Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche

Key Points

  • Epidermal stem cells are essential for maintaining a constant supply of cells that ensure proper hair cycling and for the formation of the barrier provided by the skin.

  • Epidermal stem cells reside in specialized niches at the basal layer of the interfollicular epidermis and at the permanent area of the hair follicle.

  • There is an unexpected heterogeneity among the hair follicle stem cells, generating specialized populations that display functional differences and differential lineage preference.

  • The microenvironment of the hair follicle contributes to the regulation of stem cell function, but hair follicle stem cells also instruct the behaviour other cell types and structures around the hair follicle.

Abstract

In the past years, our view of the molecular and cellular mechanisms that ensure the self-renewal of the skin has dramatically changed. Several populations of stem cells have been identified that differ in their spatio-temporal contribution to their compartment in steady-state and damaged conditions, suggesting that epidermal stem cell heterogeneity is far greater than previously anticipated. There is also increasing evidence that these different stem cells require a tightly controlled spatial and temporal communication between other skin residents to carry out their function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The epidermis.
Figure 2: Architecture of the interfollicular epidermis.
Figure 3: Hair follicle stem cell pools.
Figure 4: Microenvironment surrounding hair follicle stem cells.

Similar content being viewed by others

References

  1. Blanpain, C. & Fuchs, E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nature Rev. Mol. Cell Biol. 10, 207–217 (2009).

    Article  CAS  Google Scholar 

  2. Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T. & Lavker, R. M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451–461 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Braun, K. M. et al. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130, 5241–5255 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotech. 22, 411–417 (2004).

    Article  CAS  Google Scholar 

  7. Ghazizadeh, S. & Taichman, L. B. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J. 20, 1215–1222 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med. 11, 1351–1354 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Levy, V., Lindon, C., Zheng, Y., Harfe, B. D. & Morgan, B. A. Epidermal stem cells arise from the hair follicle after wounding. FASEB J. 21, 1358–1366 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104, 233–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Potten, C. S. & Hendry, J. H. Letter: clonogenic cells and stem cells in epidermis. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 24, 537–540 (1973).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Y., Lyle, S., Yang, Z. & Cotsarelis, G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol. 121, 963–968 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Potten, C. S. & Morris, R. J. Epithelial stem cells in vivo. J. Cell Sci. Suppl. 10, 45–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Potten, C. S. The epidermal proliferative unit: the possible role of the central basal cell. Cell Tissue Kinet. 7, 77–88 (1974).

    CAS  PubMed  Google Scholar 

  16. Jones, P. & Simons, B. D. Epidermal homeostasis: do committed progenitors work while stem cells sleep? Nature Rev. Mol. Cell Biol. 9, 82–88 (2008).

    Article  CAS  Google Scholar 

  17. Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007). Shows, through lineage-tracing experiments, that committed progenitors undertake homeostatic and regenerative tasks by switching between two states, without the help of a stem cell population.

    Article  CAS  PubMed  Google Scholar 

  18. Doupe, D. P., Klein, A. M., Simons, B. D. & Jones, P. H. The ordered architecture of murine ear epidermis is maintained by progenitor cells with random fate. Dev. Cell 18, 317–323 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Doupe, D. P. et al. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science 337, 1091–1093 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lopez-Garcia, C., Klein, A. M., Simons, B. D. & Winton, D. J. Intestinal stem cell replacement follows a pattern of neutral drift. Science 330, 822–825 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010). Shows that LGR6 labels a stem cell subpopulation residing at the isthmus of the hair follicle. The contribution of this population changes with age, restricting it to sebaceous gland and interfollicular epidermis in adults.

    Article  CAS  PubMed  Google Scholar 

  22. Driessens, G., Beck, B., Caauwe, A., Simons, B. D. & Blanpain, C. Defining the mode of tumour growth by clonal analysis. Nature 488, 527–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Janich, P. et al. The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 480, 209–214 (2011). Shows that one of the unsuspected mechanisms used to generate heterogeneity among bulge stem cells is through circadian clock oscillations, leading to different responses to activating signals.

    Article  CAS  PubMed  Google Scholar 

  24. Gaddameedhi, S., Selby, C. P., Kaufmann, W. K., Smart, R. C. & Sancar, A. Control of skin cancer by the circadian rhythm. Proc. Natl Acad. Sci. USA 108, 18790–18795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sporl, F. et al. Kruppel-like factor 9 is a circadian transcription factor in human epidermis that controls proliferation of keratinocytes. Proc. Natl Acad. Sci. USA 109, 10903–10908 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Geyfman, M. et al. Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proc. Natl Acad. Sci. USA 109, 11758–11763 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Albrecht, U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74, 246–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Mascre, G. et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489, 257–262 (2012). Defines, with the use of two different lineage-tracing strategies, a committed progenitor and a quiescent stem cell population in the interfollicular epidermis. These two cell types are hierarchically organized and show different regenerative and homeostatic properties.

    Article  CAS  PubMed  Google Scholar 

  29. Jones, P. H. & Watt, F. M. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73, 713–724 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Jones, P. H., Harper, S. & Watt, F. M. Stem cell patterning and fate in human epidermis. Cell 80, 83–93 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Li, A., Simmons, P. J. & Kaur, P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc. Natl Acad. Sci. USA 95, 3902–3907 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lowell, S., Jones, P., Le Roux, I., Dunne, J. & Watt, F. M. Stimulation of human epidermal differentiation by Delta–Notch signalling at the boundaries of stem-cell clusters. Curr. Biol. 10, 491–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Legg, J., Jensen, U. B., Broad, S., Leigh, I. & Watt, F. M. Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis. Development 130, 6049–6063 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Jensen, K. B. & Watt, F. M. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc. Natl Acad. Sci. USA 103, 11958–11963 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luis, N. M. et al. Regulation of human epidermal stem cell proliferation and senescence requires polycomb- dependent and -independent functions of Cbx4. Cell Stem Cell 9, 233–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Wan, H. et al. Desmosomal proteins, including desmoglein 3, serve as novel negative markers for epidermal stem cell-containing population of keratinocytes. J. Cell Sci. 116, 4239–4248 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Fortunel, N. O. et al. Long-term expansion of human functional epidermal precursor cells: promotion of extensive amplification by low TGF-β1 concentrations. J. Cell Sci. 116, 4043–4052 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Schluter, H., Paquet-Fifield, S., Gangatirkar, P., Li, J. & Kaur, P. Functional characterization of quiescent keratinocyte stem cells and their progeny reveals a hierarchical organization in human skin epidermis. Stem Cells 29, 1256–1268 (2011).

    Article  PubMed  Google Scholar 

  39. Webb, A., Li, A. & Kaur, P. Location and phenotype of human adult keratinocyte stem cells of the skin. Differentiation 72, 387–395 (2004).

    Article  PubMed  Google Scholar 

  40. Jensen, U. B., Lowell, S. & Watt, F. M. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development 126, 2409–2418 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Ghazizadeh, S. & Taichman, L. B. Organization of stem cells and their progeny in human epidermis. J. Invest. Dermatol. 124, 367–372 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Benitah, S. A. & Frye, M. Stem cells in ectodermal development. J. Mol. Med. (Berl.) 90, 783–790 (2012).

    Article  Google Scholar 

  43. Nowak, J. A., Polak, L., Pasolli, H. A. & Fuchs, E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3, 33–43 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vidal, V. P. et al. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr. Biol. 15, 1340–1351 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Mardaryev, A. N. et al. Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development 138, 4843–4852 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rhee, H., Polak, L. & Fuchs, E. Lhx2 maintains stem cell character in hair follicles. Science 312, 1946–1949 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299–310 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Merrill, B. J., Gat, U., DasGupta, R. & Fuchs, E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev. 15, 1688–1705 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nguyen, H. et al. Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nature Genet. 41, 1068–1075 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, T. et al. An RNA interference screen uncovers a new molecule in stem cell self-renewal and long-term regeneration. Nature 485, 104–108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Paus, R. & Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med. 341, 491–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 4557–4568 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Greco, V. et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4, 155–169 (2009). Shows that hair germ cells are the first cells to respond to activating signals generated by the dermal papilla, which fuel the first stages of anagen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Plikus, M. V. et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451, 340–344 (2008). Describes long-range communication between tissues: the signals secreted by adipose tissue affect hair follicle stem cell behaviour. The inhibitory signals secreted by the adipocytes are out of phase with activating signals and generate different telogen sub-phases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lyle, S. et al. Human hair follicle bulge cells are biochemically distinct and possess an epithelial stem cell phenotype. J. Investig. Dermatol. Symp. Proc. 4, 296–301 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Hsu, Y. C., Pasolli, H. A. & Fuchs, E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144, 92–105 (2011). Shows, using a combination of advanced lineage-tracing techniques, that stem cell progeny that has exited the bulge can go back to the stem cell niche and be spared for the next hair follicle cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Panteleyev, A. A., Jahoda, C. A. & Christiano, A. M. Hair follicle predetermination. J. Cell Sci. 114, 3419–3431 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Kobielak, K., Stokes, N., de la Cruz, J., Polak, L. & Fuchs, E. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc. Natl Acad. Sci. USA 104, 10063–10068 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lowry, W. E. et al. Defining the impact of β-catenin/Tcf transactivation on epithelial stem cells. Genes Dev. 19, 1596–1611 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Trempus, C. S. et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J. Invest. Dermatol. 120, 501–511 (2003).

    CAS  PubMed  Google Scholar 

  61. Claudinot, S., Nicolas, M., Oshima, H., Rochat, A. & Barrandon, Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc. Natl Acad. Sci. USA 102, 14677–14682 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin, K. K. et al. Circadian clock genes contribute to the regulation of hair follicle cycling. PLoS Genet. 5, e1000573 (2009). Reports for the first time a role of circadian clock in controlling mouse hair follicle cycling.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Waghmare, S. K. et al. Quantitative proliferation dynamics and random chromosome segregation of hair follicle stem cells. EMBO J. 27, 1309–1320 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, Y. V., Cheong, J., Ciapurin, N., McDermitt, D. J. & Tumbar, T. Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell 5, 267–278 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genet. 40, 1291–1299 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Barker, N. et al. Very long-term self-renewal of small intestine, colon, and hair follicles from cycling Lgr5+ve stem cells. Cold Spring Harb. Symp. Quant. Biol. 73, 351–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Brownell, I., Guevara, E., Bai, C. B., Loomis, C. A. & Joyner, A. L. Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8, 552–565 (2011). Shows that signals from nerve fibres surrounding the hair follicles can change their long-term contribution in interfollicular epidermis wound repair.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ito, M., Kizawa, K., Hamada, K. & Cotsarelis, G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation 72, 548–557 (2004).

    Article  PubMed  Google Scholar 

  69. Frye, M. & Benitah, S. A. Chromatin regulators in mammalian epidermis. Semin. Cell Dev. Biol. 23, 897–905 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, J., Bardot, E. & Ezhkova, E. Epigenetic regulation of skin: focus on the Polycomb complex. Cell. Mol. Life Sci. 69, 2161–2172 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Snippert, H. J. et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385–1389 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Nijhof, J. G. et al. The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133, 3027–3037 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Jensen, U. B. et al. A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J. Cell Sci. 121, 609–617 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Jensen, K. B. et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4, 427–439 (2009). Identifies a new population of stem cells residing at the hair follicle junctional zone that contributes to sebaceous gland and interfollicular epidermis homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wong, V. W. et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nature Cell Biol. 14, 401–408 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Powell, A. E. et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149, 146–158 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Horsley, V. et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126, 597–609 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lu, C. P. et al. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150, 136–150 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rittie, L., Sachs, D. L., Orringer, J. S., Voorhees, J. J. & Fisher, G. J. Eccrine sweat glands are major contributors to reepithelialization of human wounds. Am. J. Pathol. 182, 163–171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Toyoshima, K. E. et al. Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches. Nature Commun. 3, 784 (2012).

    Article  CAS  Google Scholar 

  81. Watt, F. M. & Fujiwara, H. Cell–extracellular matrix interactions in normal and diseased skin. Cold Spring Harb. Perspect. Biol. 3, a005124 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Benitah, S. A., Frye, M., Glogauer, M. & Watt, F. M. Stem cell depletion through epidermal deletion of Rac1. Science 309, 933–935 (2005).

    Article  PubMed  CAS  Google Scholar 

  83. Castilho, R. M. et al. Requirement of Rac1 distinguishes follicular from interfollicular epithelial stem cells. Oncogene 26, 5078–5085 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Chrostek, A. et al. Rac1 is crucial for hair follicle integrity but is not essential for maintenance of the epidermis. Mol. Cell. Biol. 26, 6957–6970 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Takeda, N. et al. Hopx expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6+ niche cells. Development 140, 1655–1664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jahoda, C. A., Horne, K. A. & Oliver, R. F. Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311, 560–562 (1984).

    Article  CAS  PubMed  Google Scholar 

  88. Chi, W., Wu, E. & Morgan, B. A. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 140, 1676–1683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rompolas, P. et al. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487, 496–499 (2012). Breakthrough imaging of hair follicles in live mice combined with laser ablation techniques showing the same hair follicle at different stages of the cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Driskell, R. R. et al. Clonal growth of dermal papilla cells in hydrogels reveals intrinsic differences between Sox2-positive and -negative cells in vitro and in vivo. J. Invest. Dermatol. 132, 1084–1093 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Tobin, D. J., Gunin, A., Magerl, M., Handijski, B. & Paus, R. Plasticity and cytokinetic dynamics of the hair follicle mesenchyme: implications for hair growth control. J. Invest. Dermatol. 120, 895–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Rendl, M., Polak, L. & Fuchs, E. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev. 22, 543–557 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chi, W. Y., Enshell-Seijffers, D. & Morgan, B. A. De novo production of dermal papilla cells during the anagen phase of the hair cycle. J. Invest. Dermatol. 130, 2664–2666 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Collins, C. A., Jensen, K. B., MacRae, E. J., Mansfield, W. & Watt, F. M. Polyclonal origin and hair induction ability of dermal papillae in neonatal and adult mouse back skin. Dev. Biol. 366, 290–297 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Schlake, T. Determination of hair structure and shape. Semin. Cell Dev. Biol. 18, 267–273 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Jahoda, C. A. Cellular and developmental aspects of androgenetic alopecia. Exp. Dermatol. 7, 235–248 (1998).

    CAS  PubMed  Google Scholar 

  97. Sennett, R. & Rendl, M. Mesenchymal–epithelial interactions during hair follicle morphogenesis and cycling. Semin. Cell Dev. Biol. 23, 917–927 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Enshell-Seijffers, D., Lindon, C., Kashiwagi, M. & Morgan, B. A. β-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev. Cell 18, 633–642 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Oshimori, N. & Fuchs, E. Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell 10, 63–75 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Enshell-Seijffers, D., Lindon, C. & Morgan, B. A. The serine protease Corin is a novel modifier of the Agouti pathway. Development 135, 217–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Driskell, R. R., Giangreco, A., Jensen, K. B., Mulder, K. W. & Watt, F. M. Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 136, 2815–2823 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Grisanti, L. et al. Tbx18 targets dermal condensates for labeling, isolation, and gene ablation during embryonic hair follicle formation. J. Invest. Dermatol. 133, 344–353 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Clavel, C. et al. Sox2 in the dermal papilla niche controls hair growth by fine-tuning BMP signaling in differentiating hair shaft progenitors. Dev. Cell 23, 981–994 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nishimura, E. K. et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854–860 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Rabbani, P. et al. Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 145, 941–955 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nishimura, E. K. et al. Key roles for transforming growth factor-β in melanocyte stem cell maintenance. Cell Stem Cell 6, 130–140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tanimura, S. et al. Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 8, 177–187 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Collins, C. A., Kretzschmar, K. & Watt, F. M. Reprogramming adult dermis to a neonatal state through epidermal activation of β-catenin. Development 138, 5189–5199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chang, C. Y. et al. NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche. Nature 495, 98–102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nishimura, E. K., Granter, S. R. & Fisher, D. E. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307, 720–724 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Plikus, M. V. et al. Self-organizing and stochastic behaviors during the regeneration of hair stem cells. Science 332, 586–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Festa, E. et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146, 761–771 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fujiwara, H. et al. The basement membrane of hair follicle stem cells is a muscle cell niche. Cell 144, 577–589 (2011). Describes how bulge stem cells can generate the appropriate niche at the basement membrane that directs the attachment of the APM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tan, D. W. et al. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells. Development 140, 1433–1444 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Connelly, J. T. et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nature Cell Biol. 12, 711–718 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Mannik, J., Alzayady, K. & Ghazizadeh, S. Regeneration of multilineage skin epithelia by differentiated keratinocytes. J. Invest. Dermatol. 130, 388–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Beck, B. et al. A vascular niche and a VEGF–Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478, 399–403 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Amoh, Y. et al. Nascent blood vessels in the skin arise from nestin-expressing hair-follicle cells. Proc. Natl Acad. Sci. USA 101, 13291–13295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Arck, P. et al. Is there a 'gut–brain–skin axis'? Exp. Dermatol. 19, 401–405 (2010).

    Article  PubMed  Google Scholar 

  120. Giangreco, A., Goldie, S. J., Failla, V., Saintigny, G. & Watt, F. M. Human skin aging is associated with reduced expression of the stem cell markers β1 integrin and MCSP. J. Invest. Dermatol. 130, 604–608 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Barrandon, Y. & Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl Acad. Sci. USA 84, 2302–2306 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Giangreco, A., Qin, M., Pintar, J. E. & Watt, F. M. Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell 7, 250–259 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Stern, M. M. & Bickenbach, J. R. Epidermal stem cells are resistant to cellular aging. Aging Cell 6, 439–452 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Doles, J., Storer, M., Cozzuto, L., Roma, G. & Keyes, W. M. Age-associated inflammation inhibits epidermal stem cell function. Genes Dev. 26, 2144–2153 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sotiropoulou, P. A., Candi, A. & Blanpain, C. The majority of multipotent epidermal stem cells do not protect their genome by asymmetrical chromosome segregation. Stem Cells 26, 2964–2973 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Sotiropoulou, P. A. et al. Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nature Cell Biol. 12, 572–582 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Sotiropoulou, P. A. et al. BRCA1 deficiency in skin epidermis leads to selective loss of hair follicle stem cells and their progeny. Genes Dev. 27, 39–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Flores, I., Cayuela, M. L. & Blasco, M. A. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309, 1253–1256 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Castilho, R. M., Squarize, C. H., Chodosh, L. A., Williams, B. O. & Gutkind, J. S. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 5, 279–289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.S. was funded by the AXA Research Fund. The authors apologize to their colleagues whose work could not be cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiomar Solanas or Salvador Aznar Benitah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Cornified cells

Epidermal keratinocytes that have undergone a process of terminal differentiation whereby they form a mesh of crosslinked proteins that confers impermeability and barrier protection.

Lineage-tracing techniques

Genetic tagging of a certain cell type that allows following its fate and that of its progeny during a particular process, such as development, homeostasis or carcinogenesis.

Placodes

Condensate of embryonic epidermal cells that invaginate into the dermis to form the embryonic hair follicle structures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solanas, G., Benitah, S. Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche. Nat Rev Mol Cell Biol 14, 737–748 (2013). https://doi.org/10.1038/nrm3675

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing