Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bittersweet memories

linking metabolism to epigenetics through O-GlcNAcylation

Key Points

  • O-GlcNAcylation is a nutrient-driven post-translational modification, as the levels of O-GlcNAcylation depend on the intracellular concentration of the cytoplasmic nucleotide sugar uridine diphosphate N-acetylglucosamine (UDP-GlcNAc).

  • O-GlcNAc transferase (OGT) catalyses the addition of O-linked β-D-N-acetylglucosamine (O-GlcNAc) to Ser or Thr residues on target substrates, whereas O-GlcNAcase (OGA) catalyses O-GlcNAc removal.

  • OGT and OGA regulate O-GlcNAc cycling in a range of organisms, including Drosophila melanogaster, Caenohabditis elegans and mammals. O-GlcNAc cycling affects signalling, organelle dynamics, the cell cycle and transcription. Emerging evidence suggests that O-GlcNAcylation is a central player in the robust regulatory network of post-translational modifications, which constitute the epigenetic lexicon.

  • OGT and OGA interact with transcriptional regulators such as host cell factor 1 (HCF1), histones, histone modifiers and RNA polymerase II (Pol II). In addition, O-GlcNAcylation regulates the function of the Polycomb group (PcG) and Trithorax group (TrxG) complexes.

  • As it targets several crucial factors that control gene expression and epigenetic control, O-GlcNAcylation may be one of the mechanisms linking nutritional information to disease susceptibility across generations.

Abstract

O-GlcNAcylation, which is a nutrient-sensitive sugar modification, participates in the epigenetic regulation of gene expression. The enzymes involved in O-linked β-D-N-acetylglucosamine (O-GlcNAc) cycling – O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) – target key transcriptional and epigenetic regulators including RNA polymerase II, histones, histone deacetylase complexes and members of the Polycomb and Trithorax groups. Thus, O-GlcNAc cycling may serve as a homeostatic mechanism linking nutrient availability to higher-order chromatin organization. In response to nutrient availability, O-GlcNAcylation is poised to influence X chromosome inactivation and genetic imprinting, as well as embryonic development. The wide range of physiological functions regulated by O-GlcNAc cycling suggests an unexplored nexus between epigenetic regulation in disease and nutrient availability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The synthesis of UDP-GlcNAc via the hexosamine biosynthetic pathway is nutrient responsive.
Figure 2: The structure and function of the enzymes of O-GlcNAc cycling.
Figure 3: The enzymes of O-GlcNAc cycling interact with and modify known epigenetic regulators.
Figure 4: The influence of O-GlcNAc cycling on the activity of the PcG and TrxG complexes.

Similar content being viewed by others

References

  1. Young, N. L., Dimaggio, P. A. & Garcia, B. A. The significance, development and progress of high-throughput combinatorial histone code analysis. Cell. Mol. Life Sci. 67, 3983—4000 (2010).

    CAS  PubMed  Google Scholar 

  2. Hanover, J. A. Epigenetics gets sweeter: O-GlcNAc joins the "histone code". Chem. Biol. 17, 1272—1274 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Spiro, R. G. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12, 43R—56R (2002).

    CAS  PubMed  Google Scholar 

  4. Davies, G. J., Gloster, T. M. & Henrissat, B. Recent structural insights into the expanding world of carbohydrate-active enzymes. Curr. Opin. Struct. Biol. 15, 637—645 (2005).

    CAS  PubMed  Google Scholar 

  5. Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970—974 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gambetta, M. C., Oktaba, K. & Muller, J. Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325, 93—96 (2009). This report showed that OGT is the protein product encoded by Sxc , which is a homeotic gene that was isolated in 1984. Sxc is involved in anterior—posterior patterning.

    CAS  PubMed  Google Scholar 

  7. Sinclair, D. A. et al. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl Acad. Sci. USA 106, 13427—13432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Love, D. C. et al. Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity. Proc. Natl Acad. Sci. USA 107, 7413—7418 (2010). This study showed that O -GlcNAc cycles on the promoters of numerous genes in a nutrient-dependent manner to regulate gene expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanover, J. A. & Lennarz, W. J. Transmembrane assembly of membrane and secretory glycoproteins. Arch. Biochem. Biophys. 211, 1—19 (1981).

    CAS  PubMed  Google Scholar 

  10. Hanover, J. A. & Lennarz, W. J. Transmembrane assembly of N-linked glycoproteins. Studies on the topology of saccharide synthesis. J. Biol. Chem. 257, 2787—2794 (1982).

    CAS  PubMed  Google Scholar 

  11. Burda, P. & Aebi, M. The dolichol pathway of N-linked glycosylation. Biochim. Biophys. Acta 1426, 239—257 (1999).

    CAS  PubMed  Google Scholar 

  12. Helenius, J. & Aebi, M. Transmembrane movement of dolichol linked carbohydrates during N-glycoprotein biosynthesis in the endoplasmic reticulum. Semin. Cell Dev. Biol. 13, 171—178 (2002).

    CAS  PubMed  Google Scholar 

  13. Liu, L., Xu, Y. X. & Hirschberg, C. B. The role of nucleotide sugar transporters in development of eukaryotes. Semin. Cell Dev. Biol. 21, 600—608 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Holt, G. D. & Hart, G. W. The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J. Biol. Chem. 261, 8049—8057 (1986).

    CAS  PubMed  Google Scholar 

  15. Hanover, J. A., Cohen, C. K., Willingham, M. C. & Park, M. K. O-linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. J. Biol. Chem. 262, 9887—9894 (1987).

    CAS  PubMed  Google Scholar 

  16. Kamemura, K. & Hart, G. W. Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: a new paradigm for metabolic control of signal transduction and transcription. Prog. Nucleic Acid Res. Mol. Biol. 73, 107—136 (2003).

    CAS  PubMed  Google Scholar 

  17. Capotosti, F. et al. O-GlcNAc transferase catalyzes site-specific proteolysis of HCF1. Cell 144, 376—388 (2011).

    CAS  PubMed  Google Scholar 

  18. Daou, S. et al. Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor1 maturation pathway. Proc. Natl Acad. Sci. USA 108, 2747—2752 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sakabe, K., Wang, Z. & Hart, G. W. β-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc. Natl Acad. Sci. USA 107, 19915—19920 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, S., Roche, K., Nasheuer, H. P. & Lowndes, N. F. Modification of histones by sugar β-N- acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J. Biol. Chem. 286, 37483—37495 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fujiki, R. et al. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480, 557—560 (2011). Links O -GlcNAcylation to the recruitment of the PRC.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Comer, F. I. & Hart, G. W. Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II. Biochemistry 40, 7845—7852 (2001). This report demonstrated that O -GlcNAc modifies Pol II.

    CAS  PubMed  Google Scholar 

  23. Love, D. C., Krause, M. W. & Hanover, J. A. O-GlcNAc cycling: emerging roles in development and epigenetics. Semin. Cell Dev. Biol. 21, 646—654 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Love, D. C. & Hanover, J. A. The hexosamine signaling pathway: deciphering the "O-GlcNAc code". Sci. STKE 2005, re13 (2005).

    PubMed  Google Scholar 

  25. Butkinaree, C., Park, K. & Hart, G. W. O-linked β-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim. Biophys. Acta 1800, 96—106 (2010).

    CAS  PubMed  Google Scholar 

  26. Traxinger, R. R. & Marshall, S. Coordinated regulation of glutamine:fructose-6-phosphate amidotransferase activity by insulin, glucose, and glutamine. Role of hexosamine biosynthesis in enzyme regulation. J. Biol. Chem. 266, 10148—10154 (1991).

    CAS  PubMed  Google Scholar 

  27. Marshall, S., Bacote, V. & Traxinger, R. R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 266, 4706—4712 (1991). This paper was the first to suggest a link between insulin signalling and the HBP.

    CAS  PubMed  Google Scholar 

  28. Olszewski, N. E., West, C. M., Sassi, S. O. & Hartweck, L. M. O-GlcNAc protein modification in plants: evolution and function. Biochim. Biophys. Acta 1800, 49—56 (2010).

    CAS  PubMed  Google Scholar 

  29. Lubas, W. A., Frank, D. W., Krause, M. & Hanover, J. A. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J. Biol. Chem. 272, 9316—9324 (1997). This paper was the first to describe the molecular identification of OGT in humans and C. elegans.

    CAS  PubMed  Google Scholar 

  30. Kreppel, L. K., Blomberg, M. A. & Hart, G. W. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272, 9308—9315 (1997). This paper was the first to describe the molecular identification of rat OGT.

    CAS  PubMed  Google Scholar 

  31. Kreppel, L. K. & Hart, G. W. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J. Biol. Chem. 274, 32015—32022 (1999).

    CAS  PubMed  Google Scholar 

  32. Lubas, W. A. & Hanover, J. A. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J. Biol. Chem. 275, 10983—10988 (2000).

    CAS  PubMed  Google Scholar 

  33. Hanover, J. A. et al. Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch. Biochem. Biophys. 409, 287—297 (2003).

    CAS  PubMed  Google Scholar 

  34. Love, D. C., Kochan, J., Cathey, R. L., Shin, S. H. & Hanover, J. A. Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. J. Cell Sci. 116, 647—654 (2003). This study characterized the alternatively spliced isoforms of OGT, their subcellular localization and probable functions.

    CAS  PubMed  Google Scholar 

  35. Shin, S. H., Love, D. C. & Hanover, J. A. Elevated O-GlcNAcdependent signaling through inducible mOGT expression selectively triggers apoptosis. Amino Acids 40, 885—893 (2011).

    CAS  PubMed  Google Scholar 

  36. Jinek, M. et al. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin-a. Nature Struct. Mol. Biol. 11, 1001—1007 (2004).

    CAS  Google Scholar 

  37. Lazarus, M. B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564—567 (2011). The authors described the complete structure of human OGT.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Swinburne, I. A. & Silver, P. A. Intron delays and transcriptional timing during development. Dev. Cell 14, 324—330 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ashton-Beaucage, D. et al. The exon junction complex controls the splicing of MAPK and other long intron-containing transcripts in Drosophila. Cell 143, 251—262 (2010).

    CAS  PubMed  Google Scholar 

  40. Ryu, I. H. & Do, S. I. Denitrosylation of S-nitrosylated OGT is triggered in LPS-stimulated innate immune response. Biochem. Biophys. Res. Commun. 408, 52—57 (2011).

    CAS  PubMed  Google Scholar 

  41. Gao, Y., Wells, L., Comer, F. I., Parker, G. J. & Hart, G. W. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic β-N-acetylglucosaminidase from human brain. J. Biol. Chem. 276, 9838—9845 (2001).

    CAS  PubMed  Google Scholar 

  42. Hanover, J. A., Krause, M. W. & Love, D. C. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim. Biophys. Acta 1800, 80—95 (2010).

    CAS  PubMed  Google Scholar 

  43. Keembiyehetty, C. N., Krzeslak, A., Love, D. C. & Hanover, J. A. A lipid-droplet-targeted O-GlcNAcase isoform is a key regulator of the proteasome. J. Cell Sci. 124, 2851—2860 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gloster, T. M. & Vocadlo, D. J. Mechanism, structure, and inhibition of O-GlcNAc processing enzymes. Curr. Signal Transduct Ther. 5, 74—91 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rao, F. V. et al. Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis. EMBO J. 25, 1569—1578 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Schimpl, M., Schuttelkopf, A. W., Borodkin, V. S. & van Aalten, D. M. Human OGA binds substrates in a conserved peptide recognition groove. Biochem. J. 432, 1—7 (2010).

    CAS  PubMed  Google Scholar 

  47. Kim, E. J. Chemical arsenal for the study of O-GlcNAc. Molecules 16, 1987—2022 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Comtesse, N., Maldener, E. & Meese, E. Identification of a nuclear variant of MGEA5, a cytoplasmic hyaluronidase and a β-N-acetylglucosaminidase. Biochem. Biophys. Res. Commun. 283, 634—640 (2001).

    CAS  PubMed  Google Scholar 

  49. Hanover, J. A. et al. A Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout. Proc. Natl Acad. Sci. USA 102, 11266—11271 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Forsythe, M. E. et al. Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proc. Natl Acad. Sci. USA 103, 11952—11957 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mondoux, M. A. et al. O-linked N-acetylglucosamine cycling and insulin signaling are required for the glucose stress response in Caenorhabditis elegans. Genetics 188, 369—382 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rahman, M. M. et al. Intracellular protein glycosylation modulates insulin mediated lifespan in C. elegans. Aging (Albany NY) 2, 678—690 (2010).

    CAS  Google Scholar 

  53. Ingham, P. W. A gene that regulates the bithorax complex differentially in larval and adult cells of Drosophila. Cell 37, 815—823 (1984). The discovery of Sxc as a homeotic gene in D. melanogaster. Sxc was recently shown to encode OGT.

    CAS  PubMed  Google Scholar 

  54. Shafi, R. et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl Acad. Sci. USA 97, 5735—5739 (2000). This paper demonstrated that OGT is essential for mouse embryonic development.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. O'Donnell, N., Zachara, N. E., Hart, G. W. & Marth, J. D. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol. 24, 1680—1690 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chalkley, R. J., Thalhammer, A., Schoepfer, R. & Burlingame, A. L. Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proc. Natl Acad. Sci. USA 106, 8894—8899 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Musicki, B., Kramer, M. F., Becker, R. E. & Burnett, A. L. Inactivation of phosphorylated endothelial nitric oxide synthase (Ser1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proc. Natl Acad. Sci. USA 102, 11870—11875 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dentin, R., Hedrick, S., Xie, J., Yates, J. 3rd & Montminy, M. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 319, 1402—1405 (2008).

    CAS  PubMed  Google Scholar 

  59. Rexach, J. E. et al. Dynamic O-GlcNAc modification regulates CREB-mediated gene expression and memory formation. Nature Chem. Biol. 8, 253—261 (2012).

    CAS  Google Scholar 

  60. Li, M. D. et al. O-GlcNAc transferase is involved in glucocorticoid receptor-mediated transrepression. J. Biol. Chem. 27 Feb 2012 (doi:10.1074/jbc.M111.303792).

    CAS  Google Scholar 

  61. Kristie, T. M., Liang, Y. & Vogel, J. L. Control of a-herpesvirus IE gene expression by HCF1 coupled chromatin modification activities. Biochim. Biophys. Acta 1799, 257—265 (2010).

    CAS  PubMed  Google Scholar 

  62. Goto, H. et al. A single-point mutation in HCF causes temperature-sensitive cell-cycle arrest and disrupts VP16 function. Genes Dev. 11, 726—737 (1997).

    CAS  PubMed  Google Scholar 

  63. Hanover, J. A. A versatile sugar transferase makes the cut. Cell 144, 321—323 (2011).

    CAS  PubMed  Google Scholar 

  64. Wysocka, J., Myers, M. P., Laherty, C. D., Eisenman, R. N. & Herr, W. Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF1. Genes Dev. 17, 896—911 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang, X., Zhang, F. & Kudlow, J. E. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110, 69—80 (2002).

    CAS  PubMed  Google Scholar 

  66. Sakabe, K. & Hart, G. W. O-GlcNAc transferase regulates mitotic chromatin dynamics. J. Biol. Chem. 285, 34460—34468 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Myers, S. A., Panning, B. & Burlingame, A. L. Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 108, 9490—9495 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fong, J. J. et al. β-N-acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3. J. Biol. Chem. 27 Feb 2012 (doi:10.1074/jbc.M111.315804).

    CAS  Google Scholar 

  69. Maurange, C. & Paro, R. A cellular memory module conveys epigenetic inheritance of hedgehog expression during Drosophila wing imaginal disc development. Genes Dev. 16, 2672—2683 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Breen, T. R. & Duncan, I. M. Maternal expression of genes that regulate the bithorax complex of Drosophila melanogaster. Dev. Biol. 118, 442—456 (1986).

    CAS  PubMed  Google Scholar 

  71. Cheng, N. N., Sinclair, D. A., Campbell, R. B. & Brock, H. W. Interactions of polyhomeotic with Polycomb group genes of Drosophila melanogaster. Genetics 138, 1151—1162 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Campbell, R. B., Sinclair, D. A., Couling, M. & Brock, H. W. Genetic interactions and dosage effects of Polycomb group genes of Drosophila. Mol. Gen. Genet. 246, 291—300 (1995).

    CAS  PubMed  Google Scholar 

  73. Gildea, J. J., Lopez, R. & Shearn, A. A screen for new trithorax group genes identified little imaginal discs, the Drosophila melanogaster homologue of human retinoblastoma binding protein 2. Genetics 156, 645—663 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chikanishi, T. et al. Glucose-induced expression of MIP1 genes requires O-GlcNAc transferase in monocytes. Biochem. Biophys. Res. Commun. 394, 865—870 (2010).

    CAS  PubMed  Google Scholar 

  75. Fujiki, R. et al. GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature 459, 455—459 (2009).

    CAS  PubMed  Google Scholar 

  76. Nimura, K. et al. A histone H3 lysine 36 trimethyltransferase links Nkx 2—5 to Wolf—Hirschhorn syndrome. Nature 460, 287—291 (2009).

    CAS  PubMed  Google Scholar 

  77. Cheung, W. D., Sakabe, K., Housley, M. P., Dias, W. B. & Hart, G. W. O-linked β-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins. J. Biol. Chem. 283, 33935—33941 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Dejosez, M. et al. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell 133, 1162—1174 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Dejosez, M. et al. Ronin/Hcf1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells. Genes Dev. 24, 1479—1484 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lemischka, I. R. Hooking up with Oct4. Cell Stem Cell 6, 291—292 (2010).

    CAS  PubMed  Google Scholar 

  81. Pardo, M. et al. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell 6, 382—395 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. van den Berg, D. L. et al. An Oct4-centered protein interaction network in embryonic stem cells. Cell Stem Cell 6, 369—381 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947—956 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301—313 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, H. S. et al. Excessive O-GlcNAcylation of proteins suppresses spontaneous cardiogenesis in ES cells. FEBS Lett. 583, 2474—2478 (2009).

    CAS  PubMed  Google Scholar 

  86. Escamilla-Del-Arenal, M., da Rocha, S. T. & Heard, E. Evolutionary diversity and developmental regulation of Xchromosome inactivation. Hum. Genet. 130, 307—327 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin, H. et al. Dosage compensation in the mouse balances up-regulation and silencing of X-linked genes. PLoS Biol. 5, e326 (2007).

    PubMed  PubMed Central  Google Scholar 

  88. Donohoe, M. E., Silva, S. S., Pinter, S. F., Xu, N. & Lee, J. T. The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature 460, 128—132 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, J. et al. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nature Genet. 28, 371—375 (2001).

    CAS  PubMed  Google Scholar 

  90. Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413—443 (2004).

    CAS  PubMed  Google Scholar 

  91. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell 128, 735—745 (2007).

    CAS  PubMed  Google Scholar 

  92. Ringrose, L. & Paro, R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134, 223—232 (2007).

    CAS  PubMed  Google Scholar 

  93. Lee, J. Molecular links between X-inactivation and autosomal imprinting: X-inactivation as a driving force for the evolution of imprinting? Curr. Biol. 13, R242—R254 (2003).

    CAS  PubMed  Google Scholar 

  94. Waddington, C. H. Canalization of development and genetic assimilation of acquired characters. Nature 183, 1654—1655 (1959).

    CAS  PubMed  Google Scholar 

  95. Neel, J. V. Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"? Am. J. Hum. Genet. 14, 353—362 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hales, C. N. & Barker, D. J. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35, 595—601 (1992).

    CAS  PubMed  Google Scholar 

  97. Hales, C. N. & Barker, D. J. The thrifty phenotype hypothesis. Br. Med. Bull. 60, 5—20 (2001).

    CAS  PubMed  Google Scholar 

  98. McClain, D. A. et al. Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proc. Natl Acad. Sci. USA 99, 10695—10699 (2002). This paper was the first genetic demonstration that O -GlcNAc cycling is linked to insulin resistance and diabetes mellitus.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Vosseller, K., Wells, L., Lane, M. D. & Hart, G. W. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3L1 adipocytes. Proc. Natl Acad. Sci. USA 99, 5313—5318 (2002). This paper provided the first direct in vitro evidence of the link between O -GlcNAc cycling and insulin resistance.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sekine, O., Love, D. C., Rubenstein, D. S. & Hanover, J. A. Blocking O-linked GlcNAc cycling in Drosophila insulin-producing cells perturbs glucose-insulin homeostasis. J. Biol. Chem. 285, 38684—38691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang, X. et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451, 964—969 (2008).

    CAS  PubMed  Google Scholar 

  102. Cameron, E. A. et al. MGEA5-14 polymorphism and type 2 diabetes in Mexico City. Am. J. Hum. Biol. 19, 593—596 (2007).

    CAS  PubMed  Google Scholar 

  103. Lehman, D. M. et al. A single nucleotide polymorphism in MGEA5 encoding O-GlcNAc-selective N-acetyl-β-D glucosaminidase is associated with type 2 diabetes in Mexican Americans. Diabetes 54, 1214—1221 (2005).

    CAS  PubMed  Google Scholar 

  104. Pettitt, D. J. & Jovanovic, L. The vicious cycle of diabetes and pregnancy. Curr. Diab. Rep. 7, 295—297 (2007).

    PubMed  Google Scholar 

  105. Yuzwa, S. A. et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nature Chem. Biol. 4, 483—490 (2008).

    CAS  Google Scholar 

  106. Dias, W. B. & Hart, G. W. O-GlcNAc modification in diabetes and Alzheimer's disease. Mol. Biosyst. 3, 766—772 (2007).

    CAS  PubMed  Google Scholar 

  107. Lazarus, B. D., Love, D. C. & Hanover, J. A. O-GlcNAc cycling: implications for neurodegenerative disorders. Int. J. Biochem. Cell Biol. 41, 2134—2146 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Housley, M. P. et al. O-GlcNAc regulates FoxO activation in response to glucose. J. Biol. Chem. 283, 16283—16292 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Chou, T. Y., Hart, G. W. & Dang, C. V. cMyc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J. Biol. Chem. 270, 18961—18965 (1995).

    CAS  PubMed  Google Scholar 

  110. Gewinner, C. et al. The coactivator of transcription CREB-binding protein interacts preferentially with the glycosylated form of Stat5. J. Biol. Chem. 279, 3563—3572 (2004).

    CAS  PubMed  Google Scholar 

  111. Tarrant, M. K. et al. Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis. Nature Chem. Biol. 8, 262—269 (2012).

    CAS  Google Scholar 

  112. Ayer, D. E., Lawrence, Q. A. & Eisenman, R. N. Mad—Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80, 767—776 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank P. Wang, M. Bond, T. Fukushige and K. Harwood for helpful discussions. The work was supported by National Institutes of Diabetes and Digestive and Kidney Diseases intramural funds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John A. Hanover, Michael W. Krause or Dona C. Love.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

John A. Hanover's homepage

SUPPLEMENTARY INFORMATION

S1 (box)

Glossary

Histone code

The presumptive information content encoded by post-translational modifications of the histone tails. The histone code has been implicated in the regulation of gene expression, with histone acetylation being associated with increased expression and histone methylation with transcriptional repression.

Protein glycosylation

Addition of saccharide residues in glycosidic linkage to amino acid residues of proteins. Typical linkages are amide linkages to Asn (N-glucosylation) and glycosidic linkages to Ser or Thr (O-glycosylation).

Glycosyltransferases

Enzymes that transfer saccharides from sugar nucleotide precursors to target proteins, oligosaccharides and lipids.

Polycomb group

(PcG). A family of proteins that can remodel chromatin and silence genes. This protein family was first discovered in Drosophila melanogaster.

CTD code

The presumptive information content encoded by post-translational modifications of the carboxy-terminal domain (CTD) of RNA polymerase II (Pol II), which contains heptad repeats. CTD modifications, such as phosphorylation and O-GlcNAcylation, are thought to regulate the activity of Pol II.

Hexosamine biosynthetic pathway

(HBP). An offshoot of the glycolytic pathway that normally accounts for 2—5% of glucose flux. The HBP generates uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and uridine diphosphate N-acetylgalactosamine (UDP-GalNAc) from Gln, glucose, acetyl-CoA, ATP and uridine.

Tetratricopeptide repeats

(TPRs). Structural motifs that are found in a wide range of proteins. TPRs are composed of 34 amino acids and are involved in intra- and intermolecular interactions.

Sequential-ordered bi-bi kinetics

A kinetic system in which substrates must be bound sequentially and in the proper order to carry out two bimolecular reactions.

TIM-barrel

(Triosephosphate isomerise-barrel). The most frequent and conserved protein fold that comprises eight helices and eight sheets.

MAD—MAX complex

A sequence-specific transcriptional repressor complex consisting of the bHLH-ZIP proteins MAD and MAX. The MAD—MAX complex antagonizes the transcriptional activity of the MYC—MAX complex.

Swi—Snf complex

A chromatin-remodelling complex family that was first identified genetically in yeast as a group of genes required for mating type switching and growth on alternative sugar sources to sucrose. This complex is required for the transcriptional activation of ~7% of the genome.

Ssn6—Tup1 complex

A complex consisting of the yeast proteins Ssn6 (also known as Cyc8) and Tup1. This complex is associated with glucose repression.

Trithorax group

(TrxG). Chromatin regulatory proteins that maintain gene expression, often by antagonizing the Polycomb group proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanover, J., Krause, M. & Love, D. linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol 13, 312–321 (2012). https://doi.org/10.1038/nrm3334

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3334

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing