novel Pex19p- and Pex16p-dependent pathway. J. Cell Biol. 183, 1275–1286 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fransen, M. et al. Potential role for Pex19p in assembly of PTS-receptor docking complexes. J. Biol. Chem. 279, 12615–12624 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Thoms, S., Harms, I., Kalies, K. U. & Gartner, J. Peroxisome formation requires the endoplasmic reticulum channel protein Sec61. Traffic 13, 599–609 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. van der Zand, A., Braakman, I. & Tabak, H. F. Peroxisomal membrane proteins insert into the endoplasmic reticulum. Mol. Biol. Cell 21, 2057–2065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schuldiner, M. et al. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134, 634–645 (2008). Characterizes the mechanism for insertion of tail-anchored proteins including Pex15 into the ER membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, P. K., Mullen, R. T., Schumann, U. & Lippincott-Schwartz, J. The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J. Cell Biol. 173, 521–532 (2006). Demonstrates that peroxisomes can arise from the ER in mammalian cells and that this is the dominant pathway of peroxisome formation in wild-type cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Motley, A. M. & Hettema, E. H. Yeast peroxisomes multiply by growth and division. J. Cell Biol. 178, 399–410 (2007). A landmark paper that develops an assay to follow the fate of existing peroxisomes in live cells. Uses the assay to gain many important insights into both pathways of peroxisome generation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hoepfner, D., Schildknegt, D., Braakman, I., Philippsen, P. & Tabak, H. F. Contribution of the endoplasmic reticulum to peroxisome formation. Cell 122, 85–95 (2005). Demonstrates that peroxisomes are generated from domains of the ER. It also reports the development of an assay for following newly made peroxisomes from the ER in live cells for characterizing de novo generation of peroxisomes.

    Article  CAS  PubMed  Google Scholar 

  76. Voorn-Brouwer, T., Kragt, A., Tabak, H. F. & Distel, B. Peroxisomal membrane proteins are properly targeted to peroxisomes in the absence of COPI- and COPII-mediated vesicular transport. J. Cell Sci. 114, 2199–2204 (2001).

    CAS  PubMed  Google Scholar 

  77. South, S. T., Sacksteder, K. A., Li, X., Liu, Y. & Gould, S. J. Inhibitors of COPI and COPII do not block PEX3-mediated peroxisome synthesis. J. Cell Biol. 149, 1345–1360 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lam, S. K., Yoda, N. & Schekman, R. A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 107, 21523–21528 (2010). Develops the first cell-free preperoxisomal vesicle-budding reaction from microsomal membranes and shows that the process requires Pex19, cytosol and ATP.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Smith, J. J. et al. Expression and functional profiling reveal distinct gene classes involved in fatty acid metabolism. Mol. Syst. Biol. 2, 2006.0009 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lockshon, D., Surface, L. E., Kerr, E. O., Kaeberlein, M. & Kennedy, B. K. The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics 175, 77–91 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Perry, R. J., Mast, F. D. & Rachubinski, R. A. Endoplasmic reticulum-associated secretory proteins Sec20p, Sec39p, and Dsl1p are involved in peroxisome biogenesis. Eukaryot. Cell 8, 830–843 (2009). Initiates an important movement towards screening essential genes for roles in peroxisome biogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van der Zand, A., Gent, J., Braakman, I. & Tabak, H. F. Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. Cell 149, 397–409 (2012). Characterizes an elegant mechanism to maintain biochemical identity of peroxisomes during their de novo generation from the ER.

    Article  CAS  PubMed  Google Scholar 

  83. Tam, Y. Y., Fagarasanu, A., Fagarasanu, M. & Rachubinski, R. A. Pex3p initiates the formation of a preperoxisomal compartment from a subdomain of the endoplasmic reticulum in Saccharomyces cerevisiae. J. Biol. Chem. 280, 34933–34939 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Pan, R. & Hu, J. The conserved fission complex on peroxisomes and mitochondria. Plant Signal. Behav. 6, 870–872 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Loson, O. C., Song, Z., Chen, H. & Chan, D. C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24, 659–667 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nagotu, S., Saraya, R., Otzen, M., Veenhuis, M. & van der Klei, I. J. Peroxisome proliferation in Hansenula polymorpha requires Dnm1p which mediates fission but not de novo formation. Biochim. Biophys. Acta 1783, 760–769 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Li, X. & Gould, S. J. The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. J. Biol. Chem. 278, 17012–17020 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Koch, J. & Brocard, C. PEX11 proteins attract Mff and human Fis1 to coordinate peroxisomal fission. J. Cell Sci. 125, 3813–3826 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Schrader, M., Bonekamp, N. A. & Islinger, M. Fission and proliferation of peroxisomes. Biochim. Biophys. Acta 1822, 1343–1357 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Opalinski, L., Kiel, J. A., Williams, C., Veenhuis, M. & van der Klei, I. J. Membrane curvature during peroxisome fission requires Pex11. EMBO J. 30, 5–16 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Schrader, M. et al. Expression of PEX11β mediates peroxisome proliferation in the absence of extracellular stimuli. J. Biol. Chem. 273, 29607–29614 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Koch, A., Yoon, Y., Bonekamp, N. A., McNiven, M. A. & Schrader, M. A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 16, 5077–5086 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Motley, A. M., Ward, G. P. & Hettema, E. H. Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p. J. Cell Sci. 121, 1633–1640 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Knoblach, B. & Rachubinski, R. A. Phosphorylation-dependent activation of peroxisome proliferator protein PEX11 controls peroxisome abundance. J. Biol. Chem. 285, 6670–6680 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Joshi, S., Agrawal, G. & Subramani, S. Phosphorylation-dependent Pex11p and Fis1p interaction regulates peroxisome division. Mol. Biol. Cell 23, 1307–1315 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Marshall, P. A., Dyer, J. M., Quick, M. E. & Goodman, J. M. Redox-sensitive homodimerization of Pex11p: a proposed mechanism to regulate peroxisomal division. J. Cell Biol. 135, 123–137 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Levak-Frank, S. et al. Muscle-specific overexpression of lipoprotein lipase causes a severe myopathy characterized by proliferation of mitochondria and peroxisomes in transgenic mice. J. Clin. Invest. 96, 976–986 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Epstein, C. B. et al. Genome-wide responses to mitochondrial dysfunction. Mol. Biol. Cell 12, 297–308 (2001). Shows that peroxisome biogenesis is dramatically induced by respiratory deficiency and identifies the cellular coordination of peroxisome biogenesis with mitochondrial function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Butow, R. A. & Avadhani, N. G. Mitochondrial signaling: the retrograde response. Mol. Cell 14, 1–15 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Titorenko, V. I., Chan, H. & Rachubinski, R. A. Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica. J. Cell Biol. 148, 29–44 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Titorenko, V. I. & Rachubinski, R. A. Peroxisomal membrane fusion requires two AAA family ATPases, Pex1p and Pex6p. J. Cell Biol. 150, 881–886 (2000). Identifies and characterizes the mechanism of vesicle fusion in peroxisome biogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Nickel, W. & Rabouille, C. Mechanisms of regulated unconventional protein secretion. Nature Rev. Mol. Cell Biol. 10, 148–155 (2009).

    Article  CAS  Google Scholar 

  104. Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nature Rev. Mol. Cell Biol. 10, 623–635 (2009).

    Article  CAS  Google Scholar 

  105. Yan, M., Rayapuram, N. & Subramani, S. The control of peroxisome number and size during division and proliferation. Curr. Opin. Cell Biol. 17, 376–383 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Lazarow, P. B. Peroxisome biogenesis: advances and conundrums. Curr. Opin. Cell Biol. 15, 489–497 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Saraya, R., Krikken, A. M., Veenhuis, M. & van der Klei, I. J. Peroxisome reintroduction in Hansenula polymorpha requires Pex25 and Rho1. J. Cell Biol. 193, 885–900 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Waterham, H. R. & Ebberink, M. S. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim. Biophys. Acta 1822, 1430–1441 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Fagarasanu, A., Fagarasanu, M., Eitzen, G. A., Aitchison, J. D. & Rachubinski, R. A. The peroxisomal membrane protein Inp2p is the peroxisome-specific receptor for the myosin V motor Myo2p of Saccharomyces cerevisiae. Dev. Cell 10, 587–600 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Fagarasanu, M., Fagarasanu, A., Tam, Y. Y., Aitchison, J. D. & Rachubinski, R. A. Inp1p is a peroxisomal membrane protein required for peroxisome inheritance in Saccharomyces cerevisiae. J. Cell Biol. 169, 765–775 (2005). Describes the first peroxisomal protein directly implicated in peroxisome inheritance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Reggiori, F., Monastyrska, I., Shintani, T. & Klionsky, D. J. The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 16, 5843–5856 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bharti, P. et al. PEX14 is required for microtubule-based peroxisome motility in human cells. J. Cell Sci. 124, 1759–1768 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Stelter, P. et al. Molecular basis for the functional interaction of dynein light chain with the nuclear-pore complex. Nature Cell Biol. 9, 788–796 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Zutphen, T., Veenhuis, M. & van der Klei, I. J. Pex14 is the sole component of the peroxisomal translocon that is required for pexophagy. Autophagy 4, 63–66 (2008).

    Article  PubMed  Google Scholar 

  115. Cogliati, S. et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160–171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Koerkamp, M. G. et al. Dissection of transient oxidative stress response in Saccharomyces cerevisiae by using DNA microarrays. Mol. Biol. Cell 13, 2783–2794 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Smith, J. J. et al. Transcriptional responses to fatty acid are coordinated by combinatorial control. Mol. Syst. Biol. 3, 115 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Smith, J. J., Brown, T. W., Eitzen, G. A. & Rachubinski, R. A. Regulation of peroxisome size and number by fatty acid β-oxidation in the yeast Yarrowia lipolytica. J. Biol. Chem. 275, 20168–20178 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Poll-The, B. T. et al. A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo-neonatal adrenoleukodystrophy). Am. J. Hum. Genet. 42, 422–434 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Chang, C. C. et al. Metabolic control of peroxisome abundance. J. Cell Sci. 112, 1579–1590 (1999).

    CAS  PubMed  Google Scholar 

  121. Saleem, R. A. et al. Integrated phosphoproteomics analysis of a signaling network governing nutrient response and peroxisome induction. Mol. Cell Proteom. 9, 2076–2088 (2010).

    Article  CAS  Google Scholar 

  122. Guo, T. et al. A signal from inside the peroxisome initiates its division by promoting the remodeling of the peroxisomal membrane. J. Cell Biol. 177, 289–303 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Knoblach, B. et al. An ER–peroxisome tether exerts peroxisome population control in yeast. EMBO J. 32, 2439–2453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. David, C. et al. A combined approach of quantitative interaction proteomics and live-cell imaging reveals a regulatory role for endoplasmic reticulum (ER) reticulon homology proteins in peroxisome biogenesis. Mol. Cell Proteom. 12, 2408–2425 (2013).

    Article  CAS  Google Scholar 

  125. Motley, A. M., Nuttall, J. M. & Hettema, E. H. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 31, 2852–2868 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bellu, A. R., Salomons, F. A., Kiel, J. A., Veenhuis, M. & Van Der Klei, I. J. Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha. J. Biol. Chem. 277, 42875–42880 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Farre, J. C., Manjithaya, R., Mathewson, R. D. & Subramani, S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell 14, 365–376 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. van Zutphen, T., Veenhuis, M. & van der Klei, I. J. Damaged peroxisomes are subject to rapid autophagic degradation in the yeast Hansenula polymorpha. Autophagy 7, 863–872 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Munck, J. M., Motley, A. M., Nuttall, J. M. & Hettema, E. H. A dual function for Pex3p in peroxisome formation and inheritance. J. Cell Biol. 187, 463–471 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chang, J. et al. Pex3 peroxisome biogenesis proteins function in peroxisome inheritance as class V myosin receptors. J. Cell Biol. 187, 233–246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Huber, A., Koch, J., Kragler, F., Brocard, C. & Hartig, A. A subtle interplay between three Pex11 proteins shapes de novo formation and fission of peroxisomes. Traffic 13, 157–167 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Krikken, A. M., Veenhuis, M. & van der Klei, I. J. Hansenula polymorpha pex11 cells are affected in peroxisome retention. FEBS J. 276, 1429–1439 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Otzen, M. et al. Pex19p contributes to peroxisome inheritance in the association of peroxisomes to Myo2p. Traffic 13, 947–959 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Bellu, A. R., Komori, M., van der Klei, I. J., Kiel, J. A. & Veenhuis, M. Peroxisome biogenesis and selective degradation converge at Pex14p. J. Biol. Chem. 276, 44570–44574 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Lazarow, P. B. & Fujiki, Y. Biogenesis of peroxisomes. Annu. Rev. Cell Biol. 1, 489–530 (1985).

    Article  CAS  PubMed  Google Scholar 

  136. Yamamoto, K. & Fahimi, H. D. Three-dimensional reconstruction of a peroxisomal reticulum in regenerating rat liver: evidence of interconnections between heterogeneous segments. J. Cell Biol. 105, 713–722 (1987).

    Article  CAS  PubMed  Google Scholar 

  137. Schrader, M., Wodopia, R. & Fahimi, H. D. Induction of tubular peroxisomes by UV irradiation and reactive oxygen species in HepG2 cells. J. Histochem. Cytochem. 47, 1141–1148 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Islinger, M., Abdolzade-Bavil, A., Liebler, S., Weber, G. & Volkl, A. Assessing heterogeneity of peroxisomes: isolation of two subpopulations from rat liver. Methods Mol. Biol. 909, 83–96 (2012).

    CAS  PubMed  Google Scholar 

  139. Manivannan, S., de Boer, R., Veenhuis, M. & van der Klei, I. J. Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events. Autophagy 9, 1044–1056 (2013). Identifies a cellular process generating two distinct subpopulations of peroxisomes in the same cell by a mechanism involving protein aggregation and asymmetric fission.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu, F. et al. Making two organelles from one: Woronin body biogenesis by peroxisomal protein sorting. J. Cell Biol. 180, 325–339 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nishimura, M., Hayashi, M., Kato, A., Yamaguchi, K. & Mano, S. Functional transformation of microbodies in higher plant cells. Cell Struct. Funct. 21, 387–393 (1996).

    Article  CAS  PubMed  Google Scholar 

  142. Moyersoen, J., Choe, J., Fan, E., Hol, W. G. & Michels, P. A. Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. FEMS Microbiol. Rev. 28, 603–643 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Saleem, R. A. et al. Genome-wide analysis of signaling networks regulating fatty acid-induced gene expression and organelle biogenesis. J. Cell Biol. 181, 281–292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Butow, R. A. Cellular responses to mitochondrial dysfunction: it's not always downhill. Cell Death Differ. 9, 1043–1045 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Danziger, S. A. et al. Molecular mechanisms of system responses to novel stimuli are predictable from public datasets. Nucleic Acids Res. http://dx.doi.org/10.1093/nar/gkt938 (2013).

  146. Zeigerer, A. et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature 485, 465–470 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Binder, B., Goede, A., Berndt, N. & Holzhutter, H. G. A conceptual mathematical model of the dynamic self-organisation of distinct cellular organelles. PLoS ONE 4, e8295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nagan, N. & Zoeller, R. A. Plasmalogens: biosynthesis and functions. Prog. Lipid Res. 40, 199–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Diano, S. et al. Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nature Med. 17, 1121–1127 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Dixit, E. et al. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141, 668–681 (2010). Identifies a role for peroxisomes in antiviral signal transduction in macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Smith, J. J. et al. Environment-responsive transcription factors bind subtelomeric elements and regulate gene silencing. Mol. Syst. Biol. 7, 455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Smith, J. J., Saleem, R. A. & Aitchison, J. D. Statistical analysis of dynamic transcriptional regulatory network structure. Methods Mol. Biol. 781, 337–352 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Ratushny, A. V. et al. Control of transcriptional variability by overlapping feed-forward regulatory motifs. Biophys. J. 95, 3715–3723 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ratushny, A. V., Saleem, R. A., Sitko, K., Ramsey, S. A. & Aitchison, J. D. Asymmetric positive feedback loops reliably control biological responses. Mol. Syst. Biol. 8, 577 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ratushny, A. V., Ramsey, S. A. & Aitchison, J. D. Mathematical modeling of biomolecular network dynamics. Methods Mol. Biol. 781, 415–433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ratushny, A. V., Shmulevich, I. & Aitchison, J. D. Trade-off between responsiveness and noise suppression in biomolecular system responses to environmental cues. PLoS Comput. Biol. 7, e1002091 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ramsey, S. A. et al. Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast. Nature Genet. 38, 1082–1087 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. van Zutphen, T. & van der Klei, I. J. Quantitative analysis of organelle abundance, morphology and dynamics. Curr. Opin. Biotechnol. 22, 127–132 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Bassett, D. et al. Detecting patterns of protein distribution and gene expression in silico. Proc. Natl Acad. Sci. USA 102, 516 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Kal, A. J. et al. In silicio search for genes encoding peroxisomal proteins in Saccharomyces cerevisiae. Cell Biochem. Biophys. 32, 1–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Marelli, M. et al. Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. J. Cell Biol. 167, 1099–1112 (2004). A global analysis of the peroxisomal proteome. Uses an isotope-coded affinity tagging approach to calculate the relative enrichment of proteins with peroxisomal membranes and to eliminate false positives.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yi, E. C. et al. Approaching complete peroxisome characterization by gas-phase fractionation. Electrophoresis 23, 3205–3216 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Schafer, H., Nau, K., Sickmann, A., Erdmann, R. & Meyer, H. E. Identification of peroxisomal membrane proteins of Saccharomyces cerevisiae by mass spectrometry. Electrophoresis 22, 2955–2968 (2001).

    Article  CAS  PubMed  Google Scholar 

  164. Saleem, R. A. et al. Genome-wide analysis of effectors of peroxisome biogenesis. PLoS ONE 5, e11953 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wolinski, H. et al. Imaging-based live cell yeast screen identifies novel factors involved in peroxisome assembly. J. Proteome Res. 8, 20–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Knijnenburg, T. A. et al. A regression model approach to enable cell morphology correction in high-throughput flow cytometry. Mol. Syst. Biol. 7, 531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Halbach, A. et al. Targeting of the tail-anchored peroxisomal membrane proteins PEX26 and PEX15 occurs through C-terminal PEX19-binding sites. J. Cell Sci. 119, 2508–2517 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Managadze, D. et al. Identification of PEX33, a novel component of the peroxisomal docking complex in the filamentous fungus Neurospora crassa. Eur. J. Cell Biol. 89, 955–964 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Kuravi, K. et al. Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae. J. Cell Sci. 119, 3994–4001 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Jeynov, B., Lay, D., Schmidt, F., Tahirovic, S. & Just, W. W. Phosphoinositide synthesis and degradation in isolated rat liver peroxisomes. FEBS Lett. 580, 5917–5924 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in the authors' laboratory was supported by the US National Institutes of Health Grants P50 GM076547, U01GM098256, U54GM103511 and GM075152. The authors thank the Luxembourg Centre for Systems Biomedicine, the Life Sciences Discovery Fund and the University of Luxembourg for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer J. Smith or John D. Aitchison.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Peroxisome inheritance

The active recruitment of peroxisomes from a mother cell to a daughter cell during cell division, and the retention of peroxisomes in the mother cell and the bud to ensure equitable distribution of peroxisomes between the two cells.

Peroxins

Proteins that are encoded by PEX genes and that are involved in peroxisome biogenesis (excluding transcriptional regulators).

PEX genes

Genes encoding proteins that are involved in peroxisome biogenesis (excluding those involved in transcriptional regulation). The numbers reflect the order in which they were identified.

Peroxisome biogenesis disorders

(PBDs). A group of developmental brain disorders with a prevalence of 1:50,000. These disorders are caused by mutations in peroxin (PEX) genes which lead to dysfunctional peroxisome biogenesis. PBDs, or Zellweger syndrome spectrum (ZSS), include, in decreasing order of severity, Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD) and infantile refsum disease (IRD).

PTS1

The carboxy-terminal peroxisomal targeting signal 1 (with the sequence (Ser/Ala/Cys)(Lys/Arg/His)(Leu/Met/Ile)) is found on most matrix proteins.

PTS2

The peroxisomal targeting signal type 2 (with the sequence (Arg/Lys)(Leu/Val/Ile)(Xaa)5(His/Gln)(Leu/Arg); where Xaa represents any amino acid) is located near the amino terminus of some peroxisomal matrix proteins. It is found much less commonly than PTS1 motifs.

Transient pore hypothesis

A model of matrix protein import into peroxisomes. It involves the transient existence of a protein-conducting translocon that assembles after docking of the receptor–cargo complex to peroxisomes and disassembles after translocation.

Membrane invagination model

A model of matrix protein import into peroxisomes. At the site where receptor–cargo complexes dock on the surface of a peroxisome, the membrane invaginates and 'pinches off' to form an intraperoxisomal vesicle that is surrounded by a single membrane which is later degraded to release its contents into the peroxisome.

Preimplex hypothesis

A model of the early steps of matrix protein import into peroxisomes. Multiple peroxisomal PEX5 receptors interact with multiple cargoes in the cytoplasm to form so-called preimplexes, which are necessary for the efficient import of cargo into peroxisomes.

RING

A zinc-finger-type domain that is found in many proteins involved in the ubiquitylation pathway, including RING finger group proteins in peroxisomal membranes (peroxin 2 (PEX2), PEX10 and PEX12).

AAA-type ATPase

A large family of ATPases, including peroxin 1 (PEX1) and PEX6, that contain an ATPase domain. These proteins can drive remodelling or translocation of macromolecules through ATP hydrolysis.

Membrane PTS

(mPTS). A targeting signal of peroxisomal membrane proteins. The consensus sequence is not well defined and may be discontinuous. It can consist of basic amino acids that have been predicted to form an α-helix that is either adjacent to a transmembrane segment or in a matrix-facing loop.

Peroxisomal ER

Subdomain of the endoplasmic reticulum that is the site of peroxisome formation.

Preperoxisomal vesicles

Vesicles that have budded from the endoplasmic reticulum and are destined to become mature peroxisomes.

Mature peroxisomes

A functional peroxisome that is capable of matrix protein import.

Dynamin-related proteins

(DRPs). Primarily cytosolic GTPases that are involved in membrane fusion and fission. They are recruited to peroxisomal membranes by tail-anchored membrane receptor proteins called DRP-binding proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J., Aitchison, J. Peroxisomes take shape. Nat Rev Mol Cell Biol 14, 803–817 (2013). https://doi.org/10.1038/nrm3700

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3700

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing