Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

FOXOs: signalling integrators for homeostasis maintenance

Key Points

  • The forkhead box O (FOXO) family of transcription factors consists of four members: FOXO1, FOXO3, FOXO4 and FOXO6. At the cellular level, FOXO transcriptional targets are involved in the regulation of cell cycle, apoptosis, oxidative stress resistance and metabolism.

  • FOXOs integrate signals from multiple upstream pathways and are activated by metabolic and oxidative stress and by the absence of growth factors. This regulation of FOXO activity is accomplished through various post-translational modifications, nuclear–cytoplasmic localization of FOXOs and their regulators, specific microRNAs (miRNAs) and interactions with other transcription factors.

  • The biological role of FOXOs is predominately to respond to stress conditions rather then being an essential mediator of normal physiology. Generally, by responding to and counteracting environmental changes, FOXOs act to maintain homeostasis.

  • In model organisms, FOXO function is diverse and mostly comes into focus under conditions that disturb homeostasis. Conditional knockout models have revealed functions in tumour suppression, metabolic stress and protein homeostasis, stem cell maintenance as well as specific roles in the immune system.

  • The role of FOXOs in maintaining cellular homeostasis reveals many similarities with the role of p53 in maintaining genome homeostasis, and these factors share co-regulators.

  • FOXOs were initially characterized as tumour suppressors. However, FOXOs have also been shown to act as tumour promoters. This seemingly paradoxical outcome of being both tumour suppressor and tumour promoter can be reconciled by postulating that FOXOs act as homeostasis regulators of both normal and cancer cells.


Forkhead box O (FOXO) transcription factors are involved in the regulation of the cell cycle, apoptosis and metabolism. In model organisms, FOXO activity also affects stem cell maintenance and lifespan as well as age-related diseases, such as cancer and diabetes. Multiple upstream pathways regulate FOXO activity through post-translational modifications and nuclear–cytoplasmic shuttling of both FOXO and its regulators. The diversity of this upstream regulation and the downstream effects of FOXOs suggest that they function as homeostasis regulators to maintain tissue homeostasis over time and coordinate a response to environmental changes, including growth factor deprivation, metabolic stress (starvation) and oxidative stress.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Control of FOXO and outcomes of FOXO activation.
Figure 2: Regulation of FOXO activity by controlled subcellular localization of FOXO and its regulators.
Figure 3: FOXOs participate in various forms of crosstalk.
Figure 4: FOXOs as homeostasis regulators.


  1. 1

    van der Horst, A. & Burgering, B. M. Stressing the role of FoxO proteins in lifespan and disease. Nature Rev. Mol. Cell Biol. 8, 440–450 (2007).

    CAS  Google Scholar 

  2. 2

    Dansen, T. B. & Burgering, B. M. Unravelling the tumor-suppressive functions of FOXO proteins. Trends Cell Biol. 18, 421–429 (2008).

    CAS  Google Scholar 

  3. 3

    Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007). The first description of mice with conditional deletion of Foxo1, Foxo3 and Foxo4 . Shows that FOXOs can act as tumour suppressors.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Bridge, D. et al. FoxO and stress responses in the cnidarian Hydra vulgaris. PLoS ONE 5, e11686 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    van den Berg, M. C. & Burgering, B. M. Integrating opposing signals toward forkhead box O. Antioxid. Redox Signal. 14, 607–621 (2011).

    CAS  Google Scholar 

  7. 7

    Calnan, D. R. & Brunet, A. The FoxO code. Oncogene 27, 2276–2288 (2008).

    CAS  Google Scholar 

  8. 8

    Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Rev. Mol. Cell Biol. 13, 251–262 (2012).

    CAS  Google Scholar 

  9. 9

    Greer, E. L. et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 282, 30107–30119 (2007).

    CAS  Google Scholar 

  10. 10

    Greer, E. L. et al. An AMPK–FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol. 17, 1646–1656 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Wang, F. et al. Structures of KIX domain of CBP in complex with two FOXO3a transactivation domains reveal promiscuity and plasticity in coactivator recruitment. Proc. Natl Acad. Sci. USA 109, 6078–6083 (2012).

    CAS  Google Scholar 

  12. 12

    Huang, H., Regan, K. M., Lou, Z., Chen, J. & Tindall, D. J. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 314, 294–297 (2006).

    CAS  PubMed  Google Scholar 

  13. 13

    Yuan, Z. et al. Activation of FOXO1 by Cdk1 in cycling cells and postmitotic neurons. Science 319, 1665–1668 (2008).

    CAS  Google Scholar 

  14. 14

    Liu, P., Kao, T. P. & Huang, H. CDK1 promotes cell proliferation and survival via phosphorylation and inhibition of FOXO1 transcription factor. Oncogene 27, 4733–4744 (2008).

    CAS  Google Scholar 

  15. 15

    Yata, K. & Esashi, F. Dual role of CDKs in DNA repair: to be, or not to be. DNA Repair (Amst.) 8, 6–18 (2009).

    CAS  Google Scholar 

  16. 16

    Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    CAS  Google Scholar 

  17. 17

    Tsai, W. B., Chung, Y. M., Takahashi, Y., Xu, Z. & Hu, M. C. Functional interaction between FOXO3a and ATM regulates DNA damage response. Nature Cell Biol. 10, 460–467 (2008).

    CAS  Google Scholar 

  18. 18

    Yalcin, S. et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J. Biol. Chem. 283, 25692–25705 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Kress, T. R. et al. The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. Mol. Cell 41, 445–457 (2011).

    CAS  Google Scholar 

  20. 20

    Nakae, J. et al. Novel repressor regulates insulin sensitivity through interaction with Foxo1. EMBO J. 31, 2275–2295 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Yang, Y., Hou, H., Haller, E. M., Nicosia, S. V. & Bai, W. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 24, 1021–1032 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Wang, Y. C. & Li, C. Evolutionarily conserved protein arginine methyltransferases in non-mammalian animal systems. FEBS J. 279, 932–945 (2012).

    CAS  Google Scholar 

  23. 23

    Yamagata, K. et al. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol. Cell 32, 221–231 (2008).

    CAS  Google Scholar 

  24. 24

    Takahashi, Y. et al. Asymmetric arginine dimethylation determines life span in C. elegans by regulating forkhead transcription factor DAF-16. Cell Metab. 13, 505–516 (2011).

    CAS  Google Scholar 

  25. 25

    Xie, Q. et al. Lysine methylation of FOXO3 regulates oxidative stress-induced neuronal cell death. EMBO Rep. 13, 371–377 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Housley, M. P. et al. O-GlcNAc regulates FoxO activation in response to glucose. J. Biol. Chem. 283, 16283–16292 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Kuo, M., Zilberfarb, V., Gangneux, N., Christeff, N. & Issad, T. O-GlcNAc modification of FoxO1 increases its transcriptional activity: a role in the glucotoxicity phenomenon? Biochimie 90, 679–685 (2008).

    CAS  Google Scholar 

  28. 28

    Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction. Nature 423, 550–555 (2003).

    CAS  PubMed  Google Scholar 

  29. 29

    Housley, M. P. et al. A PGC-1α–O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J. Biol. Chem. 284, 5148–5157 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Hanover, J. A., Krause, M. W. & Love, D. C. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nature Rev. Mol. Cell Biol. 13, 312–321 (2012).

    CAS  Google Scholar 

  31. 31

    Dansen, T. B. et al. Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nature Chem. Biol. 5, 664–672 (2009). Demonstrates that FOXOs can act as direct sensors of cellular redox.

    CAS  Google Scholar 

  32. 32

    Szypowska, A. A. & Burgering, B. M. The peroxide dilemma: opposing and mediating insulin action. Antioxid. Redox Signal. 15, 219–232 (2011).

    CAS  Google Scholar 

  33. 33

    Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their functions. Nature Rev. Mol. Cell Biol. 6, 197–208 (2005).

    CAS  Google Scholar 

  34. 34

    Lacy, E. R. et al. p27 binds cyclin–CDK complexes through a sequential mechanism involving binding-induced protein folding. Nature Struct. Mol. Biol. 11, 358–364 (2004).

    CAS  Google Scholar 

  35. 35

    Wang, Y. et al. Intrinsic disorder mediates the diverse regulatory functions of the Cdk inhibitor p21. Nature Chem. Biol. 7, 214–221 (2011).

    Google Scholar 

  36. 36

    Mittag, T. et al. Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc. Natl Acad. Sci. USA 105, 17772–17777 (2008).

    CAS  Google Scholar 

  37. 37

    Rena, G., Bain, J., Elliott, M. & Cohen, P. D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep. 5, 60–65 (2004).

    CAS  Google Scholar 

  38. 38

    Woods, Y. L. et al. The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem. J. 355, 597–607 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Giannakou, M. E. & Partridge, L. The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol. 14, 408–412 (2004).

    CAS  PubMed  Google Scholar 

  40. 40

    Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).

    CAS  Google Scholar 

  41. 41

    Banks, A. S. et al. Dissociation of the glucose and lipid regulatory functions of FoxO1 by targeted knockin of acetylation-defective alleles in mice. Cell Metab. 14, 587–597 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nature Cell Biol. 8, 1064–1073 (2006).

    CAS  PubMed  Google Scholar 

  43. 43

    Oshikawa, K., Matsumoto, M., Oyamada, K. & Nakayama, K. I. Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin. J. Proteome Res. 11, 796–807 (2012).

    CAS  Google Scholar 

  44. 44

    Asada, S. et al. Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell. Signal. 19, 519–527 (2007).

    CAS  Google Scholar 

  45. 45

    Guttilla, I. K. & White, B. A. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J. Biol. Chem. 284, 23204–23216 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Myatt, S. S. et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res. 70, 367–377 (2010).

    CAS  Google Scholar 

  47. 47

    Hasseine, L. K. et al. miR-139 impacts FoxO1 action by decreasing FoxO1 protein in mouse hepatocytes. Biochem. Biophys. Res. Commun. 390, 1278–1282 (2009).

    CAS  Google Scholar 

  48. 48

    Small, E. M. et al. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc. Natl Acad. Sci. USA 107, 4218–4223 (2010).

    CAS  Google Scholar 

  49. 49

    Yamamoto, M. et al. miR-155, a modulator of FOXO3a protein expression, is underexpressed and cannot be upregulated by stimulation of HOZOT, a line of multifunctional treg. PLoS ONE 6, e16841 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Kong, W. et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J. Biol. Chem. 285, 17869–17879 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Liu, X. et al. microRNA-499-5p promotes cellular invasion and tumor metastasis in colorectal cancer by targeting FOXO4 and PDCD4. Carcinogenesis 32, 1798–1805 (2011).

    CAS  Google Scholar 

  52. 52

    Wang, K. & Li, P. F. Foxo3a regulates apoptosis by negatively targeting miR-21. J. Biol. Chem. 285, 16958–16966 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Gan, B. et al. FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal tumorigenesis. Cancer Cell 18, 472–484 (2010). Demonstrates, together with reference 99, the relevance of MYC–FOXO antagonism in tumorigenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Brett, J. O., Renault, V. M., Rafalski, V. A., Webb, A. E. & Brunet, A. The microRNA cluster miR-106b25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY) 3, 108–124 (2011).

    CAS  Google Scholar 

  55. 55

    Perl, A. Emerging new pathways of pathogenesis and targets for treatment in systemic lupus erythematosus and Sjogren's syndrome. Curr. Opin. Rheumatol. 21, 443–447 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Dai, R. et al. Identification of a common lupus disease-associated microRNA expression pattern in three different murine models of lupus. PLoS ONE 5, e14302 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K. & Horio, Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 282, 6823–6832 (2007).

    CAS  Google Scholar 

  58. 58

    Mihaylova, M. M. et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607–621 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Wang, B. et al. A hormone-dependent module regulating energy balance. Cell 145, 596–606 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Kitamura, Y. I. et al. FoxO1 protects against pancreatic β-cell failure through NeuroD and MafA induction. Cell Metab. 2, 153–163 (2005).

    CAS  Google Scholar 

  61. 61

    Zhong, S., Salomoni, P. & Pandolfi, P. P. The transcriptional role of PML and the nuclear body. Nature Cell Biol. 2, e85–e90 (2000).

    CAS  Google Scholar 

  62. 62

    Brenkman, A. B., de Keizer, P. L., van den Broek, N. J., Jochemsen, A. G. & Burgering, B. M. Mdm2 induces mono-ubiquitination of FOXO4. PLoS ONE 3, e2819 (2008).

    PubMed  PubMed Central  Google Scholar 

  63. 63

    Yang, J. Y. et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nature Cell Biol. 10, 138–148 (2008).

    CAS  Google Scholar 

  64. 64

    Fu, W. et al. MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J. Biol. Chem. 284, 13987–14000 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Ashcroft, M. et al. Phosphorylation of HDM2 by Akt. Oncogene 21, 1955–1962 (2002).

    CAS  Google Scholar 

  66. 66

    Mayo, L. D. & Donner, D. B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl Acad. Sci. USA 98, 11598–11603 (2001).

    CAS  Google Scholar 

  67. 67

    Zhou, B. P. et al. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nature Cell Biol. 3, 973–982 (2001).

    CAS  Google Scholar 

  68. 68

    Tao, W. & Levine, A. J. P19ARF stabilizes p53 by blocking nucleo–cytoplasmic shuttling of Mdm2. Proc. Natl Acad. Sci. USA 96, 6937–6941 (1999).

    CAS  Google Scholar 

  69. 69

    Bernardi, R. et al. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nature Cell Biol. 6, 665–672 (2004).

    CAS  Google Scholar 

  70. 70

    Kurki, S., Latonen, L. & Laiho, M. Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization. J. Cell Sci. 116, 3917–3925 (2003).

    CAS  Google Scholar 

  71. 71

    Jackson, M. W. et al. Hdm2 nuclear export, regulated by insulin-like growth factor-I/MAPK/p90Rsk signaling, mediates the transformation of human cells. J. Biol. Chem. 281, 16814–16820 (2006).

    CAS  Google Scholar 

  72. 72

    Wagner, S. A. et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell. Proteomics 10, M111.013284 (2011).

    PubMed  PubMed Central  Google Scholar 

  73. 73

    Aoki, M., Jiang, H. & Vogt, P. K. Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc. Natl Acad. Sci. USA 101, 13613–13617 (2004).

    CAS  PubMed  Google Scholar 

  74. 74

    Meier, R., Alessi, D. R., Cron, P., Andjelkovic, M. & Hemmings, B. A. Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bβ. J. Biol. Chem. 272, 30491–30497 (1997).

    CAS  Google Scholar 

  75. 75

    Brownawell, A. M., Kops, G. J., Macara, I. G. & Burgering, B. M. Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX. Mol. Cell. Biol. 21, 3534–3546 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Brunet, A. et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol. 156, 817–828 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Sundaresan, N. R. et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci. Signal. 4, ra46 (2011).

    CAS  Google Scholar 

  78. 78

    Yang, W. L. et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325, 1134–1138 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Chan, C. H. et al. The Skp2–SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 149, 1098–1111 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Essers, M. A. et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 23, 4802–4812 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Wu, X. et al. Rac1 activation controls nuclear localization of β-catenin during canonical Wnt signaling. Cell 133, 340–353 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Mizukami, Y., Yoshioka, K., Morimoto, S. & Yoshida, K. A novel mechanism of JNK1 activation. Nuclear translocation and activation of JNK1 during ischemia and reperfusion. J. Biol. Chem. 272, 16657–16662 (1997).

    CAS  Google Scholar 

  83. 83

    Lin, K., Hsin, H., Libina, N. & Kenyon, C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nature Genet. 28, 139–145 (2001).

    CAS  Google Scholar 

  84. 84

    Furuyama, T., Nakazawa, T., Nakano, I. & Mori, N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J. 349, 629–634 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Ramaswamy, S., Nakamura, N., Sansal, I., Bergeron, L. & Sellers, W. R. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 2, 81–91 (2002).

    CAS  Google Scholar 

  86. 86

    Barr, F. G. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20, 5736–5746 (2001).

    CAS  Google Scholar 

  87. 87

    Burgering, B. M. & Medema, R. H. Decisions on life and death: FOXO forkhead transcription factors are in command when PKB/Akt is off duty. J. Leukoc. Biol. 73, 689–701 (2003).

    CAS  Google Scholar 

  88. 88

    Lalmansingh, A. S., Karmakar, S., Jin, Y. & Nagaich, A. K. Multiple modes of chromatin remodeling by forkhead box proteins. Biochim. Biophys. Acta 1819, 707–715 (2012).

    CAS  Google Scholar 

  89. 89

    Hatta, M. & Cirillo, L. A. Chromatin opening and stable perturbation of core histone:DNA contacts by FoxO1. J. Biol. Chem. 282, 35583–35593 (2007).

    CAS  PubMed  Google Scholar 

  90. 90

    Hatta, M., Liu, F. & Cirillo, L. A. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1. Biochem. Biophys. Res. Commun. 379, 1005–1008 (2009).

    CAS  PubMed  Google Scholar 

  91. 91

    van der Vos, K. E. & Coffer, P. J. FOXO-binding partners: it takes two to tango. Oncogene 27, 2289–2299 (2008).

    CAS  Google Scholar 

  92. 92

    You, H. et al. p53-dependent inhibition of FKHRL1 in response to DNA damage through protein kinase SGK1. Proc. Natl Acad. Sci. USA 101, 14057–14062 (2004).

    CAS  PubMed  Google Scholar 

  93. 93

    Renault, V. M. et al. The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene 30, 3207–3221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Bouchard, C. et al. FoxO transcription factors suppress Myc-driven lymphomagenesis via direct activation of Arf. Genes Dev. 21, 2775–2787 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    You, H., Yamamoto, K. & Mak, T. W. Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a. Proc. Natl Acad. Sci. USA 103, 9051–9056 (2006).

    CAS  Google Scholar 

  96. 96

    Kloet, D. E. & Burgering, B. M. The PKB/FOXO switch in aging and cancer. Biochim. Biophys. Acta 1813, 1926–1937 (2011).

    CAS  Google Scholar 

  97. 97

    Ferber, E. C. et al. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ. 19, 968–979 (2012).

    CAS  Google Scholar 

  98. 98

    Jensen, K. S. et al. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function. EMBO J. 30, 4554–4570 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Delpuech, O. et al. Induction of Mxi1-SR α by FOXO3a contributes to repression of Myc-dependent gene expression. Mol. Cell. Biol. 27, 4917–4930 (2007). Describes for the first time the molecular details as to how FOXO can antagonize MYC function.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Hoogeboom, D. & Burgering, B. M. Should I stay or should I go: β-catenin decides under stress. Biochim. Biophys. Acta 1796, 63–74 (2009).

    CAS  Google Scholar 

  101. 101

    Essers, M. A. et al. Functional interaction between β-catenin and FOXO in oxidative stress signaling. Science 308, 1181–1184 (2005). Shows the interaction of FOXO with β-catenin and so provides a novel link between WNT and insulin signalling that is regulated by oxidative stress. Provides biochemical rationale for the link between WNT–TCF and diabetes onset shown in reference 106.

    CAS  PubMed  Google Scholar 

  102. 102

    Hoogeboom, D. et al. Interaction of FOXO with β-catenin inhibits β-catenin/T cell factor activity. J. Biol. Chem. 283, 9224–9230 (2008).

    CAS  Google Scholar 

  103. 103

    Almeida, M., Han, L., Martin-Millan, M., O'Brien, C. A. & Manolagas, S. C. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting β-catenin from T cell factor- to forkhead box O-mediated transcription. J. Biol. Chem. 282, 27298–27305 (2007).

    CAS  Google Scholar 

  104. 104

    Xie, X. W., Liu, J. X., Hu, B. & Xiao, W. Zebrafish foxo3b negatively regulates canonical Wnt signaling to affect early embryogenesis. PLoS ONE 6, e24469 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Kanazawa, A. et al. Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes. Am. J. Hum. Genet. 75, 832–843 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Grant, S. F. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nature Genet. 38, 320–323 (2006). Describes a strong association between the classic WNT signalling transcription factor TFC4 and diabetes onset, providing the first in vivo evidence that insulin and WNT signalling may be linked through the regulation of TCF activity.

    CAS  Google Scholar 

  107. 107

    Mani, A. et al. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315, 1278–1282 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Liu, H. et al. Wnt signaling regulates hepatic metabolism. Sci. Signal. 4, ra6 (2011).

    PubMed  PubMed Central  Google Scholar 

  109. 109

    Hui, R. C. et al. The forkhead transcription factor FOXO3a increases phosphoinositide-3 kinase/Akt activity in drug-resistant leukemic cells through induction of PIK3CA expression. Mol. Cell. Biol. 28, 5886–5898 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Ide, T. et al. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nature Cell Biol. 6, 351–357 (2004).

    CAS  Google Scholar 

  111. 111

    Puig, O. & Tjian, R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev. 19, 2435–2446 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Chen, C. C. et al. FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev. Cell 18, 592–604 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Kousteni, S. FoxO1, the transcriptional chief of staff of energy metabolism. Bone 50, 437–443 (2012).

    CAS  Google Scholar 

  114. 114

    Ren, H. et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 149, 1314–1326 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Lu, M. et al. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nature Med. 18, 388–395 (2012). Shows that the main function of PKB in insulin signalling in the liver is to control FOXO1 and reveals PKB-independent regulation of insulin-induced glucose metabolism.

    CAS  Google Scholar 

  116. 116

    Paradis, S. & Ruvkun, G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 12, 2488–2498 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Selkoe, D. J. Folding proteins in fatal ways. Nature 426, 900–904 (2003).

    CAS  PubMed  Google Scholar 

  118. 118

    Morley, J. F., Brignull, H. R., Weyers, J. J. & Morimoto, R. I. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 99, 10417–10422 (2002).

    PubMed  Google Scholar 

  119. 119

    Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W. & Dillin, A. Opposing activities protect against age-onset proteotoxicity. Science 313, 1604–1610 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Cohen, E. et al. Temporal requirements of insulin/IGF-1 signaling for proteotoxicity protection. Aging Cell 9, 126–134 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Vilchez, D. et al. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489, 263–268 (2012).

    CAS  Google Scholar 

  122. 122

    Zhao, J. et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472–483 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6, 458–471 (2007).

    CAS  Google Scholar 

  124. 124

    Mei, Y. et al. FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation. Proc. Natl Acad. Sci. USA 106, 5153–5158 (2009).

    CAS  Google Scholar 

  125. 125

    Sandri, M. et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399–412 (2004). The first paper to suggest a role for FOXO in protein homeostasis other than regulating protein translation.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Bodine, S. C. et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704–1708 (2001).

    CAS  Google Scholar 

  127. 127

    Liu, H. Y. et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J. Biol. Chem. 284, 31484–31492 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Sengupta, A., Molkentin, J. D. & Yutzey, K. E. FoxO transcription factors promote autophagy in cardiomyocytes. J. Biol. Chem. 284, 28319–28331 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Zhao, Y. et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nature Cell Biol. 12, 665–675 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Junger, M. A. et al. The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J. Biol. 2, 20 (2003).

    PubMed  PubMed Central  Google Scholar 

  131. 131

    Puig, O., Marr, M. T., Ruhf, M. L. & Tjian, R. Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev. 17, 2006–2020 (2003). One of the first studies to focus on feedback control of signalling towards FOXO that is initiated by FOXO transcriptional activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Southgate, R. J. et al. FOXO1 regulates the expression of 4E-BP1 and inhibits mTOR signaling in mammalian skeletal muscle. J. Biol. Chem. 282, 21176–21186 (2007).

    CAS  Google Scholar 

  133. 133

    McColl, G. et al. Insulin-like signaling determines survival during stress via posttranscriptional mechanisms in C. elegans. Cell Metab. 12, 260–272 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Boehm, A. M. et al. FoxO is a critical regulator of stem cell maintenance in immortal Hydra. Proc. Natl Acad. Sci. USA 109, 19697–19702 (2012).

    CAS  Google Scholar 

  135. 135

    Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1, 101–112 (2007).

    CAS  Google Scholar 

  136. 136

    Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007). Describes a role for FOXOs in adult stem cell maintenance.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Paik, J. H. et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5, 540–553 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Renault, V. M. et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5, 527–539 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Pan, G. & Thomson, J. A. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 17, 42–49 (2007).

    CAS  Google Scholar 

  140. 140

    Zhang, X. et al. FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nature Cell Biol. 13, 1092–1099 (2011).

    CAS  Google Scholar 

  141. 141

    Becker, T. et al. FOXO-dependent regulation of innate immune homeostasis. Nature 463, 369–373 (2010).

    CAS  Google Scholar 

  142. 142

    Hedrick, S. M., Hess Michelini, R., Doedens, A. L., Goldrath, A. W. & Stone, E. L. FOXO transcription factors throughout T cell biology. Nature Rev. Immunol. 12, 649–661 (2012).

    CAS  Google Scholar 

  143. 143

    Dejean, A. S., Hedrick, S. M. & Kerdiles, Y. M. Highly specialized role of forkhead box O transcription factors in the immune system. Antioxid. Redox Signal. 14, 663–674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Dengler, H. S. et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nature Immunol. 9, 1388–1398 (2008).

    CAS  Google Scholar 

  145. 145

    Kerdiles, Y. M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nature Immunol. 10, 176–184 (2009).

    CAS  Google Scholar 

  146. 146

    Amin, R. H. & Schlissel, M. S. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nature Immunol. 9, 613–622 (2008).

    CAS  Google Scholar 

  147. 147

    Harada, Y. et al. Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J. Exp. Med. 207, 1381–1391 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Kerdiles, Y. M. et al. Foxo transcription factors control regulatory T cell development and function. Immunity 33, 890–904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Ouyang, W. et al. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nature Immunol. 11, 618–627 (2010).

    CAS  Google Scholar 

  150. 150

    Ouyang, W. et al. Novel Foxo1-dependent transcriptional programs control TReg cell function. Nature 491, 554–559 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151

    Litvak, V. et al. A FOXO3–IRF7 gene regulatory circuit limits inflammatory sequelae of antiviral responses. Nature 490, 421–425 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Seoane, J., Le, H. V., Shen, L., Anderson, S. A. & Massague, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117, 211–223 (2004).

    CAS  PubMed  Google Scholar 

  153. 153

    de Keizer, P. L. et al. Activation of forkhead box O transcription factors by oncogenic BRAF promotes p21cip1-dependent senescence. Cancer Res. 70, 8526–8536 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Naka, K. et al. TGF-β–FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463, 676–680 (2010). Suggests that in cancer stem cells FOXOs have similar functions as in adult stem cells.

    CAS  Google Scholar 

  155. 155

    Sykes, S. M. et al. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell 146, 697–708 (2011). Provides a rationale as to why the normal function of FOXO needs to be maintained during tumorigenesis and adds to the conclusion in reference 158 that FOXOs can also act to promote tumorigenesis.

    CAS  Google Scholar 

  156. 156

    Chakrabarty, A., Sanchez, V., Kuba, M. G., Rinehart, C. & Arteaga, C. L. Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proc. Natl Acad. Sci. USA 109, 2718–2723 (2012).

    CAS  Google Scholar 

  157. 157

    Chandarlapaty, S. et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19, 58–71 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Storz, P., Doppler, H., Copland, J. A., Simpson, K. J. & Toker, A. FOXO3a promotes tumor cell invasion through the induction of matrix metalloproteinases. Mol. Cell. Biol. 29, 4906–4917 (2009). Describes a pro-tumorigenic role for FOXO in driving metastasis, which is further supported by reference 159.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Tenbaum, S. P. et al. β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nature Med. 18, 892–901 (2012).

    CAS  Google Scholar 

  160. 160

    van der Vos, K. E. & Coffer, P. J. The extending network of FOXO transcriptional target genes. Antioxid. Redox Signal. 14, 579–592 (2011).

    CAS  Google Scholar 

Download references


The authors thank G. Kops and R. Martinez for critical reading of the manuscript and discussion. Research in the Burgering laboratory is funded by the Dutch Cancer Society (KWF), the Netherlands Organisation for Scientific Research (NWO) and the Centre of Biomedical Genetics (CBG). A.E. is supported by the Centre of Translational Molecular Medicine (CTMM) Research.

Author information



Corresponding author

Correspondence to Boudewijn M. T. Burgering.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links


Boudewijn M. T. Burgering's homepage



The ability of an organism, or its constituent cells and organs, to establish and maintain an equilibrium that stabilizes its internal milieu and optimizes its ability to deal with moderate external changes.

Dauer stage

An alternative developmental stage of nematode worms, including Caenorhabditis elegans, in which larva are adapted so that they can survive harsh conditions for an extended period of time.


A co-activator family composed of two closely related transcriptional co-activators. They regulate transcription by relaxing chromatin structures through histone acetylation, by recruiting the basal transcription machinery, including RNA polymerase II, and by acting as adaptor molecules.


The addition of a methyl group to a substrate. Protein methylation typically takes place on Arg or Lys residues, adding a maximum of two or three methyl groups, respectively.


(O-GlcNAc). A monosaccharide derivative of glucose that is added as a post-translational modification on Ser and Thr residues.

Cys oxidation

The thiol group of Cys residues can be easily oxidized, which can result in the formation of disulphide bonds with a Cys residue in the same or another protein.

Epigenetic code

Hypothesized to be a defining code in every eukaryotic cell that consists of specific epigenetic modifications. It includes histone modifications defined by the histone code and additional epigenetic modifications such as DNA methylation.


(miRNAs). Short RNAs found in eukaryotic cells that can post-transcriptionally regulate gene expression through binding to complementary sequences in target mRNAs. This usually results in translational repression or target degradation.


Haploinsufficiency occurs when a diploid organism only has a single functional copy of a gene, and the single functional copy of the gene does not produce enough of a gene product, which leads to an abnormal or diseased state.

T cells

Lymphocytes that are essential components of the adaptive immune system and are mainly involved in cell-mediated immunity.

PML bodies

(Promyelocytic leukaemia bodies). Spherical bodies that are found scattered throughout the nucleoplasm. PML bodies have been suggested to affect transcription regulation.


A non-membrane bound structure composed of proteins and nucleic acids found within the nucleus. The nucleolus is the location of rRNA transcription and assembly but can also capture and immobilize proteins.

Pioneer factors

Although the precise definition is still debated, pioneer factors are thought to be transcription factors that can initially bind regulatory sequences, allowing binding of other factors by opening compacted chromatin, ultimately enabling transcriptional activation.

Metabolic syndrome

A combination of medical disorders that, when occurring together, increase the risk of developing cardiovascular disease and diabetes.


(Agouti-related protein (AGRP)-expressing neurons). Hypothalamic neurons that express AGRP regulate food intake by stimulating feeding and inhibiting satiety.


A tightly regulated catabolic process (also known as autophagocytosis) that involves the degradation of cellular components through the lysosomal machinery.


An autophagy pathway that selectively degrades mitochondria.


Pluripotency refers to a state of a cell, which has the potential to differentiate into any of the three germ layers (endoderm, mesoderm and ectoderm) and can give rise to any fetal or adult cell type.

B cell

A lymphocyte and essential component of the adaptive immune system. The principal functions of B cells are to generate antibodies against antigens, act as antigen-presenting cells and eventually develop into memory B cells.

Regulatory T cells

A subset of T cells that are also known as suppressor T cells. Their major role is to shut down T cell-mediated immunity towards the end of an immune reaction.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eijkelenboom, A., Burgering, B. FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14, 83–97 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing