Key Points
-
AMP-activated protein kinase (AMPK) occurs as heterotrimeric protein complexes that monitor cellular energy status by sensing the concentrations of ATP, ADP and AMP.
-
Displacement of ATP by ADP or AMP at one site on the AMPK γ-subunit promotes the net phosphorylation of a conserved Thr residue within the activation loop of the kinase domain, causing >100-fold activation. Displacement of ATP or ADP by AMP at a second site on the γ-subunit causes a further tenfold allosteric activation, yielding up to 1,000-fold activation overall.
-
AMPK is activated by metabolic stresses that inhibit mitochondrial ATP production or that accelerate ATP consumption. It is also activated by many drugs and xenobiotics, most of which act by inhibiting mitochondrial function.
-
Once activated by energy stress, AMPK restores cellular energy balance by switching on catabolic, ATP-generating pathways while switching off anabolic, ATP-consuming pathways.
-
In mammals, AMPK also regulates whole-body energy balance, mainly by increasing food intake and energy expenditure through effects on the hypothalamus of the brain.
-
AMPK also regulates non-metabolic processes, such as progress through the cell cycle and excitability of neuronal membranes, with the overall purpose of sparing ATP.
Abstract
AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Harnessing metabolism of hepatic macrophages to aid liver regeneration
Cell Death & Disease Open Access 29 August 2023
-
The role of antifreeze genes in the tolerance of cold stress in the Nile tilapia (Oreochromis niloticus)
BMC Genomics Open Access 23 August 2023
-
Integrated analysis of mRNAs and lncRNAs reveals candidate marker genes and potential hub lncRNAs associated with growth regulation of the Pacific Oyster, Crassostrea gigas
BMC Genomics Open Access 10 August 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Hardie, D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature Rev. Mol. Cell Biol. 8, 774–785 (2007).
Sakamoto, K. et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 24, 1810–1820 (2005).
Sakamoto, K. et al. Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKα2 but not AMPKα1. Am. J. Physiol. Endocrinol. Metab. 290, E780–E788 (2006).
Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355–2369 (2010).
Suter, M. et al. Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J. Biol. Chem. 281, 32207–32216 (2006).
Oakhill, J. S., Scott, J. W. & Kemp, B. E. AMPK functions as an adenylate charge-regulated protein kinase. Trends Endocrinol. Metab. 23, 125–132 (2012).
Hawley, S. A. et al. Characterization of the AMP-activated protein kinase kinase from rat liver, and identification of threonine-172 as the major site at which it phosphorylates and activates AMP-activated protein kinase. J. Biol. Chem. 271, 27879–27887 (1996).
Hawley, S. A. et al. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28 (2003).
Woods, A. et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003).
Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329–3335 (2004).
Hawley, S. A. et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2, 9–19 (2005).
Woods, A. et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21–33 (2005).
Hurley, R. L. et al. The Ca2+/calmoldulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280, 29060–29066 (2005).
Hawley, S. A. et al. 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J. Biol. Chem. 270, 27186–27191 (1995).
Davies, S. P., Helps, N. R., Cohen, P. T. W. & Hardie, D. G. 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2Cα and native bovine protein phosphatase-2AC . FEBS Lett. 377, 421–425 (1995).
Xiao, B. et al. Structure of mammalian AMPK and its regulation by ADP. Nature 472, 230–233 (2011). The most complete structure for an AMPK heterotrimer to date. This study also suggests a model for the mechanism by which binding of AMP or ADP inhibits dephosphorylation of Thr172.
Oakhill, J. S. et al. AMPK is a direct adenylate charge-regulated protein kinase. Science 332, 1433–1435 (2011).
Oakhill, J. S. et al. β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc. Natl Acad. Sci. USA 107, 19237–19241 (2010).
Fogarty, S. et al. Calmodulin-dependent protein kinase kinase-β activates AMPK without forming a stable complex — synergistic effects of Ca2+ and AMP. Biochem. J. 426, 109–118 (2010).
Pang, T. et al. Conserved α-helix acts as autoinhibitory sequence in AMP-activated protein kinase α subunits. J. Biol. Chem. 282, 495–506 (2007).
Chen, L. et al. Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature 459, 1146–1149 (2009).
Hudson, E. R. et al. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr. Biol. 13, 861–866 (2003).
Polekhina, G. et al. AMPK β-subunit targets metabolic stress-sensing to glycogen. Curr. Biol. 13, 867–871 (2003).
Bateman, A. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem. Sci. 22, 12–13 (1997).
Kemp, B. E. Bateman domains and adenosine derivatives form a binding contract. J. Clin. Invest. 113, 182–184 (2004).
Ignoul, S. & Eggermont, J. CBS domains: structure, function, and pathology in human proteins. Am. J. Physiol. Cell Physiol. 289, C1369–C1378 (2005).
Scott, J. W. et al. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 113, 274–284 (2004).
Xiao, B. et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496–500 (2007).
Amodeo, G. A., Rudolph, M. J. & Tong, L. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature 449, 492–495 (2007).
Townley, R. & Shapiro, L. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase. Science 315, 1726–1729 (2007).
Hardie, D. G., Carling, D. & Gamblin, S. J. AMP-activated protein kinase: also regulated by ADP? Trends Biochem. Sci. 36, 470–477 (2011).
Wilson, W. A., Hawley, S. A. & Hardie, D. G. The mechanism of glucose repression/derepression in yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 6, 1426–1434 (1996).
Mackintosh, R. W. et al. Evidence for a protein kinase cascade in higher plants. 3-hydroxy-3-methylglutaryl-CoA reductase kinase. Eur. J. Biochem. 209, 923–931 (1992).
Jin, X., Townley, R. & Shapiro, L. Structural insight into AMPK regulation: ADP comes into play. Structure 15, 1285–1295 (2007).
Mayer, F. V. et al. ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metab. 14, 707–714 (2011).
Chandrashekarappa, D. G., McCartney, R. R. & Schmidt, M. C. Subunit and domain requirements for adenylate-mediated protection of Snf1 kinase activation loop from dephosphorylation. J. Biol. Chem. 286, 44532–44541 (2011).
Sugden, C., Crawford, R. M., Halford, N. G. & Hardie, D. G. Regulation of spinach SNF1-related (SnRK1) kinases by protein kinases and phosphatases is associated with phosphorylation of the T loop and is regulated by 5′-AMP. Plant J. 19, 433–439 (1999).
Salt, I. P., Johnson, G., Ashcroft, S. J. H. & Hardie, D. G. AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic β cells, and may regulate insulin release. Biochem. J. 335, 533–539 (1998).
Marsin, A. S. et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol. 10, 1247–1255 (2000).
Corton, J. M., Gillespie, J. G. & Hardie, D. G. Role of the AMP-activated protein kinase in the cellular stress response. Curr. Biol. 4, 315–324 (1994).
Winder, W. W. & Hardie, D. G. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol. 270, E299–E304 (1996).
Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).
Fryer, L. G., Parbu-Patel, A. & Carling, D. The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct pathways. J. Biol. Chem. 277, 25226–25232 (2002).
Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).
Hwang, J. T. et al. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 338, 694–699 (2005).
Lim, H. W., Lim, H. Y. & Wong, K. P. Uncoupling of oxidative phosphorylation by curcumin: implication of its cellular mechanism of action. Biochem. Biophys. Res. Commun. 389, 187–192 (2009).
Lee, M. S., Kim, I. H., Kim, C. T. & Kim, Y. Reduction of body weight by dietary garlic is associated with an increase in Uncoupling Protein mRNA expression and activation of AMP-activated protein kinase in diet-induced obese mice. J. Nutr. 141, 1947–1953 (2011).
Lee, Y. S. et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55, 2256–2264 (2006).
Lin, Y. C. et al. Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). J. Agric. Food Chem. 58, 9511–9517 (2010).
Ouyang, J., Parakhia, R. A. & Ochs, R. S. Metformin activates AMP kinase through inhibition of AMP deaminase. J. Biol. Chem. 286, 1–11 (2011).
Greer, E. L. & Brunet, A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8, 113–127 (2009).
Onken, B. & Driscoll, M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLoS ONE 5, e8758 (2010).
Greer, E. L. et al. An AMPK–FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol. 17, 1646–1656 (2007).
Greer, E. L. et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 282, 30107–30119 (2007).
Hawley, S. A. et al. Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 11, 554–565 (2010). The authors used cells expressing an AMP- and ADP-resistant AMPK mutant to show that many AMPK activators (including metformin, resveratrol and berberine), although not all, act by inhibiting mitochondrial function and thus increasing AMP and/or ADP levels.
Romero-Perez, A. I., Lamuela-Raventos, R. M., Andres-Lacueva, C. & de La Torre-Boronat, M. C. Method for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Effect of powdery mildew on the stilbene content. J. Agric. Food Chem. 49, 210–215 (2001).
Zmijewski, J. W. et al. Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J. Biol. Chem. 285, 33154–33164 (2010). This study provides evidence that ROS may directly activate AMPK by modifying or crosslinking two conserved Cys residues within the auto-inhibitory domain.
Alexander, A. et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl Acad. Sci. USA 107, 4153–4158 (2010).
Ditch, S. & Paull, T. T. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem. Sci. 37, 15–22 (2011).
Sapkota, G. P. et al. Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366. Biochem. J. 368, 507–516 (2002).
Fu, X., Wan, S., Lyu, Y. L., Liu, L. F. & Qi, H. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS ONE 3, e2009 (2008).
Ji, C. et al. Exogenous cell-permeable C6 ceramide sensitizes multiple cancer cell lines to doxorubicin-induced apoptosis by promoting AMPK activation and mTORC1 inhibition. Oncogene 29, 6557–6568 (2010).
Sanli, T. et al. Ionizing radiation activates AMP-activated kinase (AMPK): a target for radiosensitization of human cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 78, 221–229 (2010).
Zhou, K. et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nature Genet. 43, 117–120 (2011).
Dale, S., Wilson, W. A., Edelman, A. M. & Hardie, D. G. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett. 361, 191–195 (1995).
Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).
Scott, J. W., Norman, D. G., Hawley, S. A., Kontogiannis, L. & Hardie, D. G. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J. Mol. Biol. 317, 309–323 (2002).
Sakamoto, K. & Holman, G. D. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol. Endocrinol. Metab. 295, E29–E37 (2008).
Geraghty, K. M. et al. Regulation of multisite phosphorylation and 14-3-3 binding of AS160 in response to IGF-1, EGF, PMA and AICAR. Biochem. J. 407, 231–241 (2007).
Treebak, J. T. et al. Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle. Diabetologia 52, 891–900 (2009).
Chen, S., Wasserman, D. H., MacKintosh, C. & Sakamoto, K. Mice with AS160/TBC1D4-Thr649Ala knockin mutation are glucose intolerant with reduced insulin sensitivity and altered GLUT4 trafficking. Cell Metab. 13, 68–79 (2011).
Chen, S. et al. Complementary regulation of TBC1D1 and AS160 by growth factors, insulin and AMPK activators. Biochem. J. 409, 449–459 (2008).
Pehmoller, C. et al. Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 297, E665–E675 (2009).
Jorgensen, S. B. et al. Knockout of the α2 but not α1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J. Biol. Chem. 279, 1070–1079 (2004).
O'Neill, H. M. et al. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc. Natl Acad. Sci. USA 108, 16092–16097 (2011). Mice with muscle-specific knockout of AMPKβ1 and AMPKβ2 display dramatically reduced running speed and endurance, blunted muscle glucose uptake in response to treadmill exercise and markedly impaired contraction-stimulated glucose uptake in isolated muscles.
Barnes, K. et al. Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J. Cell Sci. 115, 2433–2442 (2002).
Habets, D. D. et al. Crucial role for LKB1 to AMPKα2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes. Biochim. Biophys. Acta 1791, 212–219 (2009).
Marsin, A. S., Bouzin, C., Bertrand, L. & Hue, L. The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J. Biol. Chem. 277, 30778–30783 (2002).
Merrill, G. M., Kurth, E., Hardie, D. G. & Winder, W. W. AICAR decreases malonyl-CoA and increases fatty acid oxidation in skeletal muscle of the rat. Am. J. Physiol. 273, E1107–E1112 (1997).
Winder, W. W. et al. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J. Appl. Physiol. 88, 2219–2226 (2000).
Narkar, V. A. et al. AMPK and PPARδ agonists are exercise mimetics. Cell 134, 405–415 (2008).
Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005).
Jager, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007).
Canto, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213–219 (2010).
Behrends, C., Sowa, M. E., Gygi, S. P. & Harper, J. W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).
Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011). AMPK activation switches on autophagy, especially of mitochondria (mitophagy), and disruption of this pathway leads to the accumulation of dysfunctional mitochondria in cells.
Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biol. 13, 132–141 (2011).
Davies, S. P., Carling, D., Munday, M. R. & Hardie, D. G. Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets. Eur. J. Biochem. 203, 615–623 (1992).
Muoio, D. M., Seefeld, K., Witters, L. A. & Coleman, R. A. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem. J. 338, 783–791 (1999).
Clarke, P. R. & Hardie, D. G. Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J. 9, 2439–2446 (1990).
Jorgensen, S. B. et al. The α2-5′AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes 53, 3074–3081 (2004).
Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).
Hoppe, S. et al. AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply. Proc. Natl Acad. Sci. USA 106, 17781–17786 (2009).
Li, Y. et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376–388 (2011).
Koo, S. H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109–1114 (2005).
Mihaylova, M. M. et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607–621 (2011). Class IIa Lys deacetylases are physiological targets of AMPK, and deacetylation of FOXO family transcription factors by this mechanism contributes to inhibition of gluconeogenic gene expression by AMPK.
Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nature Neurosci. 14, 351–355 (2011).
Minokoshi, Y. et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–574 (2004).
Andersson, U. et al. AMP-activated protein kinase plays a role in the control of food intake. J. Biol. Chem. 279, 12005–12008 (2004).
Kola, B. et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J. Biol. Chem. 280, 25196–25201 (2005).
Kubota, N. et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 6, 55–68 (2007).
Claret, M. et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J. Clin. Invest. 117, 2325–2336 (2007).
Yang, Y., Atasoy, D., Su, H. H. & Sternson, S. M. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146, 992–1003 (2011). This study shows that ghrelin activates AMPK via a Ca2+-dependent mechanism in presynaptic neurons upstream of NPY/AgRP neurons in the hypothalamus, activating a positive feedback loop that causes continued neurotransmitter release and feeding until the action of leptin on POMC neurons causes the release of opioids that inhibit AMPK in the presynaptic neurons.
Andrews, Z. B. Central mechanisms involved in the orexigenic actions of ghrelin. Peptides 32, 2248–2255 (2011).
Anderson, K. A. et al. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 7, 377–388 (2008).
Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).
McCrimmon, R. J. et al. Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes 57, 444–450 (2008).
Lopez, M. et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Med. 16, 1001–1008 (2010).
Viollet, B. et al. The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. J. Clin. Invest. 111, 91–98 (2003).
Nader, N., Chrousos, G. P. & Kino, T. Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol. Metab. 21, 277–286 (2010).
Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437–440 (2009).
Imamura, K., Ogura, T., Kishimoto, A., Kaminishi, M. & Esumi, H. Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-β-d- ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem. Biophys. Res. Commun. 287, 562–567 (2001).
Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283–293 (2005).
Liang, J. et al. The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nature Cell Biol. 9, 218–224 (2007).
Banko, M. R. et al. Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins Involved in mitosis. Mol. Cell 45, 1–15 (2012). Description of a chemical genetic screen that identified many new targets for AMPK, some of which appear to be phosphorylated to allow completion of mitosis.
Vazquez-Martin, A., Oliveras-Ferraros, C. & Menendez, J. A. The active form of the metabolic sensor: AMP-activated protein kinase (AMPK) directly binds the mitotic apparatus and travels from centrosomes to the spindle midzone during mitosis and cytokinesis. Cell Cycle 8, 2385–2398 (2009).
Lee, J. H. et al. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447, 1017–1020 (2007).
Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).
Sengupta, B., Stemmler, M., Laughlin, S. B. & Niven, J. E. Action potential energy efficiency varies among neuron types in vertebrates and invertebrates. PLoS Comput. Biol. 6, e1000840 (2010).
Ikematsu, N. et al. Phosphorylation of the voltage-gated potassium channel Kv2.1 by AMP-activated protein kinase regulates membrane excitability. Proc. Natl Acad. Sci. USA 108, 18132–18137 (2011).
Misonou, H., Mohapatra, D. P. & Trimmer, J. S. Kv2.1: a voltage-gated K+ channel critical to dynamic control of neuronal excitability. Neurotoxicology 26, 743–752 (2005).
Acknowledgements
Studies described that were carried out in the authors' laboratory were supported by the Wellcome Trust.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Glossary
- Glycogen phosphorylase
-
The primary enzyme that mobilizes stores of glucose in glycogen, catalysing the release of glucose-1-phosphate from the non-reducing ends of glycogen by a phosphorolysis reaction.
- Phosphofructokinase
-
Enzyme that catalyses a key regulatory step in glycolysis: the transfer of phosphate from ATP to fructose-6-phosphate to generate fructose-1,6-bisphosphate.
- Fructose-1,6-bisphosphatase
-
Enzyme that catalyses a key regulatory step in gluconeogenesis (hydrolysis of fructose-1,6-bisphosphate to fructose-6-phosphate) in the liver and kidney.
- Membrane excitability
-
Some biological membranes, such as the plasma membranes of neurons, are excitable because they contain voltage-gated Na+ channels that open in response to depolarization, allowing Na+ ions to flood into the cell down their concentration gradient; this amplifies the depolarization and causes a wave of depolarization (an action potential) to travel along the membrane.
- Allosteric activation
-
The activation of an enzyme by non-covalent binding of a ligand (an allosteric activator) that binds at a site distinct from the catalytic site.
- Activation loop
-
A sequence segment in the C-terminal lobe of protein kinases that often plays a key part in switching the kinase on; in many cases, the kinase is only active after phosphorylation of this loop.
- LKB1–STRAD–MO25 complex
-
A heterotrimeric complex containing the tumour suppressor protein kinase LKB1 (liver kinase B1) and the accessory subunits STRAD (STE20-related kinase adapter protein) and MO25 (also known as calcium-binding protein 39). LKB1 was found to be the gene that is mutated in a form of inherited cancer susceptibility (Peutz–Jeghers syndrome) and is also lost owing to somatic mutation in many human cancers.
- N-terminal myristylation
-
The covalent attachment of 14 carbon saturated fatty acid (myristic acid), usually to the N terminus of a protein following cleavage of the initiating Met.
- CBS repeat
-
Sequence motif usually occurring as two tandem repeats that form a Bateman domain. They are named after cystathionine β-synthase, in which the Bateman domain binds S-adenosyl Met.
- Bateman domain
-
A domain formed by two tandem CBS repeats that associate together with central clefts that bind small molecules, especially adenosine derivatives.
- Glutathionylation
-
The covalent attachment of glutathione to a protein via the formation of a mixed disulphide between the Cys moiety of glutathione and a Cys side chain of the protein.
- Ataxia telangiectasia
-
An inherited human disorder of which the clinical signs include ataxia (uncoordinated movement) and telangiectasia (dilated blood vessels in the skin or mucous membranes). It is caused by mutation of the ataxia telangiectasia mutated (ATM) gene, which encodes a protein kinase of the phosphoinositide 3-kinase-like kinase (PIKK) family.
- RAB-GAPs
-
Proteins carrying a RAB-GTPase activator protein function — that is, the ability to promote conversion of small G proteins of the RAB family from their active RAB-GTP state to their inactive RAB-GDP state.
- Mitophagy
-
The special form of autophagy by which mitochondria (probably in a damaged or defective state) are engulfed by autophagosomes and degraded, and their contents recycled for re-use.
- Arcuate nucleus
-
An anatomical region of the hypothalamus at the base of the brain that appears to have a particular role in feeding and appetite.
- Ghrelin
-
A 28-amino-acid peptide that is released by cells of the stomach and represents a 'hunger signal'.
- Presynaptic neurons
-
Neurons acting immediately upstream of the neurons under study. Presynaptic neurons release neurotransmitters directly onto the neurons of interest.
- Miniature excitatory postsynaptic currents
-
Small depolarizing currents that can be measured by patch clamping of a neuron. The currents are generated by packets of neurotransmitters released from a presynaptic neuron upstream of the patch-clamped neuron. These currents can be observed by applying tetrodotoxin to inhibit the firing of action potentials in the neuron.
- Ryanodine receptors
-
Ca2+ release channels in the sarcoplasmic/endoplasmic reticulum of muscle cells and neurons. These receptors are activated by Ca2+ and blocked by the plant product ryanodine.
- Ventromedial hypothalamus
-
An anatomical region of the hypothalamus at the base of the brain that appears to have a role in glucose sensing and activation of the sympathetic nervous system.
- Circadian rhythms
-
Biological rhythms that follow the normal 24 hour cycle; although endogenously driven and thus continuing in the absence of external cues, they are often entrained or modified by external stimuli such as light or food availability.
- Suprachiasmatic nucleus
-
A hypothalamic bilateral structure that is the central pacemaker of circadian rhythms in mammals.
- Delayed rectifier potassium channels
-
A group of voltage-gated potassium channels that open and close slowly in response to membrane depolarization. By allowing potassium ions to flow out of cells down their concentration gradient and thus oppose subsequent depolarization, these channels regulate the frequency of action potentials.
Rights and permissions
About this article
Cite this article
Hardie, D., Ross, F. & Hawley, S. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13, 251–262 (2012). https://doi.org/10.1038/nrm3311
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrm3311
This article is cited by
-
Brain metabolism in Alzheimer’s disease: biological mechanisms of exercise
Translational Neurodegeneration (2023)
-
Liver saturated fat content associates with hepatic DNA methylation in obese individuals
Clinical Epigenetics (2023)
-
Integrated analysis of mRNAs and lncRNAs reveals candidate marker genes and potential hub lncRNAs associated with growth regulation of the Pacific Oyster, Crassostrea gigas
BMC Genomics (2023)
-
Anti-VEGF therapy selects for clones resistant to glucose starvation in ovarian cancer xenografts
Journal of Experimental & Clinical Cancer Research (2023)
-
The role of antifreeze genes in the tolerance of cold stress in the Nile tilapia (Oreochromis niloticus)
BMC Genomics (2023)