Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

TALENs: a widely applicable technology for targeted genome editing

Abstract

Engineered nucleases enable the targeted alteration of nearly any gene in a wide range of cell types and organisms. The newly-developed transcription activator-like effector nucleases (TALENs) comprise a nonspecific DNA-cleaving nuclease fused to a DNA-binding domain that can be easily engineered so that TALENs can target essentially any sequence. The capability to quickly and efficiently alter genes using TALENs promises to have profound impacts on biological research and to yield potential therapeutic strategies for genetic diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of TALENs and TALE repeat arrays.
Figure 2: Nuclease-induced genome editing.

Similar content being viewed by others

References

  1. Baker, M. Gene-editing nucleases. Nature Methods 9, 23–26 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nature Rev. Genet. 11, 636–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Perez, E. E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotech. 26, 808–816 (2008).

    Article  CAS  Google Scholar 

  4. Boch, J. & Bonas, U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 48, 419–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Li, T. et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 39, 6315–6325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, J. et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J. Genet. Genom. 39, 209–215 (2012).

    Article  CAS  Google Scholar 

  7. Wood, A. J. et al. Targeted genome editing across species using ZFNs and TALENs. Science 333, 307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Watanabe, T. et al. Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nature Commun. 3, 1017 (2012).

    Article  CAS  Google Scholar 

  9. Sander, J. D. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotech. 29, 697–698 (2011).

    Article  CAS  Google Scholar 

  10. Huang, P. et al. Heritable gene targeting in zebrafish using customized TALENs. Nature Biotech. 29, 699–700 (2011).

    Article  CAS  Google Scholar 

  11. Bedell, V. M. et al. In vivo genome editing using a high-efficiency TALEN system. Nature 23 Sep 2012 (doi:10.1038/nature11537).

  12. Lei, Y. et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc. Natl Acad. Sci. USA 109, 17484–17489 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tesson, L. et al. Knockout rats generated by embryo microinjection of TALENs. Nature Biotech. 29, 695–696 (2011).

    Article  CAS  Google Scholar 

  14. Carlson, D. F. et al. Efficient TALEN-mediated gene knockout in livestock. Proc. Natl Acad. Sci. USA 109, 17382–17387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, T., Liu, B., Spalding, M. H., Weeks, D. P. & Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotech. 30, 390–392 (2012).

    Article  CAS  Google Scholar 

  17. Ma, S. et al. Highly efficient and specific genome editing in silkworm using custom TALENs. PLoS ONE 7, e45035 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reyon, D. et al. FLASH assembly of TALENs for high-throughput genome editing. Nature Biotech. 30, 460–465 (2012).

    Article  CAS  Google Scholar 

  19. Miller, J. C. et al. A TALE nuclease architecture for efficient genome editing. Nature Biotech. 29, 143–148 (2011).

    Article  CAS  Google Scholar 

  20. Hockemeyer, D. et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotech. 29, 731–734 (2011).

    Article  CAS  Google Scholar 

  21. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Moscou, M. J. & Bogdanove, A. J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Morbitzer, R., Romer, P., Boch, J. & Lahaye, T. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc. Natl Acad. Sci. USA 107, 21617–21622 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757–761 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, T. et al. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 39, 359–372 (2011).

    Article  PubMed  CAS  Google Scholar 

  26. Mak, A. N., Bradley, P., Cernadas, R. A., Bogdanove, A. J. & Stoddard, B. L. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335, 716–719 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng, D. et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335, 720–723 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Streubel, J., Blucher, C., Landgraf, A. & Boch, J. TAL effector RVD specificities and efficiencies. Nature Biotech. 30, 593–595 (2012).

    Article  CAS  Google Scholar 

  29. Cong, L., Zhou, R., Kuo, Y. C., Cunniff, M. & Zhang, F. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nature Commun. 3, 968 (2012).

    Article  CAS  Google Scholar 

  30. Handel, E. M. & Cathomen, T. Zinc-finger nuclease based genome surgery: it's all about specificity. Curr. Gene Ther. 11, 28–37 (2011).

    Article  PubMed  Google Scholar 

  31. Moehle, E. A. et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc. Natl Acad. Sci. USA 104, 3055–3060 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, F. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nature Methods 8, 753–755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bibikova, M., Golic, M., Golic, K. G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bibikova, M., Beumer, K., Trautman, J. K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Morton, J., Davis, M. W., Jorgensen, E. M. & Carroll, D. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc. Natl Acad. Sci. USA 103, 16370–16375 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Doyon, Y. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotech. 26, 702–708 (2008).

    Article  CAS  Google Scholar 

  37. Meng, X., Noyes, M. B., Zhu, L. J., Lawson, N. D. & Wolfe, S. A. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature Biotech. 26, 695–701 (2008).

    Article  CAS  Google Scholar 

  38. Yano, A. et al. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr. Biol. 22, 1423–1428 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Dong, Z. et al. Heritable targeted inactivation of myostatin gene in yellow catfish (Pelteobagrus fulvidraco) using engineered zinc finger nucleases. PLoS ONE 6, e28897 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ochiai, H. et al. Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases. Genes Cells 15, 875–885 (2010).

    CAS  PubMed  Google Scholar 

  41. Young, J. J. et al. Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc. Natl Acad. Sci. USA 108, 7052–7057 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hauschild, J. et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc. Natl Acad. Sci. USA 108, 12013–12017 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu, S. et al. Highly efficient modification of β-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res. 21, 1638–1640 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Flisikowska, T. et al. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS ONE 6, e21045 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takasu, Y. et al. Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem. Mol. Biol. 40, 759–765 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Merlin, C., Beaver, L. E., Taylor, O. R., Wolfe, S. A. & Reppert, S. M. Efficient targeted mutagenesis in the monarch butterfly using zinc finger nucleases. Genome Res. 25 Sep 2012 (doi:10.1101/gr.145599.112).

    Article  PubMed  CAS  Google Scholar 

  47. Meyer, M., de Angelis, M. H., Wurst, W. & Kuhn, R. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc. Natl Acad. Sci. USA 107, 15022–15026 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carbery, I. D. et al. Targeted genome modification in mice using zinc-finger nucleases. Genetics 186, 451–459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cui, X. et al. Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nature Biotech. 29, 64–67 (2011).

    Article  CAS  Google Scholar 

  50. Geurts, A. M. et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Curtin, S. J. et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 156, 466–473 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sander, J. D. et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods 8, 67–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Lloyd, A., Plaisier, C. L., Carroll, D. & Drews, G. N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl Acad. Sci. USA 102, 2232–2237 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, F. et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc. Natl Acad. Sci. USA 107, 12028–12033 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shukla, V. K. et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459, 437–441 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Townsend, J. A. et al. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459, 442–445 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marton, I. et al. Nontransgenic genome modification in plant cells. Plant Physiol. 154, 1079–1087 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Santiago, Y. et al. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc. Natl Acad. Sci. USA 105, 5809–5814 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Urnov, F. D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    Article  PubMed  Google Scholar 

  61. Zou, J. et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5, 97–110 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotech. 27, 851–857 (2009).

    Article  CAS  Google Scholar 

  63. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nature Biotech. 25, 1298–1306 (2007).

    Article  CAS  Google Scholar 

  64. Lee, H. J., Kim, E. & Kim, J. S. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 20, 81–89 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brunet, E. et al. Chromosomal translocations induced at specified loci in human stem cells. Proc. Natl Acad. Sci. USA 106, 10620–10625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Simsek, D. et al. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet. 7, e1002080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, H. J., Kweon, J., Kim, E., Kim, S. & Kim, J. S. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res. 22, 539–548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mussolino, C. et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 39, 9283–9293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sanjana, N. E. et al. A transcription activator-like effector toolbox for genome engineering. Nature Protoc. 7, 171–192 (2012).

    Article  CAS  Google Scholar 

  70. Sun, N., Liang, J., Abil, Z. & Zhao, H. Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol. Biosyst. 8, 1255–1263 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Kim, H., Um, E., Cho, S. R., Jung, C. & Kim, J. S. Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nature Methods 8, 941–943 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Sebastiano, V. et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29, 1717–1726 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yusa, K. et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478, 391–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Soldner, F. et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146, 318–331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cade, L. et al. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. 140, 8001–8010 (2012).

    Article  CAS  Google Scholar 

  76. Doyon, Y. et al. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nature Methods 8, 74–79 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Moore, F. E. et al. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS ONE 7, e37877 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ramirez, C. L. et al. Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. 40, 5560–5568 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, J. et al. Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res. 22, 1316–1326 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kim, E. et al. Precision genome engineering with programmable DNA-nicking enzymes. Genome Res. 22, 1327–1333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gaj, T., Guo, J., Kato, Y., Sirk, S. J. & Barbas, C. F. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nature Methods 9, 805–807 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mercer, A. C., Gaj, T., Fuller, R. P. & Barbas, C. F. Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. 26 Sep 2012 (doi:10.1093/nar/gks875).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wolfe, S. A., Nekludova, L. & Pabo, C. O. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29, 183–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Pabo, C. O., Peisach, E. & Grant, R. A. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70, 313–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Greisman, H. A. & Pabo, C. O. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275, 657–661 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Isalan, M., Choo, Y. & Klug, A. Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc. Natl Acad. Sci. USA 94, 5617–5621 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wolfe, S. A., Greisman, H. A., Ramm, E. I. & Pabo, C. O. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J. Mol. Biol. 285, 1917–1934 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Beerli, R. R. & Barbas, C. F. Engineering polydactyl zinc-finger transcription factors. Nature Biotech. 20, 135–141 (2002).

    Article  CAS  Google Scholar 

  89. Ramirez, C. L. et al. Unexpected failure rates for modular assembly of engineered zinc fingers. Nature Methods 5, 374–375 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Maeder, M. L. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31, 294–301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim, Y. G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl Acad. Sci. USA 93, 1156–1160 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Blancafort, P., Segal, D. J. & Barbas, C. F. Designing transcription factor architectures for drug discovery. Mol. Pharmacol. 66, 1361–1371 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotech. 29, 149–153 (2011).

    Article  CAS  Google Scholar 

  94. Geissler, R. et al. Transcriptional activators of human genes with programmable DNA-specificity. PLoS ONE 6, e19509 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Garg, A., Lohmueller, J. J., Silver, P. A. & Armel, T. Z. Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Res. 40, 7584–7595 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tremblay, J. P., Chapdelaine, P., Coulombe, Z. & Rousseau, J. TALE proteins induced the expression of the frataxin gene. Hum. Gene Ther. 23, 883–890 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, Z. et al. An integrated Chip for the high-throughput synthesis of transcription activator-like effectors. Angew. Chem. Int. Ed. Engl. 51, 8505–8508 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Bultmann, S. et al. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res. 40, 5368–5377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu, P. Q. et al. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J. Biol. Chem. 276, 11323–11334 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Doyle, E. L. et al. TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res. 40, W117–W122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.K.J. acknowledges support from the US National Institutes of Health (NIH) (grants DP1 GM105378, R01 GM088040 and P50 HG005550) and The Jim and Ann Orr Massachusetts General Hospital Research Scholar Award. J.D.S. was supported by the NIH grant T32CA009216. The authors apologize to colleagues whose studies were not cited due to length constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Keith Joung.

Ethics declarations

Competing interests

J. Keith Joung has a financial interest in Transposagen Biopharmaceuticals. His interests were reviewed and are managed by Massachusetts General Hospital and Partners HealthCare in accordance with their conflict of interest policies. J. Keith Joung and Jeffry D. Sander are inventors on a patent application describing the FLASH assembly method.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Joung laboratory homepage

Addgene TALE reagent website

TALengineering newsgroup

TALengineering website

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joung, J., Sander, J. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14, 49–55 (2013). https://doi.org/10.1038/nrm3486

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3486

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing