Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Septins: the fourth component of the cytoskeleton

Key Points

  • Septins belong to a family of GTP-binding proteins that is highly conserved in eukaryotes and is recognized as a novel component of the cytoskeleton. They assemble to form hetero-oligomeric complexes, filaments, bundles and rings.

  • How septins assemble for function, and how they interact and work in conjunction with actin, microtubules and phospholipids, is the focus of intense investigation.

  • Septins have recently been reported to act as scaffolds for protein recruitment at the plasma membrane and in the cytosol, and as diffusion barriers for subcellular compartmentalization at the bases of cilia, at the annuli of spermatozoa and at the bases of dendritic spines in neurons.

  • Studies of host–microorganism interactions have highlighted roles for septins in bacterial invasion and autophagy.

  • Septin biology will help to decipher the molecular mechanisms underlying human diseases in which septins have been implicated, such as cancer, neurological disorders and infections.


Septins belong to a family of proteins that is highly conserved in eukaryotes and is increasingly recognized as a novel component of the cytoskeleton. All septins are GTP-binding proteins that form hetero-oligomeric complexes and higher-order structures, including filaments and rings. Recent studies have provided structural information about the different levels of septin organization; however, the crucial structural determinants and factors responsible for septin assembly remain unclear. Investigations on the molecular functions of septins have highlighted their roles as scaffolds for protein recruitment and as diffusion barriers for subcellular compartmentalization in numerous biological processes, including cell division and host–microorganism interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Septin complex and filament assembly.
Figure 2: Septin cytoskeleton dynamics.
Figure 3: Septins in several biological processes.
Figure 4: Cytoskeleton rearrangements during bacterial infection.


  1. 1

    Hartwell, L. H. Genetic control of the cell division cycle in yeast: IV. Genes controlling bud emergence and cytokinesis. Exp. Cell Res. 69, 265–276 (1971).

    CAS  PubMed  Google Scholar 

  2. 2

    Byers, B. & Goetsch, L. A highly ordered ring of membrane-associated filaments in budding yeast. J. Cell Biol. 69, 717–721 (1976).

    CAS  PubMed  Google Scholar 

  3. 3

    Haarer, B. K. & Pringle, J. R. Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10nm filaments in the mother-bud neck. Mol. Cell. Biol. 7, 3678–3687 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Kim, H. B., Haarer, B. K. & Pringle, J. R. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC3 gene product and the timing of events at the budding site. J. Cell Biol. 112, 535–544 (1991).

    CAS  PubMed  Google Scholar 

  5. 5

    Cao, L. et al. Phylogenetic and evolutionary analysis of the septin protein family in metazoan. FEBS Lett. 581, 5526–5532 (2007).

    CAS  PubMed  Google Scholar 

  6. 6

    Pan, F., Malmberg, R. & Momany, M. Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evol. Biol. 7, 103 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Nishihama, R., Onishi, M. & Pringle, J. R. New insights into the phylogenetic distribution and evolutionary origins of the septins. Biol. Chem. 392, 681–687 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Sirajuddin, M. et al. Structural insight into filament formation by mammalian septins. Nature 449, 311–315 (2007).

    CAS  PubMed  Google Scholar 

  9. 9

    Russell, S. E. H. & Hall, P. A. Septin genomics: a road less travelled. Biol. Chem. 392, 763–767 (2011).

    CAS  PubMed  Google Scholar 

  10. 10

    Kinoshita, M. The septins. Genome Biol. 4, 236 (2003).

    PubMed  PubMed Central  Google Scholar 

  11. 11

    Weirich, C. S., Erzberger, J. P. & Barral, Y. The septin family of GTPases: architecture and dynamics. Nature Rev. Mol. Cell Biol. 9, 478–489 (2008).

    CAS  Google Scholar 

  12. 12

    Kinoshita, M. & Noda, M. Roles of septins in the mammalian cytokinesis machinery. Cell Struct. Funct. 26, 667–670 (2001).

    CAS  PubMed  Google Scholar 

  13. 13

    Joo, E., Tsang, C. W. & Trimble, W. S. Septins: traffic control at the cytokinesis intersection. Traffic 6, 626–634 (2005).

    CAS  PubMed  Google Scholar 

  14. 14

    Sellin, M. E., Holmfeldt, P., Stenmark, S. & Gullberg, M. Microtubules support a disc-like septin arrangement at the plasma membrane of mammalian cells. Mol. Biol. Cell 22, 4588–4601 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Mostowy, S. et al. A role for septins in the interaction between the Listeria monocytogenes invasion protein InlB and the Met receptor. Biophys. J. 100, 1949–1959 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Hagiwara, A. et al. Submembranous septins as relatively stable components of actin-based membrane skeleton. Cytoskeleton 68, 512–525 (2011).

    CAS  PubMed  Google Scholar 

  17. 17

    Kissel, H. et al. The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev. Cell 8, 353–364 (2005).

    CAS  PubMed  Google Scholar 

  18. 18

    Ihara, M. et al. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev. Cell 8, 343–352 (2005). References 17 and 18 report the generation of SEPT4-knockout mice and show the crucial role of septin diffusion barriers in mammalian spermatozoa.

    CAS  PubMed  Google Scholar 

  19. 19

    Hu, Q. et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329, 436–439 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Kim, S. K. et al. Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science 329, 1337–1340 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Chih, B. et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nature Cell Biol. 14, 61–72 (2011). References 19–21 are the first reports of septin diffusion barriers at the bases of mammalian and X. laevis cilia, suggesting that septin dysfunction may be a molecular determinant underlying human ciliopathies.

    PubMed  Google Scholar 

  22. 22

    Tada, T. et al. Role of septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Curr. Biol. 17, 1752–1758 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Xie, Y. et al. The GTP-binding protein septin 7 is critical for dendrite branching and dendritic-spine morphology. Curr. Biol. 17, 1746–1751 (2007).

    CAS  PubMed  Google Scholar 

  24. 24

    Mostowy, S. et al. Septins regulate bacterial entry into host cells. PLoS ONE 4, e4196 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Mostowy, S. et al. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 18, 433–444 (2010). Describes the discovery of a novel mechanism of host defence against intracytosolic bacteria, the septin cage, and provides the first link between septins and autophagy.

    Google Scholar 

  26. 26

    Leipe, D. D., Wolf, Y. I., Koonin, E. V. & Aravind, L. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317, 41–72 (2002).

    CAS  PubMed  Google Scholar 

  27. 27

    Sellin, M. E., Sandblad, L., Stenmark, S. & Gullberg, M. Deciphering the rules governing assembly order of mammalian septin complexes. Mol. Biol. Cell 22, 3152–3164 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Bertin, A. et al. Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proc. Natl Acad. Sci. USA 105, 8274–8279 (2008).

    CAS  PubMed  Google Scholar 

  29. 29

    Sirajuddin, M., Farkasovsky, M., Zent, E. & Wittinghofer, A. GTP-induced conformational changes in septins and implications for function. Proc. Natl Acad. Sci. USA 106, 16592–16597 (2009).

    CAS  PubMed  Google Scholar 

  30. 30

    Zent, E., Vetter, I. & Wittinghofer, A. Structural and biochemical properties of Sept7, a unique septin required for filament formation. Biol. Chem. 392, 791–797 (2011).

    CAS  PubMed  Google Scholar 

  31. 31

    John, C. M. et al. The Caenorhabditis elegans septin complex is nonpolar. EMBO J. 26, 3296–3307 (2007). References 8, 28 and 31 are the first reports on the crystal structures of human, C. elegans and yeast septin complexes. They illuminate how septins form hetero-oligomeric complexes and non-polar filaments.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Sandrock, K. et al. Characterization of human septin interactions. Biol. Chem. 392, 751–761 (2011).

    CAS  PubMed  Google Scholar 

  33. 33

    Kim, M. S., Froese, C. D., Estey, M. P. & Trimble, W. S. SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission. J. Cell Biol. 195, 815–826 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Bertin, A. et al. Three-dimensional ultrastructure of the septin filament network in Saccharomyces cerevisiae. Mol. Biol. Cell 7 Dec 2011 (doi:10.1091/mbc.E11-10-0850).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    McMurray, M. A. & Thorner, J. Septin stability and recycling during dynamic structural transitions in cell division and development. Curr. Biol. 18, 1203–1208 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    McMurray, M. A. et al. Septin filament formation is essential in budding yeast. Dev. Cell 20, 540–549 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Garcia, G. et al. Subunit-dependent modulation of septin assembly: budding yeast septin Shs1 promotes ring and gauze formation. J. Cell Biol. 195, 993–1004 (2011). Reports the phosphorylation of different septin amino acid residues and the striking impact that these have on the higher-order structure of yeast septins.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Mendoza, M., Hyman, A. A. & Glotzer, M. GTP binding induces filament assembly of a recombinant septin. Curr. Biol. 12, 1858–1863 (2002).

    CAS  PubMed  Google Scholar 

  39. 39

    Vrabioiu, A. M., Gerber, S. A., Gygi, S. P., Field, C. M. & Mitchison, T. J. The majority of the Saccharomyces cerevisiae septin complexes do not exchange guanine nucleotides. J. Biol. Chem. 279, 3111–3118 (2004).

    CAS  PubMed  Google Scholar 

  40. 40

    Mitchison, T. J. & Field, C. M. Cytoskeleton: what does GTP do for septins? Curr. Biol. 12, R788–R790 (2002).

    CAS  PubMed  Google Scholar 

  41. 41

    Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    CAS  PubMed  Google Scholar 

  42. 42

    Wittinghofer, A. & Vetter, I. R. Structure–function relationships of the G domain, a canonical switch motif. Annu. Rev. Biochem. 80, 943–971 (2011).

    CAS  PubMed  Google Scholar 

  43. 43

    Hu, Q., Nelson, W. J. & Spiliotis, E. T. Forchlorfenuron alters mammalian septin assembly, organization, and dynamics. J. Biol. Chem. 283, 29563–29571 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    DeMay, B. S. et al. Septin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals. J. Cell Biol. 193, 1065–1081 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Bertin, A. et al. Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization. J. Mol. Biol. 404, 711–731 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    de Almeida Marques, I. et al. Septin C-terminal domain interactions: implications for filament stability and assembly. Cell Biochem. Biophys. 15 Oct 2011 (doi:10.1007/s12013-011-9307-0).

    Google Scholar 

  47. 47

    Kinoshita, M. Diversity of septin scaffolds. Curr. Opin. Cell Biol. 18, 54–60 (2006).

    CAS  PubMed  Google Scholar 

  48. 48

    Joberty, G. et al. Borg proteins control septin organization and are negatively regulated by Cdc42. Nature Cell Biol. 3, 861–866 (2001).

    CAS  PubMed  Google Scholar 

  49. 49

    Kinoshita, M., Field, C. M., Coughlin, M. L., Straight, A. F. & Mitchison, T. J. Self- and actin-templated assembly of mammalian septins. Dev. Cell 3, 791–802 (2002). Shows how septin–actin interactions can influence septin assembly into filaments and rings.

    CAS  PubMed  Google Scholar 

  50. 50

    Joo, E., Surka, M. C. & Trimble, W. S. Mammalian SEPT2 is required for scaffolding nonmuscle myosin II and its kinases. Dev. Cell 13, 677–690 (2007).

    CAS  PubMed  Google Scholar 

  51. 51

    Surka, M. C., Tsang, C. W. & Trimble, W. S. The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol. Biol. Cell 13, 3532–3545 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Nagata, K. et al. Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J. Biol. Chem. 278, 18538–18543 (2003).

    CAS  PubMed  Google Scholar 

  53. 53

    Bowen, J. R., Hwang, D., Bai, X., Roy, D. & Spiliotis, E. T. Septin GTPases spatially guide microtubule organization and plus end dynamics in polarizing epithelia. J. Cell Biol. 194, 187–197 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Kremer, B. E., Haystead, T. & Macara, I. G. Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAP4. Mol. Biol. Cell 16, 4648–4659 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Spiliotis, E. T., Hunt, S. J., Hu, Q., Kinoshita, M. & Nelson, W. J. Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules. J. Cell Biol. 180, 295–303 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Tanaka-Takiguchi, Y., Kinoshita, M. & Takiguchi, K. Septin-mediated uniform bracing of phospholipid membranes. Curr. Biol. 19, 140–145 (2009). Makes an important step in understanding the mechanisms underlying septin assembly, highlighting interdependence between septin assembly and membrane curvature.

    CAS  PubMed  Google Scholar 

  57. 57

    Oegema, K., Savoian, M. S., Mitchison, T. J. & Field, C. M. Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J. Cell Biol. 150, 539–552 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Saarikangas, J. & Barral, Y. The emerging functions of septins in metazoans. EMBO Rep. 12, 1118–1126 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Tooley, A. J. et al. Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nature Cell Biol. 11, 17–26 (2009).

    CAS  PubMed  Google Scholar 

  60. 60

    Gilden, J., Peck, S., Chen, Y. C. & Krummel, M. F. The septin cytoskeleton facilitates membrane retraction during motility and blebbing. J. Cell Biol. 196, 103–114 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Spiliotis, E. T. & Nelson, W. J. in The Septins (eds Hall, P. A., Russell, S. E. H. & Pringle, J. R.) 229–246 (Wiley-Blackwell, 2008).

    Google Scholar 

  62. 62

    Huang, Y. W. et al. Mammalian septins are required for phagosome formation. Mol. Biol. Cell 19, 1717–1726 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Dobbelaere, J., Gentry, M. S., Hallberg, R. L. & Barral, Y. Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev. Cell 4, 345–357 (2003).

    CAS  PubMed  Google Scholar 

  64. 64

    Barral, Y., Parra, M., Bidlingmaier, S. & Snyder, M. Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. Genes Dev. 13, 176–187 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Mortensen, E. M., McDonald, H., Yates, J. & Kellogg, D. R. Cell cycle-dependent assembly of a Gin4-septin complex. Mol. Biol. Cell 13, 2091–2105 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Versele, M. & Thorner, J. Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4. J. Cell Biol. 164, 701–715 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Johnson, E. S. & Blobel, G. Cell cycle regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol. 147, 981–994 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Johnson, E. S. & Gupta, A. A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735–744 (2001).

    CAS  Google Scholar 

  69. 69

    Zhang, Y. et al. Parkin functions as an E2-dependent ubiquitin protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl Acad. Sci. USA 97, 13354–13359 (2000).

    CAS  Google Scholar 

  70. 70

    Nakahira, M. et al. A draft of the human septin interactome. PLoS ONE 5, e13799 (2011).

    Google Scholar 

  71. 71

    Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nature Rev. Mol. Cell Biol. 12, 9–14 (2011).

    CAS  Google Scholar 

  73. 73

    Vrabioiu, A. M. & Mitchison, T. J. Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature 443, 466–469 (2006).

    CAS  PubMed  Google Scholar 

  74. 74

    Gladfelter, A. S., Pringle, J. R. & Lew, D. J. The septin cortex at the yeast mother-bud neck. Curr. Opin. Microbiol. 4, 681–689 (2001).

    CAS  PubMed  Google Scholar 

  75. 75

    McMurray, M. & Thorner, J. Septins: molecular partitioning and the generation of cellular asymmetry. Cell Div. 4, 18 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. 76

    Versele, M. & Thorner, J. Some assembly required: yeast septins provide the instruction manual. Trends Cell Biol. 15, 414–424 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Mostowy, S. et al. Septin 11 restricts InlB-mediated invasion by Listeria. J. Biol. Chem. 284, 11613–11621 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Mostowy, S. & Cossart, P. Cytoskeleton rearrangements during Listeria infection: clathrin and septins as new players in the game. Cell. Motil. Cytoskel. 66, 816–823 (2009).

    CAS  Google Scholar 

  79. 79

    Kinoshita, N. et al. Mammalian septin Sept2 modulates the activity of GLAST, a glutamate transporter in astrocytes. Genes Cells 9, 1–14 (2004).

    CAS  PubMed  Google Scholar 

  80. 80

    Kremer, B. E., Adang, L. A. & Macara, I. G. Septins regulate actin organization and cell-cycle arrest through nuclear accumulation of NCK mediated by SOCS7. Cell 130, 837–850 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Billadeau, D. D., Nolz, J. C. & Gomez, T. S. Regulation of T-cell activation by the cytoskeleton. Nature Rev. Immunol. 7, 131–143 (2007).

    CAS  Google Scholar 

  82. 82

    Peterson, E. A. & Petty, E. M. Conquering the complex world of human septins: implications for health and disease. Clin. Gen. 77, 511–524 (2010).

    CAS  Google Scholar 

  83. 83

    Connolly, D., Abdesselam, I., Verdier-Pinard, P. & Montagna, C. Septin roles in tumorigenesis. Biol. Chem. 392, 725–738 (2011).

    CAS  PubMed  Google Scholar 

  84. 84

    Estey, M. P., Di Ciano-Oliveira, C., Froese, C. D., Bejide, M. T. & Trimble, W. S. Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission. J. Cell Biol. 191, 741–749 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Beites, C. L., Xie, H., Bowser, R. & Trimble, W. S. The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nature Neurosci. 2, 434–439 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Beites, C. L., Campbell, K. A. & Trimble, W. S. The septin Sept5/CDCrel-1 competes with α-SNAP for binding to the SNARE complex. Biochem. J. 385, 347–353 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Amin, N. D. et al. Cyclin-dependent kinase 5 phosphorylation of human septin SEPT5 (hCDCrel-1) modulates exocytosis. J. Neurosci. 28, 3631–3643 (2008).

    CAS  PubMed  Google Scholar 

  88. 88

    Hsu, S. C. et al. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20, 1111–1122 (1998).

    CAS  PubMed  Google Scholar 

  89. 89

    Vega, I. E. & Hsu, S. C. The septin protein Nedd5 associates with both the exocyst complex and microtubules and disruption of its GTPase activity promotes aberrant neurite sprouting in PC12 cells. Neuroreport 14, 31–37 (2003).

    CAS  PubMed  Google Scholar 

  90. 90

    Spiliotis, E. T., Kinoshita, M. & Nelson, W. J. A mitotic septin scaffold required for mammalian chromosome congression and segregation. Science 307, 1781–1785 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Zhu, M. et al. Septin 7 interacts with centromere-associated protein E and is required for its kinetochore localization. J. Biol. Chem. 283, 18916–18925 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Caudron, F. & Barral, Y. Septins and the lateral compartmentalization of eukaryotic membranes. Dev. Cell 16, 493–506 (2009). Summarizes and forecasts the role of septin diffusion barriers.

    CAS  PubMed  Google Scholar 

  93. 93

    Barral, Y., Mermall, V., Mooseker, M. S. & Snyder, M. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol. Cell 5, 841–851 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Takizawa, P. A., DeRisi, J. L., Wilhelm, J. E. & Vale, R. D. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290, 341–344 (2000).

    CAS  PubMed  Google Scholar 

  95. 95

    Shcheprova, Z., Baldi, S., Frei, S. B., Gonnet, G. & Barral, Y. A mechanism for asymmetric segregation of age during yeast budding. Nature 454, 728–734 (2008).

    CAS  Google Scholar 

  96. 96

    Luedeke, C. et al. Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth. J. Cell Biol. 169, 897–908 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Wloka, C. et al. Evidence that a septin diffusion barrier is dispensable for cytokinesis in budding yeast. Biol. Chem. 392, 813–829 (2011).

    CAS  PubMed  Google Scholar 

  98. 98

    De Vos, K. J., Allan, V. J., Grierson, A. J. & Sheetz, M. P. Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr. Biol. 15, 678–683 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Singla, V. & Reiter, J. F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629–633 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004).

    CAS  PubMed  Google Scholar 

  101. 101

    Gouin, E., Welch, M. D. & Cossart, P. Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol. 8, 35–45 (2005).

    CAS  PubMed  Google Scholar 

  102. 102

    Haglund, C. M. & Welch, M. D. Pathogens and polymers: microbe–host interactions illuminate the cytoskeleton. J. Cell Biol. 195, 7–17 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    CAS  Google Scholar 

  104. 104

    Van Troys, M. et al. The actin propulsive machinery: the proteome of Listeria monocytogenes tails. Biochem. Biophys. Res. Commun. 375, 194–199 (2008).

    CAS  PubMed  Google Scholar 

  105. 105

    Marchiando, A. M., Graham, W. V. & Turner, J. R. Epithelial barriers in homeostasis and disease. Annu. Rev. Pathol. 5, 119–144 (2010).

    CAS  PubMed  Google Scholar 

  106. 106

    Mostowy, S. et al. p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J. Biol. Chem. 286, 26987–26995 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Kechad, A., Jananji, S., Ruella, Y. & Hickson, G. R. X. Anillin acts as a bifunctional linker coordinating midbody ring biogenesis during cytokinesis. Curr. Biol. 5 Jan 2012 (doi:10.1016/j.cub.2011.11.062).

    CAS  PubMed  Google Scholar 

  108. 108

    Hickson, G. R. X. & O'Farrell, P. H. Rho-dependent control of anillin behavior during cytokinesis. J. Cell Biol. 180, 285–294 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science 307, 727–731 (2005).

    CAS  Google Scholar 

  110. 110

    Yoshikawa, Y. et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nature Cell Biol. 11, 1233–1240 (2009).

    CAS  PubMed  Google Scholar 

  111. 111

    Ribet, D. & Cossart, P. Pathogen-mediated posttranslational modifications: a re-emerging field. Cell 143, 694–702 (2010).

    CAS  PubMed  Google Scholar 

  112. 112

    Tooze, S. A. & Yoshimori, T. The origin of the autophagosomal membrane. Nature Cell Biol. 12, 831–835 (2010).

    CAS  PubMed  Google Scholar 

  113. 113

    Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C. & Rubinsztein, D. C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biol. 12, 1021–1021 (2010).

    CAS  Google Scholar 

  114. 114

    Reggiori, F. & Tooze, S. A. The emERgence of autophagosomes. Dev. Cell 17, 747–748 (2009).

    CAS  PubMed  Google Scholar 

  115. 115

    Hailey, D. W. et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656–667 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Sal-Man, N., Biemans-Oldehinkel, E. & Finlay, B. B. Structural microengineers: pathogenic Escherichia coli redesigns the actin cytoskeleton in host cells. Structure 17, 15–19 (2009).

    CAS  PubMed  Google Scholar 

  117. 117

    Kumar, Y. & Valdivia, R. H. Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds. Cell Host Microbe 4, 159–169 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Cabeen, M. T. & Jacobs-Wagner, C. The bacterial cytoskeleton. Annu. Rev. Gen. 44, 365–392 (2010).

    CAS  Google Scholar 

  119. 119

    Nair, U. et al. SNARE proteins are required for macroautophagy. Cell 146, 290–302 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Moreau, K., Ravikumar, B., Renna, M., Puri, C. & Rubinsztein, D. C. Autophagosome precursor maturation requires homotypic fusion. Cell 146, 303–317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Lee, J. Y. et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29, 969–980 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of ATG proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132 (2011).

    CAS  PubMed  Google Scholar 

  123. 123

    Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Rev. Mol. Cell Biol. 10, 458–467 (2009).

    CAS  Google Scholar 

  124. 124

    Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    CAS  Google Scholar 

  126. 126

    Hall, P. A. & Finger, F. P. in The Septins (eds Hall, P. A., Russell, S. E. H. & Pringle, J. R.) 295–317 (Wiley-Blackwell, 2008).

    Google Scholar 

  127. 127

    Hall, P. A. & Russell, S. E. H. The pathobiology of the septin gene family. J. Pathol. 204, 489–505 (2004).

    CAS  PubMed  Google Scholar 

  128. 128

    Estey, M. P., Kim, M. S. & Trimble, W. S. Septins. Curr. Biol. 21, R384–R387 (2011).

    CAS  PubMed  Google Scholar 

  129. 129

    Lee, J. E. et al. CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium. Nature Genet. 15 Jan 2012 (doi: 10.1038/ng.1078)

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Rubinsztein, D. C., Shpilka, T. & Elazar, Z. Mechanisms of autophagosome biogenesis. Curr. Biol. 22 R29–R34 (2012).

    CAS  PubMed  Google Scholar 

Download references


Work in the Pascale Cossart laboratory is supported by the Institut Pasteur, INSERM, INRA, Fondation Louis-Jeantet and a European Research Council Advanced Grant Award (233348).

Author information



Corresponding authors

Correspondence to Serge Mostowy or Pascale Cossart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links


Pascale Cossart's homepage


See online article: S1 (table)



A RHO GTPase that regulates numerous cellular functions, including the cell cycle.

Actin-related protein 2/3 complex

(ARP2/3 complex). A multiprotein complex that consists of seven different proteins and initiates new actin filaments on pre-existing ones.


A post-translational modification involving the addition of small ubiquitin-like modifier (SUMO).


The attachment of ubiquitin to Lys residues of other molecules, often as a tag for their rapid cellular degradation.

E3 ubiquitin ligase

A type of protein that is classified according to the presence of difference motifs, such as HECT or RING domains, and is involved in the recognition and ubiquitylation of a targeted substrate for degradation.


The autophagic turnover of mitochondria.


A process in which cytosolic constituents are sequestered in a double-membraned vesicle and delivered to the lysosome for degradation.

Fluorescence recovery after photobleaching

(FRAP). A microscopy technique that is used to measure the movement (for example, diffusion rates) of fluorescently tagged molecules over time in vivo. Specific regions in a cell are irreversibly photobleached using a laser; fluorescence is restored by diffusion of fluorescently tagged unbleached molecules into the bleached area.


The formation of an outward bulge in the plasma membrane, caused by localized disruption of membrane–cytoskeleton interactions. Blebbing is important for several cellular processes, including cell motility.

Septin corset

Cortical septin filaments that are oriented perpendicular to the axis of travel. By providing rigidity to the plasma membrane, the septin corset may help cells to maintain direction during motility.


A eukaryotic protein complex that is implicated in exocytosis.

Mitochondrial fission

A highly regulated process that promotes fragmentation of the mitochondrial network.

Actin tails

Columns of clustered, branched actin fibres that propel pathogens through the cytosol of an infected cell.


A member of a large family of secreted proteins that interact with immune cells through specific receptors. Cytokine production results in the activation of an intracellular signalling cascade that regulates immune function and inflammation.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mostowy, S., Cossart, P. Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol 13, 183–194 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing