Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microtubule nucleation by γ-tubulin complexes

Key Points

  • The γ-tubulin small complex (γTuSC) alone can assemble into ring complexes with microtubule-like symmetry.

  • The structures of γ-tubulin complexes suggest that they serve as microtubule templates.

  • The γ-tubulin complex proteins (GCPs) are conserved in sequence, overall structure and their ability to bind γ-tubulin.

  • The conformation of the γTuSC may play a part in regulating its microtubule-nucleating activity.

  • A revised model of γ-tubulin ring complex (γTuRC) assembly, in which all of the GCPs are incorporated directly into the ring, has been proposed.

  • The attachment of the γTuRC to both centrosomal and non-centrosomal sites is linked to its activation.

Abstract

Microtubule nucleation is regulated by the γ-tubulin ring complex (γTuRC) and related γ-tubulin complexes, providing spatial and temporal control over the initiation of microtubule growth. Recent structural work has shed light on the mechanism of γTuRC-based microtubule nucleation, confirming the long-standing hypothesis that the γTuRC functions as a microtubule template. The first crystallographic analysis of a non-γ-tubulin γTuRC component (γ-tubulin complex protein 4 (GCP4)) has resulted in a new appreciation of the relationships among all γTuRC proteins, leading to a refined model of their organization and function. The structures have also suggested an unexpected mechanism for regulating γTuRC activity via conformational modulation of the complex component GCP3. New experiments on γTuRC localization extend these insights, suggesting a direct link between its attachment at specific cellular sites and its activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microtubule assembly.
Figure 2: The structure of γTuSC.
Figure 3: The GCP4 crystal structure defines the core structure of all of the GCPs.
Figure 4: A model for the conformational activation of the γTuSC.
Figure 5: A revised model of γTuRC assembly.
Figure 6: Modes of γTuSC- and γTuRC-specific attachment.

Similar content being viewed by others

References

  1. Nogales, E., Whittaker, M., Milligan, R. A. & Downing, K. H. High-resolution model of the microtubule. Cell 96, 79–88 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Chretien, D. & Wade, R. H. New data on the microtubule surface lattice. Biol. Cell 71, 161–174 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Sui, H. & Downing, K. H. Structural basis of interprotofilament interaction and lateral deformation of microtubules. Structure 18, 1022–1031 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ledbetter, M. C. & Porter, K. R. Morphology of microtubules of plant cell. Science 144, 872–874 (1964).

    Article  CAS  PubMed  Google Scholar 

  6. Tilney, L. G. et al. Microtubules: evidence for 13 protofilaments. J. Cell Biol. 59, 267–275 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Evans, L., Mitchison, T. & Kirschner, M. Influence of the centrosome on the structure of nucleated microtubules. J. Cell Biol. 100, 1185–1191 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Mandelkow, E. M., Schultheiss, R., Rapp, R., Muller, M. & Mandelkow, E. On the surface lattice of microtubules: helix starts, protofilament number, seam, and handedness. J. Cell Biol. 102, 1067–1073 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. McEwen, B. & Edelstein, S. J. Evidence for a mixed lattice in microtubules reassembled in vitro. J. Mol. Biol. 139, 123–145 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Rice, L. M., Montabana, E. A. & Agard, D. A. The lattice as allosteric effector: structural studies of αβ- and γ-tubulin clarify the role of GTP in microtubule assembly. Proc. Natl Acad. Sci. USA 105, 5378–5383 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wilson, E. B. The Cell in Development and Heredity (Macmillan, New York, 1928).

    Google Scholar 

  12. Azimzadeh, J. & Bornens, M. Structure and duplication of the centrosome. J. Cell Sci. 120, 2139–2142 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Jaspersen, S. L. & Winey, M. The budding yeast spindle pole body: structure, duplication, and function. Annu. Rev. Cell Dev. Biol. 20, 1–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Wasteneys, G. O. & Ambrose, J. C. Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol. 19, 62–71 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Oakley, C. E. & Oakley, B. R. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338, 662–664 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Oakley, B. R., Oakley, C. E., Yoon, Y. & Jung, M. K. γ-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61, 1289–1301 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Zheng, Y., Jung, M. K. & Oakley, B. R. γ-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell 65, 817–823 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Stearns, T., Evans, L. & Kirschner, M. γ-tubulin is a highly conserved component of the centrosome. Cell 65, 825–836 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Sobel, S. G. & Snyder, M. A highly divergent γ-tubulin gene is essential for cell growth and proper microtubule organization in Saccharomyces cerevisiae. J. Cell Biol. 131, 1775–1788 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Horio, T. et al. The fission yeast γ-tubulin is essential for mitosis and is localized at microtubule organizing centers. J. Cell Sci. 99, 693–700 (1991).

    CAS  PubMed  Google Scholar 

  21. Spang, A., Geissler, S., Grein, K. & Schiebel, E. γ-tubulin-like Tub4p of Saccharomyces cerevisiae is associated with the spindle pole body substructures that organize microtubules and is required for mitotic spindle formation. J. Cell Biol. 134, 429–441 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Raff, J. W., Kellogg, D. R. & Alberts, B. M. Drosophila γ-tubulin is part of a complex containing two previously identified centrosomal MAPs. J. Cell Biol. 121, 823–835 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Stearns, T. & Kirschner, M. In vitro reconstitution of centrosome assembly and function: the central role of γ-tubulin. Cell 76, 623–637 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378, 578–583 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Knop, M., Pereira, G., Geissler, S., Grein, K. & Schiebel, E. The spindle pole body component Spc97p interacts with the γ-tubulin of Saccharomyces cerevisiae and functions in microtubule organization and spindle pole body duplication. EMBO J. 16, 1550–1564 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Geissler, S. et al. The spindle pole body component Spc98p interacts with the γ-tubulin-like Tub4p of Saccharomyces cerevisiae at the sites of microtubule attachment. EMBO J. 15, 3899–3911 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mishra, R. K., Chakraborty, P., Arnaoutov, A., Fontoura, B. M. & Dasso, M. The Nup107–160 complex and γ-TuRC regulate microtubule polymerization at kinetochores. Nature Cell Biol. 12, 164–169.

  28. Murata, T. et al. Microtubule-dependent microtubule nucleation based on recruitment of γ-tubulin in higher plants. Nature Cell Biol. 7, 961–968 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Oegema, K. et al. Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 144, 721–733 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vinh, D. B., Kern, J. W., Hancock, W. O., Howard, J. & Davis, T. N. Reconstitution and characterization of budding yeast γ-tubulin complex. Mol. Biol. Cell 13, 1144–1157 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gunawardane, R. N. et al. Characterization and reconstitution of Drosophila γ-tubulin ring complex subunits. J. Cell Biol. 151, 1513–1524 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murphy, S. M. et al. GCP5 and GCP6: two new members of the human γ-tubulin complex. Mol. Biol. Cell 12, 3340–3352 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Murphy, S. M., Urbani, L. & Stearns, T. The mammalian γ-tubulin complex contains homologues of the yeast spindle pole body components Spc97p and Spc98p. J. Cell Biol. 141, 663–674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Teixido-Travesa, N. et al. The γTuRC revisited: a comparative analysis of interphase and mitotic human γTuRC redefines the set of core components and identifies the novel subunit GCP8. Mol. Biol. Cell 21, 3963–3972 (2010). Describes a new core γTuRC component, MOZART2 (referred to here as GCP8), and shows that it is necessary for interphase localization of the γTuRC to the centrosome but not for γTuRC assembly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hutchins, J. R. et al. Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328, 593–599 (2010). Identifies two new γTuRC components, MOZART1 and MOZART2, and shows that MOZART1 depletion results in abnormal spindles and reduced γ-tubulin recruitment to mitotic spindle poles. This suggests a role for MOZART1 in γTuRC localization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gunawardane, R. N., Martin, O. C. & Zheng, Y. Characterization of a new γTuRC subunit with WD repeats. Mol. Biol. Cell 14, 1017–1026 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luders, J., Patel, U. K. & Stearns, T. GCP-WD is a γ-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nature Cell Biol. 8, 137–147 (2006).

    Article  PubMed  Google Scholar 

  38. Haren, L. et al. NEDD1-dependent recruitment of the γ-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. J. Cell Biol. 172, 505–515 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Choi, Y. K., Liu, P., Sze, S. K., Dai, C. & Qi, R. Z. CDK5RAP2 stimulates microtubule nucleation by the γ-tubulin ring complex. J. Cell Biol. 191, 1089–1095 (2010). Shows that a class of γTuRC attachment factors, which includes CDK5RAP2, centrosomin, Mto1 and myomegalin, also stimulates γTuRC activity both in vivo and in vitro . Also demonstrates that a short sequence motif, γTuNA, directly binds the γTuSC and is sufficient to stimulate microtubule nucleation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moritz, M., Braunfeld, M. B., Guenebaut, V., Heuser, J. & Agard, D. A. Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nature Cell Biol. 2, 365–370 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Wiese, C. & Zheng, Y. A new function for the γ-tubulin ring complex as a microtubule minus-end cap. Nature Cell Biol. 2, 358–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Keating, T. J. & Borisy, G. G. Immunostructural evidence for the template mechanism of microtubule nucleation. Nature Cell Biol. 2, 352–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Byers, B., Shriver, K. & Goetsch, L. The role of spindle pole bodies and modified microtubule ends in the initiation of microtubule assembly in Saccharomyces cerevisiae. J. Cell Sci. 30, 331–352 (1978).

    CAS  PubMed  Google Scholar 

  44. Erickson, H. P. & Stoffler, D. Protofilaments and rings, two conformations of the tubulin family conserved from bacterial FtsZ to α/β and γtubulin. J. Cell Biol. 135, 5–8 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Erickson, H. P. γ-tubulin nucleation: template or protofilament? Nature Cell Biol. 2, E93–E96 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Aldaz, H., Rice, L. M., Stearns, T. & Agard, D. A. Insights into microtubule nucleation from the crystal structure of human γ-tubulin. Nature 435, 523–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Kollman, J. M. et al. The structure of the γ-tubulin small complex: implications of its architecture and flexibility for microtubule nucleation. Mol. Biol. Cell 19, 207–215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choy, R. M., Kollman, J. M., Zelter, A., Davis, T. N. & Agard, D. A. Localization and orientation of the γ-tubulin small complex components using protein tags as labels for single particle EM. J. Struct. Biol. 168, 571–574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kollman, J. M., Polka, J. K., Zelter, A., Davis, T. N. & Agard, D. A. Microtubule nucleating γ-TuSC assembles structures with 13-fold microtubule-like symmetry. Nature 466, 879–882 (2010). Demonstrates the ability of the γTuSC to spontaneously assemble into rings, and presents the structure of γTuSC rings, which have 13-fold symmetry but are in an 'off' state owing to the conformation of γTuSC components.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guillet, V. et al. Crystal structure of γ-tubulin complex protein GCP4 provides insight into microtubule nucleation. Nature Struct. Mol. Biol. 18, 915–919 (2011). Presents the first atomic structure of a GCP, GCP4, which is very similar to GCP2 and GCP3 in the γTuSC, providing the basis for a pseudo-atomic model of the γTuSC and a new model for γTuRC organization.

    Article  CAS  Google Scholar 

  51. Keck, J. M. et al. A cell cycle phosphoproteome of the yeast centrosome. Science 332, 1557–1561 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Vogel, J. et al. Phosphorylation of γ-tubulin regulates microtubule organization in budding yeast. Dev. Cell 1, 621–631 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Lin, T. C. et al. Phosphorylation of the yeast γ-tubulin Tub4 regulates microtubule function. PLoS ONE 6, e19700 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Robinson, R. C. et al. Crystal structure of Arp2/3 complex. Science 294, 1679–1684 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Volkmann, N. et al. Structure of Arp2/3 complex in its activated state and in actin filament branch junctions. Science 293, 2456–2459 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Rodal, A. A. et al. Conformational changes in the Arp2/3 complex leading to actin nucleation. Nature Struct. Mol. Biol. 12, 26–31 (2005).

    Article  CAS  Google Scholar 

  57. Verollet, C. et al. Drosophila melanogaster γ-TuRC is dispensable for targeting γ-tubulin to the centrosome and microtubule nucleation. J. Cell Biol. 172, 517–528 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vogt, N., Koch, I., Schwarz, H., Schnorrer, F. & Nusslein-Volhard, C. The γTuRC components Grip75 and Grip128 have an essential microtubule-anchoring function in the Drosophila germline. Development 133, 3963–3972 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Xiong, Y. & Oakley, B. R. In vivo analysis of the functions of γ-tubulin-complex proteins. J. Cell Sci. 122, 4218–4227 (2009). Demonstrates a hierarchical organization of γTuRC-specific GCPs in A. nidulans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, L., Keating, T. J., Wilde, A., Borisy, G. G. & Zheng, Y. The role of Xgrip210 in γ-tubulin ring complex assembly and centrosome recruitment. J. Cell Biol. 151, 1525–1536 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Izumi, N., Fumoto, K., Izumi, S. & Kikuchi, A. GSK-3β regulates proper mitotic spindle formation in cooperation with a component of the γ-tubulin ring complex, GCP5. J. Biol. Chem. 283, 12981–12991 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Anders, A., Lourenco, P. C. & Sawin, K. E. Noncore components of the fission yeast γ-tubulin complex. Mol. Biol. Cell 17, 5075–5093 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goshima, G. et al. Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316, 417–421 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moudjou, M., Bordes, N., Paintrand, M. & Bornens, M. γ-tubulin in mammalian cells: the centrosomal and the cytosolic forms. J. Cell Sci. 109, 875–887 (1996).

    CAS  PubMed  Google Scholar 

  65. Takahashi, M., Yamagiwa, A., Nishimura, T., Mukai, H. & Ono, Y. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex. Mol. Biol. Cell 13, 3235–3245 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zimmerman, W. C., Sillibourne, J., Rosa, J. & Doxsey, S. J. Mitosis-specific anchoring of γ tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell 15, 3642–3657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Delgehyr, N., Sillibourne, J. & Bornens, M. Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 118, 1565–1575 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Gomez-Ferreria, M. A. et al. Human Cep192 is required for mitotic centrosome and spindle assembly. Curr. Biol. 17, 1960–1966 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Zhu, F. et al. The mammalian SPD-2 ortholog Cep192 regulates centrosome biogenesis. Curr. Biol. 18, 136–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Moritz, M., Braunfeld, M. B., Sedat, J. W., Alberts, B. & Agard, D. A. Microtubule nucleation by γ-tubulin-containing rings in the centrosome. Nature 378, 638–640 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Goshima, G., Mayer, M., Zhang, N., Stuurman, N. & Vale, R. D. Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J. Cell Biol. 181, 421–429 (2008). Describes the augmin complex, showing that it is critical for γTuRC-specific localization within the mitotic spindle, which leads to amplification of microtubules within the spindle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lawo, S. et al. HAUS, the 8-subunit human augmin complex, regulates centrosome and spindle integrity. Curr. Biol. 19, 816–826 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Uehara, R. et al. The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells. Proc. Natl Acad. Sci. USA 106, 6998–7003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meireles, A. M., Fisher, K. H., Colombie, N., Wakefield, J. G. & Ohkura, H. Wac: a new Augmin subunit required for chromosome alignment but not for acentrosomal microtubule assembly in female meiosis. J. Cell Biol. 184, 777–784 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wainman, A. et al. A new augmin subunit, Msd1, demonstrates the importance of mitotic spindle-templated microtubule nucleation in the absence of functioning centrosomes. Genes Dev. 23, 1876–1881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bucciarelli, E. et al. Drosophila Dgt6 interacts with Ndc80, Msps/XMAP215, and γ-tubulin to promote kinetochore-driven MT formation. Curr. Biol. 19, 1839–1845 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Zhu, H., Coppinger, J. A., Jang, C. Y., Yates, J. R., 3rd & Fang, G. FAM29A promotes microtubule amplification via recruitment of the NEDD1–γ-tubulin complex to the mitotic spindle. J. Cell Biol. 183, 835–48 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nakamura, M., Ehrhardt, D. W. & Hashimoto, T. Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nature Cell Biol. 12, 1064–1070 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Sawin, K. E., Lourenco, P. C. & Snaith, H. A. Microtubule nucleation at non-spindle pole body microtubule-organizing centers requires fission yeast centrosomin-related protein Mod20p. Curr. Biol. 14, 763–775 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Terada, Y., Uetake, Y. & Kuriyama, R. Interaction of Aurora-A and centrosomin at the microtubule-nucleating site in Drosophila and mammalian cells. J. Cell Biol. 162, 757–763 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wiese, C. & Zheng, Y. Microtubule nucleation: γ-tubulin and beyond. J. Cell Sci. 119, 4143–4153 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Agard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Andreas Merdes's homepage

Lionel Mourey's homepage

David A. Agard's homepage

Glossary

Microtubule catastrophe

The rapid depolymerization of microtubules that occurs when GTP has been hydrolysed in all tubulin subunits up to the growing tip.

Microtubule-organizing centres

(MTOCs). Primary sites of microtubule nucleation in the cell, including centrosomes in animal cells and the spindle pole body in yeast.

Acentrosomal microtubule arrays

Ordered arrays of microtubules formed in the absence of a microtubule-organizing centre.

Chromosome-mediated nucleation

The pathway by which new microtubules are nucleated around chromosomes in response to a RAN gradient.

Deuterostome lineage

One of the two superphyla of more complex animals. It includes the echinoderms, chordates, hemichordates and xenoturbellida.

Single-particle electron microscopy

A method for combining two-dimensional images of molecules into a three-dimensional structure.

Normal mode analysis

A computational method for predicting the flexibility of a protein structure based on its shape.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kollman, J., Merdes, A., Mourey, L. et al. Microtubule nucleation by γ-tubulin complexes. Nat Rev Mol Cell Biol 12, 709–721 (2011). https://doi.org/10.1038/nrm3209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing