Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Group choreography: mechanisms orchestrating the collective movement of border cells

Key Points

  • Cell movement is essential for animal development, homeostasis and disease progression. Some cells move in groups, others as single cells.

  • Individual cell migration can be described by a series of reiterated steps: extension of protrusions towards a chemoattractant, adhesion to a substrate, contraction and detachment at the rear. However, cells migrating in complex environments and/or coordinating their movements with other cells require additional regulation.

  • The Drosophila melanogaster border cells have emerged as an excellent model for the study of the coordinated movement of cells in a cohort in vivo. Innovative genetic, live imaging and photomanipulation techniques are providing new insights into the signals governing collective cell migration.

  • Key molecules regulating border cell migration include: the JAK–STAT (Janus kinase–signal transducer and activator of transcription) pathway for selecting the motile cells; the steroid hormone ecdysone for coordinating the timing of movement; and receptor tyrosine kinases and their ligands for providing spatial cues.

  • Unlike individually migrating cells that only adopt a leading–lagging edge polarity, the border cells require two additional axes of polarity for coordinated movement: apical–basal and inside–outside. Because border cells remain in a cluster as they move, they must maintain high levels of adhesion complexes between cells, while dynamically regulating adhesions at the outer edges.

  • Regulators of actin dynamics, such as the Rho.family of GTPases and actin-binding proteins, control much of the mechanics of cell movement. However, the precise roles for specific actin regulators depend on their cellular contexts.

Abstract

Cell movements are essential for animal development and homeostasis but also contribute to disease. Moving cells typically extend protrusions towards a chemoattractant, adhere to the substrate, contract and detach at the rear. It is less clear how cells that migrate in interconnected groups in vivo coordinate their behaviour and navigate through natural environments. The border cells of the Drosophila melanogaster ovary have emerged as an excellent model for the study of collective cell movement, aided by innovative genetic, live imaging, and photomanipulation techniques. Here we provide an overview of the molecular choreography of border cells and its more general implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Drosophila melanogaster oogenesis.
Figure 2: Converging signalling pathways regulate border cell migration.
Figure 3: Migrating border cells are polarized along three axes of polarity.

Similar content being viewed by others

References

  1. Rorke, L. B. A perspective: the role of disordered genetic control of neurogenesis in the pathogenesis of migration disorders. J. Neuropathol. Exp. Neurol. 53, 105–117 (1994).

    CAS  PubMed  Google Scholar 

  2. Imai, K., Nonoyama, S. & Ochs, H. D. WASP (Wiskott–Aldrich syndrome protein) gene mutations and phenotype. Curr. Opin. Allergy Clin. Immunol. 3, 427–436 (2003).

    CAS  PubMed  Google Scholar 

  3. Gertler, F. & Condeelis, J. Metastasis: tumor cells becoming MENAcing. Trends Cell Biol. 21, 81–90 (2011).

    CAS  PubMed  Google Scholar 

  4. Roussos, E. T., Condeelis, J. S. & Patsialou, A. Chemotaxis in cancer. Nature Rev. Cancer 11, 573–587 (2011).

    CAS  Google Scholar 

  5. Yamaguchi, H. & Condeelis, J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta 1773, 642–652 (2007).

    CAS  PubMed  Google Scholar 

  6. Vicente-Manzanares, M., Webb, D. J. & Horwitz, A. R. Cell migration at a glance. J. Cell Sci. 118, 4917–4919 (2005).

    CAS  PubMed  Google Scholar 

  7. Webb, D. J., Zhang, H. & Horwitz, A. F. Cell migration: an overview. Methods Mol. Biol. 294, 3–11 (2005).

    PubMed  Google Scholar 

  8. Petrie, R. J., Doyle, A. D. & Yamada, K. M. Random versus directionally persistent cell migration. Nature Rev. Mol. Cell Biol. 10, 538–549 (2009).

    CAS  Google Scholar 

  9. Bretscher, M. S. On the shape of migrating cells — a 'front-to-back' model. J. Cell Sci. 121, 2625–2628 (2008).

    CAS  PubMed  Google Scholar 

  10. Janetopoulos, C. & Firtel, R. A. Directional sensing during chemotaxis. FEBS Lett. 582, 2075–2085 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Swaney, K. F., Huang, C. H. & Devreotes, P. N. Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu. Rev. Biophys. 39, 265–289 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Horwitz, R. & Webb, D. Cell migration. Curr. Biol. 13, R756–R759 (2003).

    CAS  PubMed  Google Scholar 

  13. Doyle, A. D., Wang, F. W., Matsumoto, K. & Yamada, K. M. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184, 481–490 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gammill, L. S. & Roffers-Agarwal, J. Division of labor during trunk neural crest development. Dev. Biol. 344, 555–565 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gomperts, M., Garcia-Castro, M., Wylie, C. & Heasman, J. Interactions between primordial germ cells play a role in their migration in mouse embryos. Development 120, 135–141 (1994).

    CAS  PubMed  Google Scholar 

  16. Theveneau, E. et al. Collective chemotaxis requires contact-dependent cell polarity. Dev. Cell 19, 39–53 (2010). Introduced the concept of collective chemotaxis in which cells integrate chemoattractant signalling with cadherin-mediated adhesion to allow coordinated guidance of a group of cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Theveneau, E. & Mayor, R. Integrating chemotaxis and contact-inhibition during collective cell migration: small GTPases at work. Small GTPases 1, 113–117 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Ewald, A. J., Brenot, A., Duong, M., Chan, B. S. & Werb, Z. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev. Cell 14, 570–581 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nature Rev. Mol. Cell Biol. 10, 445–457 (2009).

    CAS  Google Scholar 

  20. Aman, A. & Piotrowski, T. Cell migration during morphogenesis. Dev. Biol. 341, 20–33 (2010).

    CAS  PubMed  Google Scholar 

  21. Montell, D. J. Morphogenetic cell movements: diversity from modular mechanical properties. Science 322, 1502–1505 (2008).

    CAS  PubMed  Google Scholar 

  22. Ilina, O. & Friedl, P. Mechanisms of collective cell migration at a glance. J. Cell Sci. 122, 3203–3208 (2009).

    CAS  PubMed  Google Scholar 

  23. Niewiadomska, P., Godt, D. & Tepass, U. DE-cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol. 144, 533–547 (1999). Key study demonstrating that DE-cadherin promotes rather than inhibits migration of border cells, in contrast to the prevailing EMT model. Reports the rosette organization of the border cell cluster with polar cells in the centre.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Montell, D. J. Rorth, P. & Spradling, A. C. Slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell 71, 51–62 (1992). Landmark study that establishes border cells as a genetically tractable model for the study of cell migration in vivo.

    CAS  PubMed  Google Scholar 

  25. Prasad, M. & Montell, D. J. Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev. Cell 12, 997–1005 (2007). Demonstrates live imaging of border cell migration and successful ex vivo culture of stage 9 egg chambers. Live imaging reveals differences in phenotypes of mutants that appear similar in fixed tissue and the discovery of dynamic phenomena not previously anticipated.

    CAS  PubMed  Google Scholar 

  26. Han, D. D., Stein, D. & Stevens, L. M. Investigating the function of follicular subpopulations during Drosophila oogenesis through hormone-dependent enhancer-targeted cell ablation. Development 127, 573–583 (2000).

    CAS  PubMed  Google Scholar 

  27. King, R. C. Ovarian Development in Drosophila Melanogaster (Academic Press;1970).

    Google Scholar 

  28. Tworoger, M., Larkin, M. K., Bryant, Z. & Ruohola-Baker, H. Mosaic analysis in the drosophila ovary reveals a common hedgehog- inducible precursor stage for stalk and polar cells. Genetics 151, 739–748 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Margolis, J. & Spradling, A. Identification and behavior of epithelial stem cells in the Drosophila ovary. Development 121, 3797–3807 (1995).

    CAS  PubMed  Google Scholar 

  30. Wu, X., Tanwar, P. S. & Raftery, L. A. Drosophila follicle cells: morphogenesis in an eggshell. Semin. Cell Dev. Biol. 19, 271–282 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rorth, P. Initiating and guiding migration: lessons from border cells. Trends Cell Biol. 12, 325–331 (2002).

    CAS  PubMed  Google Scholar 

  32. Montell, D. J. Border-cell migration: the race is on. Nature Rev. Mol. Cell Biol. 4, 13–24 (2003).

    CAS  Google Scholar 

  33. Bianco, A. et al. Two distinct modes of guidance signalling during collective migration of border cells. Nature 448, 362–365 (2007). Defines the differences in migration speed and molecular guidance pathways that are used in early and late phases of border cell migration.

    CAS  PubMed  Google Scholar 

  34. Tekotte, H., Tollervey, D. & Davis, I. Imaging the migrating border cell cluster in living Drosophila egg chambers. Dev. Dyn. 236, 2818–2824 (2007).

    PubMed  PubMed Central  Google Scholar 

  35. Prasad, M., Jang, A. C., Starz-Gaiano, M., Melani, M. & Montell, D. J. A protocol for culturing Drosophila melanogaster stage 9 egg chambers for live imaging. Nature Protoc. 2, 2467–2473 (2007).

    CAS  Google Scholar 

  36. Savant-Bhonsale, S. & Montell, D. J. torso-like encodes the localized determinant of Drosophila terminal pattern formation. Genes Dev. 7, 2548–2555 (1993).

    CAS  PubMed  Google Scholar 

  37. Denef, N. & Schupbach, T. Patterning: JAK–STAT signalling in the Drosophila follicular epithelium. Curr. Biol. 13, R388–R390 (2003).

    CAS  PubMed  Google Scholar 

  38. Ghiglione, C. et al. The Drosophila cytokine receptor Domeless controls border cell migration and epithelial polarization during oogenesis. Development 129, 5437–5447 (2002).

    CAS  PubMed  Google Scholar 

  39. Beccari, S., Teixeira, L. & Rorth, P. The JAK/STAT pathway is required for border cell migration during Drosophila oogenesis. Mech. Dev. 111, 115–123 (2002).

    CAS  PubMed  Google Scholar 

  40. Silver, D. L. & Montell, D. J. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 107, 831–841 (2001). Shows the role of JAK–STAT signalling in cell migration. Demonstrated that JAK–STAT activity is necessary and sufficient to cause follicle cells to migrate and invade the nurse cell cluster.

    CAS  PubMed  Google Scholar 

  41. Brown, S., Hu, N. & Castelli-Gair Hombria, J. Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr. Biol. 11, 1700–1705 (2001). Identifies the D. melanogaster receptor in the JAK–STAT pathway.

    CAS  PubMed  Google Scholar 

  42. McGregor, J. R., Xi, R. & Harrison, D. A. JAK signaling is somatically required for follicle cell differentiation in Drosophila. Development 129, 705–717 (2002).

    CAS  PubMed  Google Scholar 

  43. Arbouzova, N. I. & Zeidler, M. P. JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions. Development 133, 2605–2616 (2006).

    CAS  PubMed  Google Scholar 

  44. Bromberg, J. & Darnell, J. E. Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19, 2468–2473 (2000).

    CAS  PubMed  Google Scholar 

  45. Borghese, L. et al. Systematic analysis of the transcriptional switch inducing migration of border cells. Dev. Cell 10, 497–508 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, X. et al. Analysis of cell migration using whole-genome expression profiling of migratory cells in the Drosophila ovary. Dev. Cell 10, 483–495 (2006).

    CAS  PubMed  Google Scholar 

  47. Rorth, P., Szabo, K. & Texido, G. The level of C/EBP protein is critical for cell migration during Drosophila oogenesis and is tightly controlled by regulated degradation. Mol. Cell 6, 23–30 (2000).

    CAS  PubMed  Google Scholar 

  48. Silver, D. L., Geisbrecht, E. R. & Montell, D. J. Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development 132, 3483–3492 (2005).

    CAS  PubMed  Google Scholar 

  49. Cobreros-Reguera, L. et al. The Ste20 kinase misshapen is essential for the invasive behaviour of ovarian epithelial cells in Drosophila. EMBO Rep. 11, 943–949 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Harrison, D. A., McCoon, P. E., Binari, R., Gilman, M. & Perrimon, N. Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway. Genes Dev. 12, 3252–3263 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Van de Bor, V., Zimniak, G., Cerezo, D., Schaub, S. & Noselli, S. Asymmetric localisation of cytokine mRNA is essential for JAK/STAT activation during cell invasiveness. Development 138, 1383–1393 (2011). Demonstrates that apical localization of upd mRNA is important for generating a high enough local UPD concentration for signalling.

    CAS  PubMed  Google Scholar 

  52. Ghiglione, C., Devergne, O., Cerezo, D. & Noselli, S. Drosophila RalA is essential for the maintenance of Jak/Stat signalling in ovarian follicles. EMBO Rep. 9, 676–682 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yoon, W. H., Meinhardt, H. & Montell, D. miRNA-mediated feedback inhibition of JAK/STAT morphogen signalling establishes a cell fate threshold. Nature Cell Biol. 13, 1062–1069 (2011). Demonstrates that miR-279 is a key downstream target of APT that directly inhibits STAT in the regulatory circuit that converts initially graded STAT activity into on and off states.

    CAS  PubMed  Google Scholar 

  54. Starz-Gaiano, M., Melani, M., Wang, X., Meinhardt, H. & Montell, D. J. Feedback inhibition of Jak/STAT signaling by apontic is required to limit an invasive cell population. Dev. Cell 14, 726–738 (2008). Reports the role of feedback inhibition of JAK–STAT signalling in follicle cells. Uses mathematical modelling to support genetic data defining the regulatory circuit consisting of STAT, APT and SLBO.

    CAS  PubMed  Google Scholar 

  55. Nallamothu, G., Woolworth, J. A., Dammai, V. & Hsu, T. awd, the homolog of metastasis suppressor gene Nm23, regulates Drosophila epithelial cell invasion. Mol. Cell. Biol. 28, 1964–1973 (2008).

    CAS  Google Scholar 

  56. Li, J., Xia, F. & Li, W. X. Coactivation of STAT and Ras is required for germ cell proliferation and invasive migration in Drosophila. Dev. Cell 5, 787–798 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Brown, S., Zeidler, M. P. & Hombria, J. E. JAK/STAT signalling in Drosophila controls cell motility during germ cell migration. Dev. Dyn. 235, 958–966 (2006).

    CAS  PubMed  Google Scholar 

  58. Li, J. et al. Patterns and functions of STAT activation during Drosophila embryogenesis. Mech. Dev. 120, 1455–1468 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Naora, H. & Montell, D. J. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nature Rev. Cancer 5, 355–366 (2005).

    CAS  Google Scholar 

  60. Dauer, D. J. et al. Stat3 regulates genes common to both wound healing and cancer. Oncogene 24, 3397–3408 (2005).

    CAS  PubMed  Google Scholar 

  61. Haura, E. B., Turkson, J. & Jove, R. Mechanisms of disease: Insights into the emerging role of signal transducers and activators of transcription in cancer. Nature Clin. Pract. Oncol. 2, 315–324 (2005).

    CAS  Google Scholar 

  62. Devarajan, E. & Huang, S. STAT3 as a central regulator of tumor metastases. Curr. Mol. Med. 9, 626–633 (2009).

    CAS  PubMed  Google Scholar 

  63. Xi, R., McGregor, J. R. & Harrison, D. A. A gradient of JAK pathway activity patterns the anterior–posterior axis of the follicular epithelium. Dev. Cell 4, 167–177 (2003).

    CAS  PubMed  Google Scholar 

  64. Riddiford, L. M. in The Development of Drosophila Melanogaster (eds Bate, M. & Martinez Arias, A.) 899–940 (Cold spring Harbor Laboratory Press, 1993).

    Google Scholar 

  65. Buszczak, M. et al. Ecdysone response genes govern egg chamber development during mid- oogenesis in Drosophila. Development 126, 4581–4589 (1999).

    CAS  PubMed  Google Scholar 

  66. Yao, T. P. et al. Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366, 476–479 (1993).

    CAS  PubMed  Google Scholar 

  67. Thomas, H. E., Stunnenberg, H. G. & Stewart, A. F. Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle. Nature 362, 471–475 (1993).

    CAS  PubMed  Google Scholar 

  68. Cherbas, L., Hu, X., Zhimulev, I., Belyaeva, E. & Cherbas, P. EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. Development 130, 271–284 (2003).

    CAS  PubMed  Google Scholar 

  69. Bai, J., Uehara, Y. & Montell, D. J. Regulation of invasive cell behavior by Taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 103, 1047–1058 (2000). Demonstrates the role of ecdysone signalling in regulating the timing of border cell migration and identifies TAI as a co-activator of ecdysone signalling and as the functional orthologue of AIB1 (amplified in breast cancer 1).

    CAS  PubMed  Google Scholar 

  70. Hackney, J. F., Pucci, C., Naes, E. & Dobens, L. Ras signaling modulates activity of the ecdysone receptor EcR during cell migration in the Drosophila ovary. Dev. Dyn. 236, 1213–1226 (2007).

    CAS  PubMed  Google Scholar 

  71. Jang, A. C., Chang, Y. C., Bai, J. & Montell, D. Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt. Nature Cell Biol. 11, 569–579 (2009). Shows that Abrupt, a negative regulator of border cell migration, integrates ecdysone and JAK–STAT signalling inputs, thus coordinating spatial and temporal cues. Abrupt in turn inhibits ecdysone signalling by direct binding to TAI.

    CAS  PubMed  Google Scholar 

  72. Romani, P. et al. Cell survival and polarity of Drosophila follicle cells require the activity of ecdysone receptor B1 isoform. Genetics 181, 165–175 (2009).

    PubMed  PubMed Central  Google Scholar 

  73. Liu, Y. & Montell, D. J. Jing: a downstream target of slbo required for developmental control of border cell migration. Development 128, 321–330 (2001).

    CAS  PubMed  Google Scholar 

  74. Schober, M., Rebay, I. & Perrimon, N. Function of the ETS transcription factor Yan in border cell migration. Development 132, 3493–3504 (2005).

    CAS  PubMed  Google Scholar 

  75. Doronkin, S., Djagaeva, I., Nagle, M. E., Reiter, L. T. & Seagroves, T. N. Dose-dependent modulation of HIF-1α/sima controls the rate of cell migration and invasion in Drosophila ovary border cells. Oncogene 29, 1123–1134 (2010).

    CAS  PubMed  Google Scholar 

  76. Melani, M., Simpson, K. J., Brugge, J. S. & Montell, D. Regulation of cell adhesion and collective cell migration by hindsight and its human homolog RREB1. Curr. Biol. 18, 532–537 (2008).

    CAS  PubMed  Google Scholar 

  77. Llense, F. & Martin-Blanco, E. JNK signaling controls border cell cluster integrity and collective cell migration. Curr. Biol. 18, 538–544 (2008). Demonstrates the role of CDC42 and JNK in border cell cluster cohesion.

    CAS  PubMed  Google Scholar 

  78. Van Haastert, P. J. & Devreotes, P. N. Chemotaxis: signalling the way forward. Nature Rev. Mol. Cell Biol. 5, 626–634 (2004).

    CAS  Google Scholar 

  79. Iijima, M., Huang, Y. E. & Devreotes, P. Temporal and spatial regulation of chemotaxis. Dev. Cell 3, 469–478 (2002).

    CAS  PubMed  Google Scholar 

  80. Iijima, M., Huang, Y. E., Luo, H. R., Vazquez, F. & Devreotes, P. N. Novel mechanism of PTEN regulation by its phosphatidylinositol 4,5-bisphosphate binding motif is critical for chemotaxis. J. Biol. Chem. 279, 16606–16613 (2004).

    CAS  PubMed  Google Scholar 

  81. Rahdar, M. et al. A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proc. Natl Acad. Sci. USA 106, 480–485 (2009).

    CAS  PubMed  Google Scholar 

  82. Iglesias, P. A. & Devreotes, P. N. Biased excitable networks: how cells direct motion in response to gradients. Curr. Opin. Cell Biol. 24, 245–253 (2012).

    CAS  PubMed  Google Scholar 

  83. Thiery, J. P. Epithelial-mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol. 15, 740–746 (2003).

    CAS  PubMed  Google Scholar 

  84. Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A. & Birchmeier, C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376, 768–771 (1995).

    CAS  PubMed  Google Scholar 

  85. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial–mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    CAS  PubMed  Google Scholar 

  86. Kerosuo, L. & Bronner-Fraser, M. What is bad in cancer is good in the embryo: importance of EMT in neural crest development. Semin. Cell Dev. Biol. 23, 320–332 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hynes, R. O. & Lander, A. D. Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68, 303–322 (1992).

    CAS  PubMed  Google Scholar 

  88. Yang, J. & Weinberg, R. A. Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

    CAS  PubMed  Google Scholar 

  89. Fulga, T. A. & Rorth, P. Invasive cell migration is initiated by guided growth of long cellular extensions. Nature Cell Biol. 4, 715–719 (2002).

    CAS  PubMed  Google Scholar 

  90. Poukkula, M., Cliffe, A., Changede, R. & Rorth, P. Cell behaviors regulated by guidance cues in collective migration of border cells. J. Cell Biol. 192, 513–524 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. McDonald, J. A., Pinheiro, E. M. & Montell, D. J. PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development 130, 3469–3478 (2003). Demonstrates that ectopic PVF1 is sufficient to redirect border cells.

    CAS  PubMed  Google Scholar 

  92. McDonald, J. A., Pinheiro, E. M., Kadlec, L., Schupbach, T. & Montell, D. J. Multiple EGFR ligands participate in guiding migrating border cells. Dev. Biol. 296, 94–103 (2006). Reveals that Spitz and Keren are EGFR ligands that redundantly guide border cells to the oocyte.

    CAS  PubMed  Google Scholar 

  93. Duchek, P. & Rorth, P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 291, 131–133 (2001). Identifies EGFR as a guidance receptor for border cell migration by using a misexpression screen. Shows that EGFR signalling guides the dorsal migration of border cells and Gurken serves as the guidance cue.

    CAS  PubMed  Google Scholar 

  94. Duchek, P., Somogyi, K., Jekely, G., Beccari, S. & Rorth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17–26 (2001). Identifies PVF1 and its receptor PVR by using a gain-of-function genetic screen.

    CAS  PubMed  Google Scholar 

  95. Janssens, K., Sung, H. H. & Rorth, P. Direct detection of guidance receptor activity during border cell migration. Proc. Natl Acad. Sci. USA 107, 7323–7328 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen, L. et al. PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Dev. Cell 12, 603–614 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Jekely, G., Sung, H. H., Luque, C. M. & Rorth, P. Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev. Cell 9, 197–207 (2005). Presents the original hypothesis that recycling of Tyr phosphorylated proteins specifically to the leading edge of migrating border cells amplifies front–back asymmetry in shallow gradients of growth factors.

    CAS  PubMed  Google Scholar 

  98. Quinones, G. A., Jin, J. & Oro, A. E. I-BAR protein antagonism of endocytosis mediates directional sensing during guided cell migration. J. Cell Biol. 189, 353–367 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Assaker, G., Ramel, D., Wculek, S. K., Gonzalez-Gaitan, M. & Emery, G. Spatial restriction of receptor tyrosine kinase activity through a polarized endocytic cycle controls border cell migration. Proc. Natl Acad. Sci. USA 107, 22558–22563 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Pinheiro, E. M. & Montell, D. J. Requirement for Par-6 and Bazooka in Drosophila border cell migration. Development 131, 5243–5251 (2004). Demonstrates that apical–basal polarity is required for cohesion of cells of the border cell cluster and efficient migration, in contrast to the prevailing EMT model.

    CAS  PubMed  Google Scholar 

  101. Tanentzapf, G., Smith, C., McGlade, J. & Tepass, U. Apical, lateral, and basal polarization cues contribute to the development of the follicular epithelium during Drosophila oogenesis. J. Cell Biol. 151, 891–904 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Goode, S., Wei, J. & Kishore, S. Novel spatiotemporal patterns of epithelial tumor invasion in Drosophila discs large egg chambers. Dev. Dyn. 232, 855–864 (2005).

    CAS  PubMed  Google Scholar 

  103. Szafranski, P. & Goode, S. Basolateral junctions are sufficient to suppress epithelial invasion during Drosophila oogenesis. Dev. Dyn. 236, 364–373 (2007).

    CAS  PubMed  Google Scholar 

  104. Li, Q., Feng, S., Yu, L., Zhao, G. & Li, M. Requirements of Lgl in cell differentiation and motility during Drosophila ovarian follicular epithelium morphogenesis. Fly (Austin) 5, 81–87 (2011).

    Google Scholar 

  105. Szafranski, P. & Goode, S. A. Fasciclin 2 morphogenetic switch organizes epithelial cell cluster polarity and motility. Development 131, 2023–2036 (2004).

    CAS  PubMed  Google Scholar 

  106. McDonald, J. A., Khodyakova, A., Aranjuez, G., Dudley, C. & Montell, D. J. PAR-1 kinase regulates epithelial detachment and directional protrusion of migrating border cells. Curr. Biol. 18, 1659–1667 (2008). Finds that PAR1 modulates apical–basal polarity between border cells and epithelial cells, and that this requires detachment of border cells and sensing of the chemoattractant gradient.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Majumder, P., Aranjuez, G., Amick, J. & McDonald, J. A. Par-1 controls Myosin-II activity through Myosin phosphatase to regulate border cell migration. Curr. Biol. 22, 363–372 (2012). Shows the molecular mechanism by which PAR1 regulates myosin activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Abercrombie, M. & Heaysman, J. E. Observations on the social behaviour of cells in tissue culture. I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts. Exp. Cell Res. 5, 111–131 (1953).

    CAS  PubMed  Google Scholar 

  109. Peifer, M. The product of the Drosophila segment polarity gene armadillo is part of a multi-protein complex resembling the vertebrate adherens junction. J. Cell Sci. 105, 993–1000 (1993).

    CAS  PubMed  Google Scholar 

  110. Sarpal, R. et al. Mutational analysis supports a core role for Drosophila α-catenin in adherens junction function. J. Cell Sci. 125, 233–245 (2012).

    CAS  PubMed  Google Scholar 

  111. De Graeve, F. M. et al. Drosophila apc regulates delamination of invasive epithelial clusters. Dev. Biol. 368, 76–85 (2012).

    CAS  PubMed  Google Scholar 

  112. Lilien, J. & Balsamo, J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of β-catenin. Curr. Opin. Cell Biol. 17, 459–465 (2005).

    CAS  PubMed  Google Scholar 

  113. Pacquelet, A., Lin, L. & Rorth, P. Binding site for p120/δ-catenin is not required for Drosophila E-cadherin function in vivo. J. Cell Biol. 160, 313–319 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Fernandez-Minan, A., Cobreros, L., Gonzalez-Reyes, A. & Martin-Bermudo, M. D. Integrins contribute to the establishment and maintenance of cell polarity in the follicular epithelium of the Drosophila ovary. Int. J. Dev. Biol. 52, 925–932 (2008).

    PubMed  Google Scholar 

  115. Medioni, C. & Noselli, S. Dynamics of the basement membrane in invasive epithelial clusters in Drosophila. Development 132, 3069–3077 (2005).

    CAS  PubMed  Google Scholar 

  116. Haigo, S. L. & Bilder, D. Global tissue revolutions in a morphogenetic movement controlling elongation. Science 331, 1071–1074 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, X., Adam, J. C. & Montell, D. Spatially localized Kuzbanian required for specific activation of Notch during border cell migration. Dev. Biol. 301, 532–540 (2007).

    CAS  PubMed  Google Scholar 

  118. Carroll, D. K. et al. p63 regulates an adhesion programme and cell survival in epithelial cells. Nature Cell Biol. 8, 551–561 (2006).

    CAS  PubMed  Google Scholar 

  119. Horne-Badovinac, S. & Bilder, D. Mass transit: epithelial morphogenesis in the Drosophila egg chamber. Dev. Dyn. 232, 559–574 (2005).

    CAS  PubMed  Google Scholar 

  120. Dinkins, M. B., Fratto, V. M. & Lemosy, E. K. Integrin α-chains exhibit distinct temporal and spatial localization patterns in epithelial cells of the Drosophila ovary. Dev. Dyn. 237, 3927–3939 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bateman, J., Reddy, R. S., Saito, H. & Van Vactor, D. The receptor tyrosine phosphatase Dlar and integrins organize actin filaments in the Drosophila follicular epithelium. Curr. Biol. 11, 1317–1327 (2001).

    CAS  PubMed  Google Scholar 

  122. Insall, R. H. & Machesky, L. M. Actin dynamics at the leading edge: from simple machinery to complex networks. Dev. Cell 17, 310–322 (2009).

    CAS  PubMed  Google Scholar 

  123. Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23–32 (2004).

    CAS  PubMed  Google Scholar 

  124. Burridge, K. & Wennerberg, K. Rho and Rac take center stage. Cell 116, 167–179 (2004).

    CAS  PubMed  Google Scholar 

  125. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature Rev. Mol. Cell Biol. 9, 690–701 (2008).

    CAS  Google Scholar 

  126. Friedl, P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16, 14–23 (2004).

    CAS  PubMed  Google Scholar 

  127. Verkhusha, V. V., Tsukita, S. & Oda, H. Actin dynamics in lamellipodia of migrating border cells in the Drosophila ovary revealed by a GFP-actin fusion protein. FEBS Lett. 445, 395–401 (1999).

    CAS  PubMed  Google Scholar 

  128. Murphy, A. M. & Montell, D. J. Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis. J. Cell Biol. 133, 617–630 (1996). First demonstration of the role of the small GTPase RAC in cell migration in vivo.

    CAS  PubMed  Google Scholar 

  129. Wang, X., He, L., Wu, Y. I., Hahn, K. M. & Montell, D. J. Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nature Cell Biol. 12, 591–597 (2010). Shows by using photo-activatable analogues of RAC that local RAC activation leads to local membrane protrusion. Demonstrates that local activation in one cell guides collective behaviour of the whole cluster.

    CAS  PubMed  Google Scholar 

  130. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994).

    CAS  PubMed  Google Scholar 

  131. Harden, N., Loh, H. Y., Chia, W. & Lim, L. A dominant inhibitory version of the small GTP-binding protein Rac disrupts cytoskeletal structures and inhibits developmental cell shape changes in Drosophila. Development 121, 903–914 (1995).

    CAS  PubMed  Google Scholar 

  132. Hornstein, I., Mortin, M. A. & Katzav, S. DroVav, the Drosophila melanogaster homologue of the mammalian Vav proteins, serves as a signal transducer protein in the Rac and DER pathways. Oncogene 22, 6774–6784 (2003).

    CAS  PubMed  Google Scholar 

  133. Malartre, M., Ayaz, D., Amador, F. F. & Martin-Bermudo, M. D. The guanine exchange factor vav controls axon growth and guidance during Drosophila development. J. Neurosci. 30, 2257–2267 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    CAS  PubMed  Google Scholar 

  135. Wu, Y. I., Wang, X., He, L., Montell, D. & Hahn, K. M. Spatiotemporal control of small GTPases with light using the LOV domain. Methods Enzymol. 497, 393–407 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Yoo, S. K. et al. Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev. Cell 18, 226–236 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Houk, A. R. et al. Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148, 175–188 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Bastock, R. & Strutt, D. The planar polarity pathway promotes coordinated cell migration during Drosophila oogenesis. Development 134, 3055–3064 (2007).

    CAS  PubMed  Google Scholar 

  139. Sokol, N. S. & Cooley, L. Drosophila filamin is required for follicle cell motility during oogenesis. Dev. Biol. 260, 260–272 (2003).

    CAS  PubMed  Google Scholar 

  140. Verheyen, E. M. & Cooley, L. Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development 120, 717–728 (1994).

    CAS  PubMed  Google Scholar 

  141. Miralles, F., Posern, G., Zaromytidou, A. I. & Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329–342 (2003).

    CAS  PubMed  Google Scholar 

  142. Copeland, J. W. & Treisman, R. The diaphanous-related formin mDia1 controls serum response factor activity through its effects on actin polymerization. Mol. Biol. Cell 13, 4088–4099 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Somogyi, K. & Rorth, P. Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration. Dev. Cell 7, 85–93 (2004).

    CAS  PubMed  Google Scholar 

  144. Oser, M. & Condeelis, J. The cofilin activity cycle in lamellipodia and invadopodia. J. Cell Biochem. 108, 1252–1262 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen, J. et al. Cofilin/ADF is required for cell motility during Drosophila ovary development and oogenesis. Nature Cell Biol. 3, 204–209 (2001).

    CAS  PubMed  Google Scholar 

  146. Zhang, L. et al. Regulation of cofilin phosphorylation and asymmetry in collective cell migration during morphogenesis. Development 138, 455–464 (2011).

    CAS  PubMed  Google Scholar 

  147. Wahlstrom, G. et al. Twinfilin is required for actin-dependent developmental processes in Drosophila. J. Cell Biol. 155, 787–796 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Bear, J. E. et al. Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 101, 717–728 (2000).

    CAS  PubMed  Google Scholar 

  149. Bear, J. E. & Gertler, F. B. Ena/VASP: towards resolving a pointed controversy at the barbed end. J. Cell Sci. 122, 1947–1953 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Gates, J. et al. Enabled and Capping protein play important roles in shaping cell behavior during Drosophila oogenesis. Dev. Biol. 333, 90–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Bear, J. E. et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109, 509–521 (2002).

    CAS  PubMed  Google Scholar 

  152. Somogyi, K. & Rorth, P. Cortactin modulates cell migration and ring canal morphogenesis during Drosophila oogenesis. Mech. Dev. 121, 57–64 (2004).

    CAS  PubMed  Google Scholar 

  153. Cant, K., Knowles, B. A., Mooseker, M. S. & Cooley, L. Drosophila singed, a fascin homolog is required for actin bundle formation during oogenesis and bristle extension. J. Cell Biol. 125, 369–380 (1994).

    CAS  PubMed  Google Scholar 

  154. Edwards, K. A. & Kiehart, D. P. Drosophila nonmuscle myosin II has multiple essential roles in imaginal disc and egg chamber morphogenesis. Development 122, 1499–1511 (1996).

    CAS  PubMed  Google Scholar 

  155. Karess, R. E. et al. The regulatory light chain of nonmuscle myosin is encoded by spaghetti-squash, a gene required for cytokinesis in Drosophila. Cell 65, 1177–1189 (1991).

    CAS  PubMed  Google Scholar 

  156. Dobens, L. L. & Raftery, L. A. Integration of epithelial patterning and morphogenesis in Drosophila ovarian follicle cells. Dev. Dyn. 218, 80–93 (2000).

    CAS  PubMed  Google Scholar 

  157. Geisbrecht, E. R. & Montell, D. J. Myosin VI is required for E-cadherin-mediated border cell migration. Nature Cell Biol. 4, 616–620 (2002).

    CAS  PubMed  Google Scholar 

  158. Geisbrecht, E. R. & Montell, D. J. A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Cell 118, 111–125 (2004). Identifies an unexpected role of DIAP1 in cell migration. DIAP1 overexpression suppresses migration defects due to inhibition of RAC.

    CAS  PubMed  Google Scholar 

  159. Mathieu, J., Sung, H. H., Pugieux, C., Soetaert, J. & Rorth, P. A. Sensitized PiggyBac-based screen for regulators of border cell migration in Drosophila. Genetics 176, 1579–1590 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kim, J. H. et al. Psidin, a conserved protein that regulates protrusion dynamics and cell migration. Genes Dev. 25, 730–741 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Heisenberg, C. P. & Solnica-Krezel, L. Back and forth between cell fate specification and movement during vertebrate gastrulation. Curr. Opin. Genet. Dev. 18, 311–316 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Pollack, R., Goldman, R. D., Conlon, S. & Chang, C. Properties of enucleated cells. II. Characteristic overlapping of transformed cells is reestablished by enucleates. Cell 3, 51–54 (1974).

    CAS  PubMed  Google Scholar 

  163. Goldman, R. D., Pollack, R. & Hopkins, N. H. Preservation of normal behavior by enucleated cells in culture. Proc. Natl Acad. Sci. USA 70, 750–754 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).

    CAS  PubMed  Google Scholar 

  165. Bai, J. & Montell, D. Eyes Absent, a key repressor of polar cell fate during Drosophila oogenesis. Development 129, 5377–5388 (2002).

    CAS  PubMed  Google Scholar 

  166. Liu, Y. & Montell, D. J. Identification of mutations that cause cell migration defects in mosaic clones. Development 126, 1869–1878 (1999).

    CAS  PubMed  Google Scholar 

  167. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    CAS  PubMed  Google Scholar 

  168. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  169. Rorth, P. et al. Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057 (1998). Reports the development of widely used methods for random overexpression screens and identifies 60 genes that disrupt border cell migration when overexpressed.

    CAS  PubMed  Google Scholar 

  170. Rorth, P. Gal4 in the Drosophila female germline. Mech. Dev. 78, 113–118 (1998).

    CAS  PubMed  Google Scholar 

  171. Xiong, Y., Huang, C. H., Iglesias, P. A. & Devreotes, P. N. Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proc. Natl Acad. Sci. USA 107, 17079–17086 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Starz-Gaiano, M., Melani, M., Meinhardt, H. & Montell, D. Interpretation of the UPD/JAK/STAT morphogen gradient in Drosophila follicle cells. Cell Cycle 8, 2917–2925 (2009).

    PubMed  Google Scholar 

  173. Lin, X. et al. Identification, chromosomal assignment, and expression analysis of the human homeodomain-containing gene Orthopedia (OTP). Genomics 60, 96–104 (1999).

    CAS  PubMed  Google Scholar 

  174. Deng, W., Leaper, K. & Bownes, M. A targeted gene silencing technique shows that Drosophila myosin VI is required for egg chamber and imaginal disc morphogenesis. J. Cell Sci. 112, 3677–3690 (1999).

    CAS  PubMed  Google Scholar 

  175. Zarnescu, D. C. & Thomas, G. H. Apical spectrin is essential for epithelial morphogenesis but not apicobasal polarity in Drosophila. J. Cell Biol. 146, 1075–1086 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Pacquelet, A. & Rorth, P. Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. J. Cell Biol. 170, 803–812 (2005). Demonstrates that regulation of ARM is not necessary during border cell migration because a fusion protein of DE-cadherin and α-catenin can functionally substitute for ARM.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Szabo, K., Jekely, G. & Rorth, P. Cloning and expression of sprint, a Drosophila homologue of RIN1. Mech. Dev. 101, 259–262 (2001).

    CAS  PubMed  Google Scholar 

  178. Wang, D. et al. Drosophila twinfilin is required for cell migration and synaptic endocytosis. J. Cell Sci. 123, 1546–1556 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M. S. G. is funded by a Basil O'Connor Starter Scholar Award from the March of Dimes and a CAREER Award (1054422) from the National Science Foundation. D. J. M. is supported by R01GM46425 and R01GM73164 from the National Institutes of General Medical Sciences. The authors would like to thank current and previous members of the Montell laboratory for providing the images in Figure 1 (Image in figure 1b is courtesy of Ho Lam Tang, image in part b is courtesy of Yu Chiuan Chang, image in part d is courtesy of Mohit Prasad and image in part f is courtesy of Anna Jang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise J. Montell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 | Time lapse imaging of normal border cell migration.

Nuclear DsRed and cytoplasmic GFP are expressed in the outer, migratory border cells as well as a few anterior (left) and posterior (right) follicle cells that remain in the epithelium. Border cells migrate about 150 micrometres to the oocyte (which contains autofluorescent speckles) and then turn and migrate a few micrometres towards the dorsal side (top). (MOV 4418 kb)

Supplementary information S2 | Polar cell behavior during normal border cell migration

GFP is expressed in a pair of cells at the anterior (left) and posterior (right) poles of the egg chamber. The oocyte is also brightly autofluorescent. Anterior polar cells are carried passively by the migrating border cells. During the movie, polar cells roll as the cluster migrates. (MOV 6860 kb)

Related links

Related links

FURTHER INFORMATION

Denise J Montell's homepage

Cell Migration Consortium Website

Glossary

Border cells

Six to eight somatic ovarian cells that originate in the follicle epithelium, then coalesce around the polar cells, detach and migrate collectively between germline cells to the border of the oocyte, where they are required for patterning and egg fertilization.

Polar cells

Two somatic follicle cells that are specified at each end of the developing egg chamber. Anterior polar cells secrete signals that specify neighbouring cells to become border cells.

Nurse cells

Auxiliary germline cells that supply the oocyte with synthesized mRNAs, proteins and organelles during insect oogenesis.

Basal lamina

A thin sheet of laminin, collagen IV and proteoglycans that underlies the basal surface of an epithelium.

Ecdysone

The single Drosophila melanogaster steroid hormone, which activates a nuclear hormone receptor complex and initiates transcriptional regulation.

RAC

A 21 kDa GTPase of the RHO-family that is activated by chemoattractants and in turn stimulates polymerization of branched actin networks, resulting in lamellipodial protrusion.

Epithelial to mesenchymal transition

(EMT). A morphological change that is characteristic of some developing tissues and certain forms of cancer. During EMT, cells lose intercellular junctions and apical–basal polarity, become migratory and, in the case of cancer, become invasive.

Filopodia

Thin, dynamic, cellular extensions that contain actin filaments. They are aligned in parallel with their barbed ends pointing towards the tip and are often found in growth cones and at the leading edge of migrating cells.

Lamellipodia

Broad, flat protrusions at the leading edge of a moving cell that are enriched with a branched network of elongating actin filaments, which generate the force to push the cell membrane forward.

Stress fibres

Consist of contractile actin filament bundles that are typically anchored at one or both ends to the extracellular matrix via focal adhesions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montell, D., Yoon, W. & Starz-Gaiano, M. Group choreography: mechanisms orchestrating the collective movement of border cells. Nat Rev Mol Cell Biol 13, 631–645 (2012). https://doi.org/10.1038/nrm3433

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing