Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New lives for old: evolution of pseudoenzyme function illustrated by iRhoms

Key Points

  • Genome sequencing has established the prevalence of 'dead enzymes' — homologues of enzymes that have lost their catalytic sites. These enzymes are expressed and conserved, implying that they have a function and are not just genetic debris.

  • Most enzyme families include inactive homologues, and phylogenetic analysis indicates that they can evolve by a variety of strategies: mutagenic loss of catalytic residues is most common, but other types of mutation that, for example, occlude the substrate-binding site are also found.

  • iRhoms, which are inactive homologues of rhomboid proteases, are recently reported examples of dead enzymes that exemplify many of the themes which are common to all inactive homologues.

  • iRhoms are polytopic membrane proteins, resident primarily in the endoplasmic reticulum (ER), that bind to and assist the trafficking of transmembrane domain (TMD) proteins. Drosophila melanogaster iRhom binds epidermal growth factor receptor (EGFR) ligands and promotes their destruction by ER associated degradation. Mouse iRhom2 also binds a single-pass TMD protein, TACE (tumour necrosis factor (TNF)-converting enzyme), but in this case iRhom2 is needed for onward TACE trafficking.

  • iRhoms are novel regulators of membrane protein trafficking, and they are also implicated in several cancers.

  • The rhomboid family has recently been promoted to a superfamily or clan, as it has become clear that more distant proteins, including derlins, are evolutionarily related.

  • Comparison of various dead enzymes reveals common principles of their evolution and function. In particular, they tend to regulate processes in which their enzyme cognates participate, implying that the process of gene duplication followed by loss of enzyme activity provides an excellent foundation from which regulatory proteins evolve.

Abstract

Large-scale sequencing of genomes has revealed that most enzyme families include inactive homologues. These pseudoenzymes are often well conserved, implying a selective pressure to retain them during evolution, and therefore that they have significant function. Mechanistic insights and evolutionary lessons are now emerging from the study of a broad range of such 'dead' enzymes. The recently discovered iRhoms — inactive homologues of rhomboid proteases — have joined derlins and other members of the rhomboid-like clan in regulating the fate of proteins as they pass through the secretory pathway. There is a strong case that dead enzymes, which have been rather overlooked, may be a rich source of biological regulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of an inactive enzyme homologue from a catalytically active ancestor.
Figure 2: iRhoms and their roles.
Figure 3: Model for evolution of the rhomboid superfamily.
Figure 4: The diversity of mechanisms used by pseudoenzymes.

Similar content being viewed by others

References

  1. Todd, A., Orengo, C. & Thornton, J. Sequence and structural differences between enzyme and nonenzyme homologs. Structure 10, 1435–1451 (2002). A comprehensive and pioneering comparison of enzymes and their catalytically inactive cognates, incorporating sequence, structural and functional analysis. Highlights the process of dead enzyme evolution.

    Article  CAS  PubMed  Google Scholar 

  2. Puente, X., Sanchez, L., Overall, C. & Lopez-Otin, C. Human and mouse proteases: a comparative genomic approach. Nature Rev. Genet. 4, 544–558 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Pils, B. & Schultz, J. Inactive enzyme-homologues find new function in regulatory processes. J. Mol. Biol. 340, 399–404 (2004). Large scale analysis of inactive enzyme homologues that emphasizes the prevalence of inactive cognates and their conservation in metazoans. It also proposes that dead enzymes frequently acquire regulatory functions.

    Article  CAS  PubMed  Google Scholar 

  4. Zettl, M., Adrain, C., Strisovsky, K., Lastun, V. & Freeman, M. Rhomboid family pseudoproteases use the ER quality control machinery to regulate intercellular signaling. Cell 145, 79–91 (2011). Shows that iRhoms are catalytically inactive rhomboid protease homologues, and that in D. melanogaster they inhibit EGFR signalling by binding EGF ligands and directing them into ERAD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adrain, C., Zettl, M., Christova, Y., Taylor, N. & Freeman, M. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science 335, 225–228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mcllwain, D. et al. iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 335, 229–232 (2012). References 5 and 6 demonstrate that iRhom2 -knockout mice exhibit inflammatory defects caused by a failure to secrete TNF. They also show that iRhom2 is essential for the ER exit and activation of TACE, the metalloproteinase that releases TNF.

    Article  CAS  Google Scholar 

  7. Brew, K., Vanaman, T. & Hill, R. Comparison of the amino acid sequence of bovine α-lactalbumin and hens egg white lysozyme. J. Biol. Chem. 242, 3747–3749 (1967). Reports the sequence and structural similarity between lysozyme and α-lactalbumin. Provides the first documented example of an inactive enzyme cognate.

    CAS  PubMed  Google Scholar 

  8. Kurosky, A., Barnett, D., Rasco, M., Lee, T. & Bowman, B. Evidence of homology between the β-chain of human haptoglobin and the chymotrypsin family of serine proteases. Biochem. Genet. 11, 279–293 (1974).

    Article  CAS  PubMed  Google Scholar 

  9. Kurosky, A. et al. Covalent structure of human haptoglobin: a serine protease homolog. Proc. Natl Acad. Sci. USA 77, 3388–3392 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Greer, J. Model for haptoglobin heavy chain based upon structural homology. Proc. Natl Acad. Sci. USA 77, 3393–3397 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lawrence, C. et al. Crystal structure of the ectodomain of human transferrin receptor. Science 286, 779–782 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Vopalensky, P. & Kozmik, Z. Eye evolution: common use and independent recruitment of genetic components. Philos. Trans. R. Soc. B Biol. Sci. 364, 2819–2832 (2009).

    Article  CAS  Google Scholar 

  13. Piatigorsky, J. et al. Gene sharing by δ-crystallin and argininosuccinate lyase. Proc. Natl Acad. Sci. USA 85, 3479–3483 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Piatigorsky, J. & Wistow, G. The recruitment of crystallins: new functions precede gene duplication. Science 252, 1078–1079 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Manning, G., Whyte, D., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Caenepeel, S., Charydczak, G., Sudarsanam, S., Hunter, T. & Manning, G. The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc. Natl Acad. Sci. USA 101, 11707–11712 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ross, J., Jiang, H., Kanost, M. & Wang, Y. Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. Gene 304, 117–131 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Quesada, V., Ordóñez, G., Sánchez, L., Puente, X. & López-Otín, C. The Degradome database: mammalian proteases and diseases of proteolysis. Nucleic Acids Res. 37, D239–D243 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Rawlings, N., Barrett, A. & Bateman, A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 40, D343–D350 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Saharinen, P., Takaluoma, K. & Silvennoinen, O. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol. Cell. Biol. 20, 3387–3395 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aleshin, A. et al. Crystal structures of mutant monomeric hexokinase I reveal multiple ADP binding sites and conformational changes relevant to allosteric regulation. J. Mol. Biol. 296, 1001–1015 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Betts, L., Xiang, S., Short, S., Wolfenden, R. & Carter, C. J. Cytidine deaminase. The 2.3Å crystal structure of an enzyme: transition-state analog complex. J. Mol. Biol. 235, 635–656 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Urban, S., Lee, J. & Freeman, M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Freeman, M. Rhomboid proteases and their biological functions. Annu. Rev. Genet. 42, 191–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Lemberg, M. & Freeman, M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 17, 1634–1646 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Foltenyi, K., Greenspan, R. & Newport, J. Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nature Neurosci. 10, 1160–1167 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Smith, M., Ploegh, H. & Weissman, J. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334, 1086–1090 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Siggs, O. et al. iRhom2 is required for the secretion of mouse TNFα. Blood 119, 5769–5771 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blaydon, D. et al. RHBDF2 mutations are associated with Tylosis, a familial esophageal cancer syndrome. Am. J. Hum. Genet. 90, 340–346 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saarinen, S. et al. Analysis of a Finnish family confirms RHBDF2 mutations as the underlying factor in tylosis with esophageal cancer. Fam. Cancer 26 May 2012 (doi:10.1007/s10689-012-9532-8).

  31. Wojnarowicz, P., Provencher, D., Mes-Masson, A. M. & Tonin, P. Chromosome 17q25 genes, RHBDF2 and CYGB, in ovarian cancer. Int. J. Oncol. 40, 1865–1880 (2012).

    PubMed  Google Scholar 

  32. Nakagawa, T. et al. Characterization of a human rhomboid homolog, p100hRho/RHBDF1, which interacts with TGF-α family ligands. Dev. Dyn. 233, 1315–1331 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Yan, Z. et al. Human rhomboid family-1 gene silencing causes apoptosis or autophagy to epithelial cancer cells and inhibits xenograft tumor growth. Mol. Cancer Ther. 7, 1355–1364 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zou, H. et al. Human rhomboid family-1 gene RHBDF1 participates in GPCR-mediated transactivation of EGFR growth signals in head and neck squamous cancer cells. FASEB J. 23, 425–432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blobel, C. ADAMs: key components in EGFR signalling and development. Nature Rev. Mol. Cell Biol. 6, 32–43 (2005).

    Article  CAS  Google Scholar 

  36. Hofmann, R. & Pickart, C. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Lilley, B. N. & Ploegh, H. L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834–840 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T. A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Greenblatt, E., Olzmann, J. & Kopito, R. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nature Struct. Mol. Biol. 18, 1147–1152 (2011). Proposes that derlins are related to rhomboids, reinforcing the connections between rhomboid proteases and ER quality control.

    Article  CAS  Google Scholar 

  40. Christianson, J. et al. Defining human ERAD networks through an integrative mapping strategy. Nature Cell Biol. 14, 93–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Sawalha, A. et al. A putative functional variant within the UBAC2 gene is associated with increased risk of Behçet's disease. Arthritis Rheum. 63, 3607–3612 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hou, S. et al. Replication study confirms the association between UBAC2 and Behçet's disease in two independent Chinese sets of patients and controls. Arthritis Res. Ther. 14, R70 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abba, M. et al. Rhomboid domain containing 2 (RHBDD2): a novel cancer-related gene over-expressed in breast cancer. Biochim. Biophys. Acta 1792, 988–997 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koonin, E. V. et al. The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol. 4, R19 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Boudeau, J., Miranda-Saavedra, D., Barton, G. & Alessi, D. Emerging roles of pseudokinases. Trends Cell Biol. 16, 443–452 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Guy, P., Platko, J., Cantley, L., Cerione, R. & Carraway, K. Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc. Natl Acad. Sci. USA 91, 8132–8136 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shi, F., Telesco, S., Liu, Y., Radhakrishnan, R. & Lemmon, M. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc. Natl Acad. Sci. USA 107, 7692–7697 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Linggi, B. & Carpenter, G. ErbB receptors: new insights on mechanisms and biology. Trends Cell Biol. 16, 649–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Zeqiraj, E. & Van Aalten, D. M. Pseudokinases-remnants of evolution or key allosteric regulators? Curr. Opin. Struct. Biol. 20, 772–781 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gibbs, C. & Zoller, M. Rational scanning mutagenesis of a protein kinase identifies functional regions involved in catalysis and substrate interactions. J. Biol. Chem. 266, 8923–8931 (1991).

    CAS  PubMed  Google Scholar 

  51. Xu, B. et al. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J. Biol. Chem. 275, 16795–16801 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Mukherjee, K. et al. CASK functions as a Mg2+-independent neurexin kinase. Cell 133, 328–339 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Conner, S. et al. TAK1-binding protein 1 is a pseudophosphatase. Biochem. J. 399, 427–434 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wishart, M. & Dixon, J. Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains. Trends Biochem. Sci. 23, 301–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Azzedine, H. et al. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am. J. Hum. Genet. 72, 1141–1153 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Berger, P. et al. Multi-level regulation of myotubularin-related protein-2 phosphatase activity by myotubularin-related protein-13/set-binding factor-2. Hum. Mol. Genet. 15, 569–579 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Eddins, M., Carlile, C., Gomez, K., Pickart, C. & Wolberger, C. Mms2–Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nature Struct. Mol. Biol. 13, 915–920 (2006).

    Article  CAS  Google Scholar 

  58. Koonin, E. V. & Abagyan, R. A. TSG101 may be a prototype of a class of dominant negative ubiquitin regulators. Nature Genet. 16, 330–331 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Rusten, T., Vaccari, T. & Stenmark, H. Shaping development with ESCRTs. Nature Cell Biol. 14, 38–45 (2012).

    Article  CAS  Google Scholar 

  60. Garrus, J. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Martin-Serrano, J., Zang, T. & Bieniasz, P. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nature Med. 7, 1313–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Appenzeller-Herzog, C. & Ellgaard, L. The human PDI family: versatility packed into a single fold. Biochim. Biophys. Acta 1783, 535–548 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Ellgaard, L. & Ruddock, L. The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep. 6, 28–32 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sargsyan, E., Baryshev, M., Szekely, L., Sharipo, A. & Mkrtchian, S. Identification of ERp29, an endoplasmic reticulum lumenal protein, as a new member of the thyroglobulin folding complex. J. Biol. Chem. 277, 17009–17015 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Magnuson, B. et al. ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding. Mol. Cell 20, 289–300 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Sen, J., Goltz, J., Konsolaki, M., Schupbach, T. & Stein, D. Windbeutel is required for function and correct subcellular localization of the Drosophila patterning protein Pipe. Development 127, 5541–5550 (2000).

    CAS  PubMed  Google Scholar 

  67. Anelli, T. et al. Thiol-mediated protein retention in the endoplasmic reticulum: the role of ERp44. EMBO J. 22, 5015–5022 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jessop, C. et al. ERp57 is essential for efficient folding of glycoproteins sharing common structural domains. EMBO J. 26, 28–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Cortini, M. & Sitia, R. From antibodies to adiponectin: role of ERp44 in sizing and timing protein secretion. Diabetes Obes. Metab. 12, 39–47 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Pirneskoski, A. et al. Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase. J. Biol. Chem. 279, 10374–10381 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Mandel, C. R. et al. Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 444, 953–956 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Budd, R. C. & Yeh, W. C. & Tschopp, J. cFLIP regulation of lymphocyte activation and development. Nature Rev. Immunol. 6, 196–204 (2006).

    Article  CAS  Google Scholar 

  73. Stimpson, H. E., Lewis, M. J. & Pelham, H. R. Transferrin receptor-like proteins control the degradation of a yeast metal transporter. EMBO J. 25, 662–672 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kolch, W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nature Rev. Mol. Cell Biol. 6, 827–837 (2005).

    Article  CAS  Google Scholar 

  75. Sakamoto, M. et al. Localization of the serine protease homolog BmSPH-1 in nodules of E. coli-injected Bombyx mori larvae and functional analysis of its role in nodule melanization. Dev. Comp. Immunol. 35, 611–619 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Willis C, Fischer K, Walton SF, Currie BJ, Kemp DJ. Scabies mite inactivated serine protease paralogues are present both internally in the mite gut and externally in feces. Am. J. Trop. Med. Hyg. 75, 683–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Bergstrom, F. C. et al. Scabies mite inactivated serine protease paralogs inhibit the human complement system. J. Immunol. 182, 7809–7817 (2009).

    Article  PubMed  Google Scholar 

  78. Rousset, R. et al. The Drosophila serine protease homologue Scarface regulates JNK signalling in a negative-feedback loop during epithelial morphogenesis. Development 137, 2177–2186 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Luo, H., Yu, G., Tremblay, J. & Wu, J. EphB6-null mutation results in compromised T cell function. J. Clin. Invest. 114, 1762–1773 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lykke-Andersen, S., Tomecki, R., Jensen, T. H. & Dziembowski, A. The eukaryotic RNA exosome: same scaffold but variable catalytic subunits. RNA Biol. 8, 61–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Ivanov, I. P., Firth, A. E. & Atkins, J. F. Recurrent emergence of catalytically inactive ornithine decarboxylase homologous forms that likely have regulatory function. J. Mol. Evol. 70, 289–302 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Garcia, L. L. et al. ThnY is a ferredoxin reductase-like iron-sulfur flavoprotein that has evolved to function as a regulator of tetralin biodegradation gene expression. J. Biol. Chem. 286, 1709–1718 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Hara, H. & Saito, T. CARD9 versus CARMA1 in innate and adaptive immunity. Trends Immunol. 30, 234–242 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Oliva, C., Escobedo, P., Astorga, C., Molina, C. & Sierralta, J. Role of the maguk protein family in synapse formation and function. Dev. Neurobiol. 72, 57–72 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Hwang, J. et al. Crystal structure of the human N-Myc downstream-regulated gene 2 protein provides insight into its role as a tumor suppressor. J. Biol. Chem. 286, 12450–12460 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shaw, E., McCue, L. A., Lawrence, C. E. & Dordick, J. S. Identification of a novel class in the α/β hydrolase fold superfamily: the N-myc differentiation-related proteins. Proteins 47, 163–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Anantharaman, V., Koonin, E. V. & Aravind, L. Peptide-N-glycanases and DNA repair proteins, Xp-C/Rad4, are, respectively, active and inactivated enzymes sharing a common transglutaminase fold. Hum. Mol. Genet. 10, 1627–1630 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Munro, K. Strisovsky and T. Kloepper for helping to improve the manuscript. This work was supported by the UK Medical Research Council (MRC) programme number U105178780.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Freeman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Matthew Freeman's homepage

The MEROPS peptidase database

The Mammalian Degradome Database

Glossary

Pseudogenes

Non-functional gene relatives that have lost their ability to express a functional protein. Can arise through reverse transcription and genome integration, in which case the resulting pseudogene lacks introns and control sequences, or by mutation.

Convergent evolution

The independent acquisition of similar biological characteristics by unrelated phylogenetic lineages.

Divergent evolution

The acquisition of related biological characteristics by diversification of a common ancestor.

Endoplasmic reticulum-associated degradation

(ERAD). A cellular quality control mechanism in which ER proteins undergo retrotranslocation back to the cytoplasm to be targeted for destruction by the proteasome.

Unfolded protein response

(UPR). A response to the stress of potentially damaging accumulation of unfolded proteins in the endoplasmic reticulum of eukaryotic cells. During UPR, protein translation is inhibited, and molecular chaperones that can aid protein refolding are induced.

Last universal common ancestor

(LUCA). The last ancient organism from which all current organisms descended.

Horizontal gene transfer

(HGT). An evolutionary mechanism by which genes are directly transferred between species independently of reproduction. Contrasts with vertical gene transfer from parent to offspring. HGT is thought to be a biologically significant process among single-celled organisms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adrain, C., Freeman, M. New lives for old: evolution of pseudoenzyme function illustrated by iRhoms. Nat Rev Mol Cell Biol 13, 489–498 (2012). https://doi.org/10.1038/nrm3392

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing