Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functions and mechanics of dynein motor proteins

Key Points

  • Cell biological studies have identified roles for dynein motors in many in vivo processes. These include transporting diverse intracellular cargo along microtubules, organizing microtubules within the cell division machinery and powering the beating of cilia and flagella.

  • Unlike myosin and kinesin, which share an ancestry with G proteins, dynein evolved from the AAA+ superfamily of ring-shaped ATPases.

  • In outline, the mechanochemical cycle of dynein is similar to that of myosin, but the underlying mechanism of its movement is quite different.

  • Recent structural studies point towards a model in which nucleotide-driven flexing motions in the dynein AAA+ ring are coupled to the remodelling of a mechanical element called the linker domain.

  • The ATPase and microtubule-binding domains of dynein are spatially separated by a coiled-coil stalk, which is thought to mediate allosteric communication via small sliding movements between its constituent α-helices.

  • Single-molecule studies are starting to reveal how the paired motor domains in cytoplasmic dynein dimers move along microtubules, but the extent to which the motor domains communicate with each other and how much force they produce are controversial.

Abstract

Fuelled by ATP hydrolysis, dyneins generate force and movement on microtubules in a wealth of biological processes, including ciliary beating, cell division and intracellular transport. The large mass and complexity of dynein motors have made elucidating their mechanisms a sizable task. Yet, through a combination of approaches, including X-ray crystallography, cryo-electron microscopy, single-molecule assays and biochemical experiments, important progress has been made towards understanding how these giant motor proteins work. From these studies, a model for the mechanochemical cycle of dynein is emerging, in which nucleotide-driven flexing motions within the AAA+ ring of dynein alter the affinity of its microtubule-binding stalk and reshape its mechanical element to generate movement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sites of dynein action in the cell.
Figure 2: Overview of dynein composition.
Figure 3: Model of the mechanochemical cycle of a cytoplasmic dynein motor domain.
Figure 4: Cyclic microtubule binding.
Figure 5: Linker domain structure and remodelling.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Moughamian, A. J. & Holzbaur, E. in Dyneins: Structure, Biology and Disease (ed. King, S. M) 584–601 (Elsevier Inc., 2011).

  2. Fliegauf, M., Benzing, T. & Omran, H. When cilia go bad: cilia defects and ciliopathies. Nature Rev. Mol. Cell Biol. 8, 880–893 (2007).

    Article  CAS  Google Scholar 

  3. Gibbons, I. R. Studies on the protein components of cilia from Tetrahymena pyriformis. Proc. Natl Acad. Sci. USA 50, 1002–1010 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gibbons, I. & Rowe, A. Dynein: a protein with adenosine triphosphatase activity from cilia. Science 149, 424–426 (1965). References 3 and 4 mark the discovery of dynein motor proteins.

    Article  CAS  PubMed  Google Scholar 

  5. Paschal, B. M., Shpetner, H. S. & Vallee, R. B. MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J. Cell Biol. 105, 1273–1282 (1987). Describes the isolation and characterization of cytoplasmic dynein.

    Article  CAS  PubMed  Google Scholar 

  6. Paschal, B. M. & Vallee, R. B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature 330, 181–183 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Schroer, T. A., Steuer, E. R. & Sheetz, M. P. Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell 56, 937–946 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Billington, N. & Sellers, J. R. Dynein struts its stuff. Nature Struct. Mol. Biol. 18, 635–636 (2011).

    Article  CAS  Google Scholar 

  11. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  PubMed  Google Scholar 

  12. Vallee, R. B., McKenney, R. J. & Ori-McKenney, K. M. Multiple modes of cytoplasmic dynein regulation. Nature Cell Biol. 14, 224–230 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Kardon, J. & Vale, R. Regulators of the cytoplasmic dynein motor. Nature Rev. Mol. Cell Biol. 10, 854–865 (2009).

    Article  CAS  Google Scholar 

  14. Allan, V. J. Cytoplasmic dynein. Biochem. Soc. Trans. 39, 1169–1178 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Akhmanova, A. & Hammer, J. A. 3rd. Linking molecular motors to membrane cargo. Curr. Opin. Cell Biol. 22, 479–487 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Riedel-Kruse, I. H., Hilfinger, A., Howard, J. & Jülicher, F. How molecular motors shape the flagellar beat. HFSP J. 1, 192–208 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brokaw, C. Thinking about flagellar oscillation. Cell. Motil. Cytoskeleton 66, 425–436 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Lindemann, C. B. & Lesich, K. A. Flagellar and ciliary beating: the proven and the possible. J. Cell Sci. 123, 519–528 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. King, S. M. Integrated control of axonemal dynein AAA+ motors. J. Struct. Biol. 179, 222–228 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wickstead, B. & Gull, K. Dyneins across eukaryotes: a comparative genomic analysis. Traffic 8, 1708–1721 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Yagi, T. Bioinformatic approaches to dynein heavy chain classification. Methods Cell Biol. 92, 1–9 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Moore, J., Stuchell-Brereton, M. & Cooper, J. Function of dynein in budding yeast: mitotic spindle positioning in a polarized cell. Cell. Motil. Cytoskeleton 66, 546–555 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Egan, M. J., McClintock, M. A. & Reck-Peterson, S. L. Microtubule-based transport in filamentous fungi. Curr. Opin. Microbiol. 15, 637–645 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Koonce, M. P. Dictyostelium, a model organism for microtubule-based transport. Protist 151, 17–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Pfister, K. K. et al. Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet. 2, e1 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Trokter, M., Mücke, N. & Surrey, T. Reconstitution of the human cytoplasmic dynein complex. Proc. Natl Acad. Sci. USA 109, 20895–20900 (2012). Describes the reconstitution of the human cytoplasmic dynein complex from recombinant subunits. Surprisingly, despite driving robust microtubule gliding, the complexes do not show processive motility, suggesting that additional factors might be required for this behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schroer, T. A. Dynactin. Annu. Rev. Cell Dev. Biol. 20, 759–779 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Driskell, O. J., Mironov, A., Allan, V. J. & Woodman, P. G. Dynein is required for receptor sorting and the morphogenesis of early endosomes. Nature Cell Biol. 9, 113–120 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Jordens, I. et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr. Biol. 11, 1680–1685 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Blocker, A. et al. Molecular requirements for bi-directional movement of phagosomes along microtubules. J. Cell Biol. 137, 113–129 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gross, S. P. et al. Interactions and regulation of molecular motors in Xenopus melanophores. J. Cell Biol. 156, 855–865 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kural, C. et al. Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science 308, 1469–1472 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Gross, S. P., Welte, M. A., Block, S. M. & Wieschaus, E. F. Dynein-mediated cargo transport in vivo. A switch controls travel distance. J. Cell Biol. 148, 945–956 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pilling, A. D., Horiuchi, D., Lively, C. M. & Saxton, W. M. Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell 17, 2057–2068 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Heerssen, H. M., Pazyra, M. F. & Segal, R. A. Dynein motors transport activated Trks to promote survival of target-dependent neurons. Nature Neurosci. 7, 596–604 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Young, A., Dictenberg, J. B., Purohit, A., Tuft, R. & Doxsey, S. J. Cytoplasmic dynein-mediated assembly of pericentrin and gamma tubulin onto centrosomes. Mol. Biol. Cell 11, 2047–2056 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Harrell, J. M. et al. Evidence for glucocorticoid receptor transport on microtubules by dynein. J. Biol. Chem. 279, 54647–54654 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Shah, J. V., Flanagan, L. A., Janmey, P. A. & Leterrier, J. F. Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol. Biol. Cell 11, 3495–3508 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wilkie, G. S. & Davis, I. Drosophila wingless and pair-rule transcripts localize apically by dynein-mediated transport of RNA particles. Cell 105, 209–219 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Johnston, J. A., Illing, M. E. & Kopito, R. R. Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell. Motil. Cytoskeleton 53, 26–38 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Maday, S., Wallace, K. E. & Holzbaur, E. L. F. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol. 196, 407–417 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Dodding, M. P. & Way, M. Coupling viruses to dynein and kinesin-1. EMBO J. 30, 3527–3539 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sato, A. et al. Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell 139, 907–919 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Steinberg, G. et al. Motor-driven motility of fungal nuclear pores organizes chromosomes and fosters nucleocytoplasmic transport. J. Cell Biol. 198, 343–355 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Schnyder, T. et al. B cell receptor-mediated antigen gathering requires ubiquitin ligase Cbl and adaptors Grb2 and Dok-3 to recruit dynein to the signaling microcluster. Immunity 34, 905–918 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Hashimoto-Tane, A. et al. Dynein-driven transport of T cell receptor microclusters regulates immune synapse formation and T cell activation. Immunity 34, 919–931 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Laan, L. et al. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148, 502–514 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hendricks, A. G. et al. Dynein tethers and stabilizes dynamic microtubule plus ends. Curr. Biol. 22, 632–637 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tsai, J.-W., Bremner, K. H. & Vallee, R. B. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nature Neurosci. 10, 970–979 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Dujardin, D. L. et al. A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol. 163, 1205–1211 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Combs, J. et al. Recruitment of dynein to the Jurkat immunological synapse. Proc. Natl Acad. Sci. USA 103, 14883–14888 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McNally, F. J. Mechanisms of spindle positioning. J. Cell Biol. 200, 131–140 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kiyomitsu, T. & Cheeseman, I. M. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nature Cell Biol. 14, 311–317 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Collins, E. S., Balchand, S. K., Faraci, J. L., Wadsworth, P. & Lee, W.-L. Cell cycle-regulated cortical dynein/dynactin promotes symmetric cell division by differential pole motion in anaphase. Mol. Biol. Cell 23, 3380–3390 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mitchison, T. et al. Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells. Cytoskeleton (Hoboken) 69, 738–750 (2012).

    Article  CAS  Google Scholar 

  58. Kimura, K. & Kimura, A. Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo. Proc. Natl Acad. Sci. USA 108, 137–142 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Longoria, R. A. & Shubeita, G. T. Cargo transport by cytoplasmic dynein can center embryonic centrosomes. PLoS ONE 8, e67710 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Corthesy-Theulaz, I., Pauloin, A. & Pfeffer, S. R. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J. Cell Biol. 118, 1333–1345 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Levy, J. R. & Holzbaur, E. L. Dynein drives nuclear rotation during forward progression of motile fibroblasts. J. Cell Sci. 121, 3187–3195 (2008).

    Article  PubMed  CAS  Google Scholar 

  62. Raaijmakers, J. A. et al. Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation. EMBO J. 31, 4179–4190 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Salina, D. et al. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108, 97–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Merdes, A., Ramyar, K., Vechio, J. D. & Cleveland, D. W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447–458 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Foley, E. A. & Kapoor, T. M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nature Rev. Mol. Cell Biol. 14, 25–37 (2012).

    Article  CAS  Google Scholar 

  67. Howell, B. J. et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol. 155, 1159–1172 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Wojcik, E. et al. Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nature Cell Biol. 3, 1001–1007 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Varma, D., Monzo, P., Stehman, S. A. & Vallee, R. B. Direct role of dynein motor in stable kinetochore–microtubule attachment, orientation, and alignment. J. Cell Biol. 182, 1045–1054 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yang, Z., Tulu, U. S., Wadsworth, P. & Rieder, C. L. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr. Biol. 17, 973–980 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ishikawa, H. & Marshall, W. F. Ciliogenesis: building the cell's antenna. Nature Rev. Mol. Cell Biol. 12, 222–234 (2011).

    Article  CAS  Google Scholar 

  72. Pazour, G. J., Dickert, B. L. & Witman, G. B. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J. Cell Biol. 144, 473–481 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Porter, M. E., Bower, R., Knott, J. A., Byrd, P. & Dentler, W. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol. Biol. Cell 10, 693–712 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Mikami, A. et al. Molecular structure of cytoplasmic dynein 2 and its distribution in neuronal and ciliated cells. J. Cell Sci. 115, 4801–4808 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Perrone, C. A. et al. A novel dynein light intermediate chain colocalizes with the retrograde motor for intraflagellar transport at sites of axoneme assembly in Chlamydomonas and mammalian cells. Mol. Biol. Cell 14, 2041–2056 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ichikawa, M., Watanabe, Y., Murayama, T. & Toyoshima, Y. Y. Recombinant human cytoplasmic dynein heavy chain 1 and 2: observation of dynein-2 motor activity in vitro. FEBS Lett. 585, 2419–2423 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Pigino, G. et al. Electron-tomographic analysis of intraflagellar transport particle trains in situ. J. Cell Biol. 187, 135–148 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Laib, J. A., Marin, J. A., Bloodgood, R. A. & Guilford, W. H. The reciprocal coordination and mechanics of molecular motors in living cells. Proc. Natl Acad. Sci. USA 106, 3190–3195 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shih, S. M. et al. Intraflagellar transport drives flagellar surface motility. Elife 2, e00744 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mallik, R., Rai, A. K., Barak, P., Rai, A. & Kunwar, A. Teamwork in microtubule motors. Trends Cell Biol. http://dx.doi.org/10.1016/j.tcb.2013.06.003 (2013).

  81. Koonce, M. P. & Samsó, M. Overexpression of cytoplasmic dynein's globular head causes a collapse of the interphase microtubule network in Dictyostelium. Mol. Biol. Cell 7, 935–948 (1996). Details a recombinant expression system for the D. discoideum cytoplasmic dynein motor domain, forming the foundation for numerous structural and functional analyses. Also demonstrates that the motor domain includes the globular head structure seen in earlier electron microscopy images.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Nishiura, M. et al. A single-headed recombinant fragment of Dictyostelium cytoplasmic dynein can drive the robust sliding of microtubules. J. Biol. Chem. 279, 22799–22802 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Reck-Peterson, S. L. et al. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006). Establishes S. cerevisiae as another important cytoplasmic dynein expression system and provides insight into the requirements for processive dynein motion.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Höök, P. et al. Long range allosteric control of cytoplasmic dynein ATPase activity by the stalk and C-terminal domains. J. Biol. Chem. 280, 33045–33054 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Imamula, K., Kon, T., Ohkura, R. & Sutoh, K. The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein. Proc. Natl Acad. Sci. USA 104, 16134–16139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mogami, T., Kon, T., Ito, K. & Sutoh, K. Kinetic characterization of tail swing steps in the ATPase cycle of Dictyostelium cytoplasmic dynein. J. Biol. Chem. 282, 21639–21644 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Johnson, K. A. Pathway of the microtubule–dynein ATPase and the structure of dynein: a comparison with actomyosin. Annu. Rev. Biophys. Biophys. Chem. 14, 161–188 (1985).

    Article  CAS  PubMed  Google Scholar 

  88. Samsó, M., Radermacher, M., Frank, J. & Koonce, M. P. Structural characterization of a dynein motor domain. J. Mol. Biol. 276, 927–937 (1998).

    Article  PubMed  Google Scholar 

  89. Gee, M. A., Heuser, J. E. & Vallee, R. B. An extended microtubule-binding structure within the dynein motor domain. Nature 390, 636–639 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Roberts, A. J. et al. ATP-driven remodeling of the linker domain in the dynein motor. Structure 20, 1670–1680 (2012). A 2D and 3D electron microscopy study of an axonemal and cytoplasmic dynein, revealing that the linker domain is a stable structural entity that is remodelled by the AAA+ ring.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Roberts, A. et al. AAA+ ring and linker swing mechanism in the dynein motor. Cell 136, 485–495 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Kon, T. et al. The 2.8 Å crystal structure of the dynein motor domain. Nature 484, 345–350 (2012). Reports a high-resolution crystal structure of the D. discoideum dynein motor domain in the ADP-bound state. Structure-guided mutagenesis provides insight into how the linker domain moves and the roles of the AAA+ modules, strut and C-terminal sequence in allosteric communication.

    Article  CAS  PubMed  Google Scholar 

  94. Kon, T., Sutoh, K. & Kurisu, G. X-ray structure of a functional full-length dynein motor domain. Nature Struct. Mol. Biol. 18, 638–642 (2011).

    Article  CAS  Google Scholar 

  95. Schmidt, H., Gleave, E. S. & Carter, A. P. Insights into dynein motor domain function from a 3.3-Å crystal structure. Nature Struct. Mol. Biol. 19, 492–497 (2012). Reports a high-resolution structure of the S. cerevisiae dynein motor domain, crystallized in the absence of nucleotide. Crystal-soaking experiments reveal distinct nucleotide-binding behaviours in AAA1–AAA4, and mutagenesis suggests a functional role for linker docking at AAA5.

    Article  CAS  Google Scholar 

  96. Carter, A. P., Cho, C., Jin, L. & Vale, R. D. Crystal structure of the dynein motor domain. Science 331, 1159–1165 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Glynn, S. E., Martin, A., Nager, A. R., Baker, T. A. & Sauer, R. T. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139, 744–756 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Wang, J. et al. Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9, 1107–1116 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Gibbons, I. R. et al. Photosensitized cleavage of dynein heavy chains. Cleavage at the “V1 site” by irradiation at 365 nm in the presence of ATP and vanadate. J. Biol. Chem. 262, 2780–2786 (1987).

    CAS  PubMed  Google Scholar 

  100. Kon, T., Nishiura, M., Ohkura, R., Toyoshima, Y. Y. & Sutoh, K. Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43, 11266–11274 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Enemark, E. J. & Joshua-Tor, L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442, 270–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Cho, C., Reck-Peterson, S. & Vale, R. Cytoplasmic dynein's regulatory ATPase sites affect processivity and force generation. J. Biol. Chem. 283, 25839–25845 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Huang, J., Roberts, A. J., Leschziner, A. E. & Reck-Peterson, S. L. Lis1 acts as a “clutch” between the ATPase and microtubule-binding domains of the dynein motor. Cell 150, 975–986 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. McKenney, R. J., Vershinin, M., Kunwar, A., Vallee, R. B. & Gross, S. P. LIS1 and NudE induce a persistent dynein force-producing state. Cell 141, 304–314 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Yamada, M. et al. LIS1 and NDEL1 coordinate the plus-end-directed transport of cytoplasmic dynein. EMBO J. 27, 2471–2483 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Cho, C. & Vale, R. D. The mechanism of dynein motility: insight from crystal structures of the motor domain. Biochim. Biophys. Acta 1823, 182–191 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Numata, N., Shima, T., Ohkura, R., Kon, T. & Sutoh, K. C-Sequence of the Dictyostelium cytoplasmic dynein participates in processivity modulation. FEBS Lett. 585, 1185–1190 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Hwang, W. & Lang, M. J. Nucleotide-dependent control of internal strains in ring-shaped AAA+ motors. Cell. Mol. Bioeng. 6, 65–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Gibbons, I. R. et al. The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J. Biol. Chem. 280, 23960–23965 (2005).

    Article  PubMed  CAS  Google Scholar 

  110. Carter, A. P. et al. Structure and functional role of dynein's microtubule-binding domain. Science 322, 1691–1695 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Kon, T. et al. Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nature Struct. Mol. Biol. 16, 325–333 (2009).

    Article  CAS  Google Scholar 

  112. Redwine, W. B. et al. Structural basis for microtubule binding and release by dynein. Science 337, 1532–1536 (2012). References 109–112 provide evidence for the helix-sliding hypothesis for allosteric communication through the stalk of dynein, which was put forward in reference 109. Reference 112 also provides insight into the structural changes within the microtubule-binding domain of dynein.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Sweeney, H. L. & Houdusse, A. The motor mechanism of myosin V: insights for muscle contraction. Philo. Trans. R. Soc. Lond. B 359, 1829–1841 (2004).

    Article  CAS  Google Scholar 

  114. Xi, Z., Gao, Y., Sirinakis, G., Guo, H. & Zhang, Y. Single-molecule observation of helix staggering, sliding, and coiled coil misfolding. Proc. Natl Acad. Sci. USA 109, 5711–5716 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Burgess, S. A., Walker, M. L., Sakakibara, H., Oiwa, K. & Knight, P. J. The structure of dynein-c by negative stain electron microscopy. J. Struct. Biol. 146, 205–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Burgess, S. A. & Knight, P. J. Is the dynein motor a winch? Curr. Opin. Struct. Biol. 14, 138–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Gennerich, A., Carter, A. P., Reck-Peterson, S. L. & Vale, R. D. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131, 952–965 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Kon, T., Mogami, T., Ohkura, R., Nishiura, M. & Sutoh, K. ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein. Nature Struct. Mol. Biol. 12, 513–519 (2005).

    Article  CAS  Google Scholar 

  119. Shima, T., Kon, T., Imamula, K., Ohkura, R. & Sutoh, K. Two modes of microtubule sliding driven by cytoplasmic dynein. Proc. Natl Acad. Sci. USA 103, 17736–17740 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ueno, H., Yasunaga, T., Shingyoji, C. & Hirose, K. Dynein pulls microtubules without rotating its stalk. Proc. Natl Acad. Sci. USA 105, 19702–19707 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Movassagh, T., Bui, K. H., Sakakibara, H., Oiwa, K. & Ishikawa, T. Nucleotide-induced global conformational changes of flagellar dynein arms revealed by in situ analysis. Nature Struct. Mol. Biol. 17, 761–767 (2010).

    Article  CAS  Google Scholar 

  122. Qiu, W. et al. Dynein achieves processive motion using both stochastic and coordinated stepping. Nature Struct. Mol. Biol. 19, 193–200 (2012).

    Article  CAS  Google Scholar 

  123. Dewitt, M. A., Chang, A. Y., Combs, P. A. & Yildiz, A. Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains. Science 335, 221–225 (2011). References 122 and 123 use two-colour single-molecule experiments to reveal that S. cerevisiae cytoplasmic dynein dimers can move processively along the microtubule without following a strict stepping pattern. Analysis of the stepping traces provides insight into the spatial configuration of the motor domains and their loose, tension-based coordination.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Veigel, C., Wang, F., Bartoo, M. L., Sellers, J. R. & Molloy, J. E. The gated gait of the processive molecular motor, myosin V. Nature Cell Biol. 4, 59–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Shima, T., Imamula, K., Kon, T., Ohkura, R. & Sutoh, K. Head-head coordination is required for the processive motion of cytoplasmic dynein, an AAA+ molecular motor. J. Struct. Biol. 156, 182–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Stinson, B. M. et al. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Cell 153, 628–639 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Sakamoto, T., Webb, M. R., Forgacs, E., White, H. D. & Sellers, J. R. Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature 455, 128–132 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Firestone, A. J. et al. Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature 484, 125–129 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Kamiya, R. Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. Int. Rev. Cytol. 219, 115–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Kikushima, K. & Kamiya, R. Clockwise translocation of microtubules by flagellar inner-arm dyneins in vitro. Biophys. J. 94, 4014–4019 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Mallik, R., Carter, B. C., Lex, S. A., King, S. J. & Gross, S. P. Cytoplasmic dynein functions as a gear in response to load. Nature 427, 649–652 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Rai, A. K., Rai, A., Ramaiya, A. J., Jha, R. & Mallik, R. Molecular adaptations allow dynein to generate large collective forces inside cells. Cell 152, 172–182 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Schroeder, H. W., Mitchell, C., Shuman, H., Holzbaur, E. L. F. & Goldman, Y. E. Motor number controls cargo switching at actin-microtubule intersections in vitro. Curr. Biol. 20, 687–696 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Toba, S., Watanabe, T. M., Yamaguchi-Okimoto, L., Toyoshima, Y. Y. & Higuchi, H. Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc. Natl Acad. Sci. USA 103, 5741–5745 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Walter, W. J., Koonce, M. P., Brenner, B. & Steffen, W. Two independent switches regulate cytoplasmic dynein's processivity and directionality. Proc. Natl Acad. Sci. USA 109, 5289–5293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ross, J. L., Wallace, K., Shuman, H., Goldman, Y. E. & Holzbaur, E. L. F. Processive bidirectional motion of dynein-dynactin complexes in vitro. Nature Cell Biol. 8, 562–570 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Ananthanarayanan, V. et al. Dynein motion switches from diffusive to directed upon cortical anchoring. Cell 153, 1526–1536 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Nicastro, D. et al. Cryo-electron tomography reveals conserved features of doublet microtubules in flagella. Proc. Natl Acad. Sci. USA 108, E845–E853 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Summers, K. E. & Gibbons, I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc. Natl Acad. Sci. USA 68, 3092–3096 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nicastro, D. Cryo-electron microscope tomography to study axonemal organization. Methods Cell Biol. 91, 1–39 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Hom, E. F. et al. A unified taxonomy for ciliary dyneins. Cytoskeleton (Hoboken) 68, 555–565 (2011).

    Article  CAS  Google Scholar 

  142. Bui, K. H., Yagi, T., Yamamoto, R., Kamiya, R. & Ishikawa, T. Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme. J. Cell Biol. 198, 913–925 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Kagami, O. & Kamiya, R. Translocation and rotation of microtubules caused by multiple species of Chlamydomonas inner-arm dynein. J. Cell Sci. 103, 653–664 (1992).

    CAS  Google Scholar 

  144. Yagi, T., Uematsu, K., Liu, Z. & Kamiya, R. Identification of dyneins that localize exclusively to the proximal portion of Chlamydomonas flagella. J. Cell Sci. 122, 1306–1314 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Woolley, D. M. Studies on the eel sperm flagellum. I. The structure of the inner dynein arm complex. J. Cell Sci. 110, 85–94 (1997).

    CAS  PubMed  Google Scholar 

  146. Zhang, X. & Wigley, D. The 'glutamate switch' provides a link between ATPase activity and ligand binding in AAA+ proteins. Nature Struct. Mol. Biol. 15, 1223–1227 (2008).

    Article  CAS  Google Scholar 

  147. Hanson, P. I. & Whiteheart, S. W. AAA+ proteins: have engine, will work. Nature Rev. Mol. Cell Biol. 6, 519–529 (2005).

    Article  CAS  Google Scholar 

  148. Pfister, K. K. et al. Cytoplasmic dynein nomenclature. J. Cell Biol. 171, 411–413 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Mizuno, N. et al. Dynein and kinesin share an overlapping microtubule-binding site. EMBO J. 23, 2459–2467 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize to their colleagues whose work could not be cited owing to space limitations. They thank K. Toropova, R. Hernandez-Lopez, J. Huang and S. Reck-Peterson for helpful comments on the manuscript and B. Malkova for providing electron microscopy data for figure 5a. A.J.R. is grateful to J. Iwasa for training on AutoDesk Maya software. The work in the authors laboratory was supported by: a Sir Henry Wellcome Postdoctoral Fellowship (092436/Z/10/Z) to A.J.R.; a Grant-in-Aid for Scientific Research (B) 23370073 from the Japan Society for Promotion of Science (JSPS) and a Japan Science and Technology Agency PRESTO award to T.K.; a Grant-in-Aid for Scientific Research (B) 23370075 from the JSPS to K.S., and grants BB/E00928X/1 and BB/BB/K000705/1 from the BBSRC (UK) and RGP0009/2008-C from the Human Frontiers Science Program to S.A.B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anthony J. Roberts or Stan A. Burgess.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Motif conservation among the six AAA+ modules of dynein. (PDF 332 kb)

PowerPoint slides

Glossary

G protein-related fold

A characteristic arrangement of secondary structure elements and loops (such as switch I and switch II) shared by G proteins, myosins and kinesins, which indicates that these proteins originated from a common ancestor.

Axoneme

The microtubule-based core of eukaryotic cilia and flagella. The terms cilia and flagella are often used interchangeably, as both describe cellular appendages with an axoneme at their core. In this Review, we use cilia for consistency.

Autophagosomes

Organelles that enwrap cytoplasmic material in a double-membrane-bound structure and subsequently fuse with lysosomes, leading to degradation of the confined material.

Immunological synapse

The interface formed between an antigen-presenting cell and a lymphocyte, such as a B cell or a T cell.

Astral microtubules

Microtubules radiating from the spindle poles that do not contact the kinetochore or overlap with other microtubules in the spindle midzone.

Crystal soaking

A technique in which a crystallized macromolecule is bathed in a ligand-containing solution. The ligand has the opportunity to bind the macromolecule of interest owing to diffusion through solvent-filled channels in the crystal.

E1 helicase

A hexameric AAA+ ATPase protein from papillomavirus that encircles and translocates along single-stranded DNA, thereby unwinding DNA duplexes with a 3′ to 5′ directionality.

Reptation

Snake-like movement of a polymer along a path, originally introduced by De Gennes in the field of polymer theory.

Highly inclined and laminated optical sheet microscopy

A technique for visualizing fluorescently labelled single molecules in cells. To minimize background signal (which can confound single-molecule detection) the specimen is illuminated with an angled sheet of light.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, A., Kon, T., Knight, P. et al. Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 14, 713–726 (2013). https://doi.org/10.1038/nrm3667

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3667

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing