Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Intercellular communication: diverse structures for exchange of genetic information

Abstract

An emerging concept is that cellular communication in mammals can be mediated by the exchange of genetic information, mainly in the form of microRNAs. This can occur when extracellular vesicles, such as exosomes, secreted by a donor cell are taken up by an acceptor cell. Transfer of genetic material can also occur through intimate membrane contacts between donor and acceptor cells. Specialized cell–cell contacts, such as synapses, have the potential to combine these modes of genetic transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-distance transfer of genetic material in extracellular vesicles.
Figure 2: Connective structures for short-distance transfer of genetic material.
Figure 3: The immune synapse acts as a platform facilitating the passage of genetic material between cells.

Similar content being viewed by others

References

  1. Melnyk, C. W., Molnar, A. & Baulcombe, D. C. Intercellular and systemic movement of RNA silencing signals. EMBO J. 30, 3553–3563 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brosnan, C. A. & Voinnet, O. Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications. Curr. Opin. Plant Biol. 14, 580–587 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Carlsbecker, A. et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465, 316–321 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dunoyer, P. et al. Small RNA duplexes function as mobile silencing signals between plant cells. Science 328, 912–916 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Molnar, A. et al. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328, 872–875 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Slotkin, R. K. et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136, 461–472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS  PubMed  Google Scholar 

  8. Jose, A. M., Garcia, G. A. & Hunter, C. P. Two classes of silencing RNAs move between Caenorhabditis elegans tissues. Nature Struct. Mol. Biol. 18, 1184–1188 (2011).

    Article  CAS  Google Scholar 

  9. Whangbo, J. S. & Hunter, C. P. Environmental RNA interference. Trends Genet. 24, 297–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Winston, W. M., Molodowitch, C. & Hunter, C. P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295, 2456–2459 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biol. 10, 1470–1476 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Mittelbrunn, M. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature Commun. 2, 282 (2011).

    Article  Google Scholar 

  14. Montecalvo, A. et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119, 756–766 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thery, C., Ostrowski, M. & Segura, E. Membrane vesicles as conveyors of immune responses. Nature Rev. Immunol. 9, 581–593 (2009).

    Article  CAS  Google Scholar 

  16. Simons, M. & Raposo, G. Exosomes — vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21, 575–581 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Babst, M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr. Opin. Cell Biol. 23, 452–457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bobrie, A., Colombo, M., Raposo, G. & Thery, C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12, 1659–1668 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Cocucci, E., Racchetti, G. & Meldolesi, J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 19, 43–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Baj-Krzyworzeka, M. et al. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol. Immunother. 55, 808–818 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Ehnfors, J. et al. Horizontal transfer of tumor DNA to endothelial cells in vivo. Cell Death Differ. 16, 749–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Pegtel, D. M. et al. Functional delivery of viral miRNAs via exosomes. Proc. Natl Acad. Sci. USA 107, 6328–6333 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meckes, D. G. Jr et al. Human tumor virus utilizes exosomes for intercellular communication. Proc. Natl Acad. Sci. USA 107, 20370–20375 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Balaj, L. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nature Commun. 2, 180 (2011).

    Article  Google Scholar 

  26. Irion, U. & St. Johnston, D. bicoid RNA localization requires specific binding of an endosomal sorting complex. Nature 445, 554–558 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gibbings, D. J., Ciaudo, C., Erhardt, M. & Voinnet, O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nature Cell Biol. 11, 1143–1149 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, Y. S. et al. Silencing by small RNAs is linked to endosomal trafficking. Nature Cell Biol. 11, 1150–1156 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Deregibus, M. C. et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110, 2440–2448 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Zernecke, A. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal. 2, ra81 (2009).

    Article  PubMed  Google Scholar 

  31. Zhang, Y. et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol. Cell 39, 133–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Hergenreider, E. et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biol. 14, 249–256 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Grange, C. et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 71, 5346–5356 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Turchinovich, A., Weiz, L., Langheinz, A. & Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39, 7223–7233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D. & Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biol. 13, 423–433 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, K., Zhang, S., Weber, J., Baxter, D. & Galas, D. J. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 38, 7248–7259 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shih, J. D. & Hunter, C. P. SID-1 is a dsRNA-selective dsRNA-gated channel. RNA 17, 1057–1065 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kosaka, N., Iguchi, H. & Ochiya, T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 101, 2087–2092 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Wolfrum, C. et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nature Biotech. 25, 1149–1157 (2007).

    Article  CAS  Google Scholar 

  41. Valiunas, V. et al. Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J. Physiol. 568, 459–468 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kizana, E., Cingolani, E. & Marban, E. Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells. Gene Ther. 16, 1163–1168 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Hosoda, T. et al. Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation 123, 1287–1296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lim, P. K. et al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 71, 1550–1560 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Katakowski, M., Buller, B., Wang, X., Rogers, T. & Chopp, M. Functional microRNA is transferred between glioma cells. Cancer Res. 70, 8259–8263 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Braun, R. E., Behringer, R. R., Peschon, J. J., Brinster, R. L. & Palmiter, R. D. Genetically haploid spermatids are phenotypically diploid. Nature 337, 373–376 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Morales, C. R. et al. A TB-RBP and Ter ATPase complex accompanies specific mRNAs from nuclei through the nuclear pores and into intercellular bridges in mouse male germ cells. Dev. Biol. 246, 480–494 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Davis, D. M. & Sowinski, S. Membrane nanotubes: dynamic long-distance connections between animal cells. Nature Rev. Mol. Cell Biol. 9, 431–436 (2008).

    Article  CAS  Google Scholar 

  49. Huse, M., Quann, E. J. & Davis, M. M. Shouts, whispers and the kiss of death: directional secretion in T cells. Nature Immunol. 9, 1105–1111 (2008).

    Article  CAS  Google Scholar 

  50. Vicente-Manzanares, M. & Sánchez-Madrid, F. Role of the cytoskeleton during leukocyte responses. Nature Rev. Immunol. 4, 110–122 (2004).

    Article  CAS  Google Scholar 

  51. Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M. L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Griffiths, G. M., Tsun, A. & Stinchcombe, J. C. The immunological synapse: a focal point for endocytosis and exocytosis. J. Cell Biol. 189, 399–406 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Davis, D. M. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nature Rev. Immunol. 7, 238–243 (2007).

    Article  CAS  Google Scholar 

  54. Chauveau, A., Aucher, A., Eissmann, P., Vivier, E. & Davis, D. M. Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells. Proc. Natl Acad. Sci. USA 107, 5545–5550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mendoza-Naranjo, A. et al. Functional gap junctions accumulate at the immunological synapse and contribute to T cell activation. J. Immunol. 187, 3121–3132 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Ueda, H., Morphew, M. K., McIntosh, J. R. & Davis, M. M. CD4+ T-cell synapses involve multiple distinct stages. Proc. Natl Acad. Sci. USA 108, 17099–17104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Court, F. A., Hendriks, W. T., MacGillavry, H. D., Alvarez, J. & van Minnen, J. Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J. Neurosci. 28, 11024–11029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lachenal, G. et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell. Neurosci. 46, 409–418 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Korkut, C. et al. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139, 393–404 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dinger, M. E., Mercer, T. R. & Mattick, J. S. RNAs as extracellular signaling molecules. J. Mol. Endocrinol. 40, 151–159 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Igakura, T. et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299, 1713–1716 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Jolly, C., Kashefi, K., Hollinshead, M. & Sattentau, Q. J. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J. Exp. Med. 199, 283–293 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Izquierdo-Useros, N. et al. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog. 6, e1000740 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Saleh, M. C. et al. Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458, 346–350 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Vaistij, F. E., Jones, L. & Baulcombe, D. C. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14, 857–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Maida, Y. et al. An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461, 230–235 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cortez, M. A. et al. MicroRNAs in body fluids — the mix of hormones and biomarkers. Nature Rev. Clin. Oncol. 8, 467–477 (2011).

    Article  CAS  Google Scholar 

  71. Small, E. M. & Olson, E. N. Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336–342 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rosenfeld, N. et al. MicroRNAs accurately identify cancer tissue origin. Nature Biotech. 26, 462–469 (2008).

    Article  CAS  Google Scholar 

  73. Hung., E. C., Chiu, R. W. & Lo, Y. M. Detection of circulating fetal nucleic acids: a review of methods and applications. J. Clin. Pathol. 62, 308–313 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotech. 29, 341–345 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.M. is supported by the Spanish Ministry of Science and Innovation (Instituto de Salud Carlos III). F.S-.M. is supported by grants SAF2011-25834 and ERC-2011-AdG 294340-GENTRIS. Editorial support was provided by S. Bartlett. The authors thank P. Vera, S. Moreno, M. Vicente-Manzanares, M. Manzanares, F. Baixauli, C. Gutierrez-Vazquez and C. Villarroya for critical reading of the manuscript. The Centro Nacional de Investigaciones Cardiovasculares (CNIC) is supported by the Spanish Ministry of Science and Innovation and the Pro-CNIC Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Sánchez-Madrid.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Francisco Sánchez-Madrid's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittelbrunn, M., Sánchez-Madrid, F. Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 13, 328–335 (2012). https://doi.org/10.1038/nrm3335

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing