Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Imaging the coordination of multiple signalling activities in living cells

Abstract

Cellular signal transduction occurs in complex and redundant interaction networks, which are best understood by simultaneously monitoring the activation dynamics of multiple components. Recent advances in biosensor technology have made it possible to visualize and quantify the activation of multiple network nodes in the same living cell. The precision and scope of this approach has been greatly extended by novel computational approaches (referred to as computational multiplexing) that can reveal relationships between network nodes imaged in separate cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of experimental multiplexing.
Figure 2: Workflow of computational multiplexing.
Figure 3: Assessing the activity of RHO GTPases using computational multiplexing.
Figure 4: Determining the requirements for spatiotemporal sampling to allow computational multiplexing based on constitutive fluctuations.

Similar content being viewed by others

References

  1. Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    CAS  PubMed  Google Scholar 

  2. Barrios-Rodiles, M. et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307, 1621–1625 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Margolin, A. A. et al. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 (Suppl. 1), S7 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Colman-Lerner, A. et al. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699–706 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Cohen-Saidon, C., Cohen, A. A., Sigal, A., Liron, Y. & Alon, U. Dynamics and variability of ERK2 response to EGF in individual living cells. Mol. Cell 36, 885–893 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A. & Nolan, G. P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Salmon, W. C., Adams, M. C. & Waterman-Storer, C. M. Dual-wavelength fluorescent speckle microscopy reveals coupling of microtubule and actin movements in migrating cells. J. Cell Biol. 158, 31–37 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schaefer, A. W. et al. Coordination of actin filament and microtubule dynamics during neurite outgrowth. Dev. Cell 15, 146–162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu, K., Ji, L., Applegate, K. T., Danuser, G. & Waterman-Storer, C. M. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harbeck, M. C. et al. Simultaneous optical measurements of cytosolic Ca2+ and cAMP in single cells. Sci. STKE 2006, PL6 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wier, W. G., Rizzo, M. A., Raina, H. & Zacharia, J. A technique for simultaneous measurement of Ca2+, FRET fluorescence and force in intact mouse small arteries. J. Physiol. 586, 2437–2443 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tengholm, A., Teruel, M. N. & Meyer, T. Single cell imaging of PI3K activity and glucose transporter insertion into the plasma membrane by dual color evanescent wave microscopy. Sci. STKE 2003, PL4 (2003).

    PubMed  Google Scholar 

  15. Tanimura, A., Nezu, A., Morita, T., Turner, R. J. & Tojyo, Y. Fluorescent biosensor for quantitative real-time measurements of inositol 1,4,5-trisphosphate in single living cells. J. Biol. Chem. 279, 38095–38098 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Kitano, M., Nakaya, M., Nakamura, T., Nagata, S. & Matsuda, M. Imaging of Rab5 activity identifies essential regulators for phagosome maturation. Nature 453, 241–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. VanEngelenburg, S. B. & Palmer, A. E. Fluorescent biosensors of protein function. Curr. Opin. Chem. Biol. 12, 60–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Newman, R. H., Fosbrink, M. D. & Zhang, J. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem. Rev. 111, 3614–3666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoppe, A. D. & Swanson, J. A. Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol. Biol. Cell 15, 3509–3519 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Swanson, J. A. & Hoppe, A. D. The coordination of signaling during Fc receptor-mediated phagocytosis. J. Leukoc. Biol. 76, 1093–1103 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Vaughan, E. M., Miller, A. L., Yu, H. Y. & Bement, W. M. Control of local Rho GTPase crosstalk by Abr. Curr. Biol. 21, 270–277 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Machacek, M. et al. Coordination of Rho GTPase activities during cell protrusion. Nature 461, 99–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ji, L., Lim, J. & Danuser, G. Fluctuations of intracellular forces during cell protrusion. Nature Cell Biol. 10, 1393–1400 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Tsukada, Y. et al. Quantification of local morphodynamics and local GTPase activity by edge evolution tracking. PLoS Comput. Biol. 4, e1000223 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Matz, M. V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotech. 17, 969–973 (1999).

    Article  CAS  Google Scholar 

  26. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotech. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  27. Shaner, N. C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nature Methods 5, 545–551 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Piljic, A. & Schultz, C. Simultaneous recording of multiple cellular events by FRET. ACS Chem. Biol. 3, 156–160 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Ai, H. W., Hazelwood, K. L., Davidson, M. W. & Campbell, R. E. Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nature Methods 5, 401–403 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Niino, Y., Hotta, K. & Oka, K. Blue fluorescent cGMP sensor for multiparameter fluorescence imaging. PLoS ONE 5, e9164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Niino, Y., Hotta, K. & Oka, K. Simultaneous live cell imaging using dual FRET sensors with a single excitation light. PLoS ONE 4, e6036 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tomosugi, W. et al. An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nature Methods 6, 351–353 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Jares-Erijman, E. A. & Jovin, T. M. FRET imaging. Nature Biotech. 21, 1387–1395 (2003).

    Article  CAS  Google Scholar 

  34. Jares-Erijman, E. A. & Jovin, T. M. Imaging molecular interactions in living cells by FRET microscopy. Curr. Opin. Chem. Biol. 10, 409–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Wallrabe, H. & Periasamy, A. Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 16, 19–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Peyker, A., Rocks, O. & Bastiaens, P. I. Imaging activation of two Ras isoforms simultaneously in a single cell. Chembiochem 6, 78–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Murakoshi, H., Lee, S. J. & Yasuda, R. Highly sensitive and quantitative FRET–FLIM imaging in single dendritic spines using improved non-radiative YFP. Brain Cell Biol. 36, 31–42 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ganesan, S., Ameer-Beg, S. M., Ng, T. T., Vojnovic, B. & Wouters, F. S. A dark yellow fluorescent protein (YFP)-based resonance energy-accepting chromoprotein (REACh) for Förster resonance energy transfer with GFP. Proc. Natl Acad. Sci. USA 103, 4089–4094 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kwok, S. et al. Genetically encoded probe for fluorescence lifetime imaging of CaMKII activity. Biochem. Biophys. Res. Commun. 369, 519–525 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kremers, G. J., van Munster, E. B., Goedhart, J. & Gadella, T. W. Jr. Quantitative lifetime unmixing of multiexponentially decaying fluorophores using single-frequency fluorescence lifetime imaging microscopy. Biophys. J. 95, 378–389 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goedhart, J., Vermeer, J. E., Adjobo-Hermans, M. J., van Weeren, L. & Gadella, T. W. Jr. Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples. PLoS ONE 2, e1011 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shcherbo, D. et al. Practical and reliable FRET/FLIM pair of fluorescent proteins. BMC Biotechnol. 9, 24 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Padilla-Parra, S. et al. Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition. Biophys. J. 97, 2368–2376 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sapsford, K. E., Berti, L. & Medintz, I. L. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew. Chem. Int. Ed. Engl. 45, 4562–4589 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Pertz, O. & Hahn, K. M. Designing biosensors for Rho family proteins--deciphering the dynamics of Rho family GTPase activation in living cells. J. Cell Sci. 117, 1313–1318 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Hinner, M. J. & Johnsson, K. How to obtain labeled proteins and what to do with them. Curr. Opin. Biotechnol. 21, 766–776 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Hu, C.-D. & Kerppola, T. K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nature Biotech. 21, 539–545 (2003).

    Article  CAS  Google Scholar 

  48. Kodama, Y. & Wada, M. Simultaneous visualization of two protein complexes in a single plant cell using multicolor fluorescence complementation analysis. Plant Mol. Biol. 70, 211–217 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Vidi, P. A., Chemel, B. R., Hu, C. D. & Watts, V. J. Ligand-dependent oligomerization of dopamine D2 and adenosine A2A receptors in living neuronal cells. Mol. Pharmacol. 74, 544–551 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Grinberg, A. V., Hu, C. D. & Kerppola, T. K. Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells. Mol. Cell Biol. 24, 4294–4308 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Michnick, S. W., Ear, P. H., Manderson, E. N., Remy, I. & Stefan, E. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nature Rev. Drug Discov. 6, 569–582 (2007).

    Article  CAS  Google Scholar 

  52. Chu, J. et al. A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions. Biosens. Bioelectron. 25, 234–239 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Altman, D., Goswami, D., Hasson, T., Spudich, J. A. & Mayor, S. Precise positioning of myosin VI on endocytic vesicles in vivo. PLoS Biol. 5, e210 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Pertz, O., Hodgson, L., Klemke, R. L. & Hahn, K. M. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440, 1069–1072 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Nalbant, P., Hodgson, L., Kraynov, V., Toutchkine, A. & Hahn, K. M. Activation of endogenous Cdc42 visualized in living cells. Science 305, 1615–1619 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Kraynov, V. S. et al. Localized Rac activation dynamics visualized in living cells. Science 290, 333–337 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Berlin, J. R., Bassani, J. W. & Bers, D. M. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Biophys. J. 67, 1775–1787 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Helmchen, F., Imoto, K. & Sakmann, B. Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J. 70, 1069–1081 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mochizuki, N. et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Sawano, A., Takayama, S., Matsuda, M. & Miyawaki, A. Lateral propagation of EGF signaling after local stimulation is dependent on receptor density. Dev. Cell 3, 245–257 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Schultz, C., Schleifenbaum, A., Goedhart, J. & Gadella, T. W. Jr. Multiparameter imaging for the analysis of intracellular signaling. Chembiochem 6, 1323–1330 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Miyawaki, A. Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell 4, 295–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Bakal, C., Aach, J., Church, G. & Perrimon, N. Quantitative morphological signatures define local signaling networks regulating cell morphology. Science 316, 1753–1756 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Machacek, M. & Danuser, G. Morphodynamic profiling of protrusion phenotypes. Biophys. J. 90, 1439–1452 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Taylor, R. J. et al. Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform. Proc. Natl Acad. Sci. USA 106, 3758–3763 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kiosses, W. B., Shattil, S. J., Pampori, N. & Schwartz, M. A. Rac recruits high-affinity integrin αvβ3 to lamellipodia in endothelial cell migration. Nature Cell Biol. 3, 316–320 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, Y. et al. Visualizing the mechanical activation of Src. Nature 434, 1040–1045 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Levskaya, A., Weiner, O. D., Lim, W. A. & Voigt, C. A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tkachenko, E. et al. Protein kinase a governs a RhoA-RhoGDI-driven protrusion-retraction pacemaker in migrating cells. Nature Cell Biol. 13, 660–667 (2011).

    Article  PubMed  Google Scholar 

  73. Vilela, M. & Danuser, G. What's wrong with correlative experiments? Nature Cell Biol. 13, 1011 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Locasale, J. W. & Wolf-Yadlin, A. Maximum entropy reconstructions of dynamic signaling networks from quantitative proteomics data. PLoS ONE 4, e6522 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Perrin, B. E. et al. Gene networks inference using dynamic Bayesian networks. Bioinformatics 19 (Suppl. 2), ii138–ii148 (2003).

    PubMed  Google Scholar 

  76. Sachs, K. et al. Learning signaling network structures with sparsely distributed data. J. Comput. Biol. 16, 201–212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gulyani, A. et al. A biosensor generated via high-throughput screening quantifies cell edge Src dynamics. Nature Chem. Biol. 7, 437–444 (2011).

    Article  CAS  Google Scholar 

  78. Violin, J. D., Zhang, J., Tsien, R. Y. & Newton, A. C. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J. Cell Biol. 161, 899–909 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Takao, K. et al. Visualization of synaptic Ca2+/calmodulin-dependent protein kinase II activity in living neurons. J. Neurosci. 25, 3107–3112 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the US National Institutes of Health grants R01 GM90317 (to G.D. and K.H) and GM057464 (to K.H.) and the Cell Migration Consortium (U54 GM64346).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaudenz Danuser or Klaus M. Hahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

41580_2011_BFnrm3212_MOESM1_ESM.pdf

Supplementary information S1 (Figure) | Spectra of fluorophores used in ratiometric FRET multiplex experiments. (PDF 566 kb)

Supplementary information S2 (Table) | FRET-based multiplexing studies (PDF 218 kb)

Related links

Related links

FURTHER INFORMATION

Gaudenz Danuser's homepage

Klaus M. Hahn's homepage

Glossary

Fluorescence polarization anisotropy

A technique that measures the rotational diffusion of fluorophores by measuring the difference in the polarization of excitation and emission light. Changes in fluorescence polarization anisotropy indicate changes in the rotational diffusion of molecules that are induced by their interactions with other molecules.

Orthogonal wavelengths

Biosensor emission or excitation wavelengths that are sufficiently different to allow two fluorescent probes to be imaged separately in the same cell.

Pairwise cross-correlation analysis

A technique that uses a mathematical framework to define whether the variation of one time-resolved image activity is coupled or independent of the variation of another time-resolved image activity.

Quantum dots

Small semiconductor crystals that emit light of a longer wavelength on excitation with a shorter wavelength, akin to fluorophores.

Ratiometric imaging

An imaging technique in which biosensors are designed so that the ratio of emission or excitation at two different wavelengths reflects the biological activity being measured. This ratio is independent of the biosensor's fluorescence intensity, so eliminates the effects of cell thickness, uneven biosensor distribution, uneven illumination and other factors.

Spectral decomposition

A mathematical technique to separate the contribution of multiple fluorophore species to the image signal at a certain wavelength. This allows the separation of the signals of fluorophores with overlapping emission spectra.

Stokes shift

The difference between the excitation and emission wavelengths of a fluorescent probe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welch, C., Elliott, H., Danuser, G. et al. Imaging the coordination of multiple signalling activities in living cells. Nat Rev Mol Cell Biol 12, 749–756 (2011). https://doi.org/10.1038/nrm3212

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing