Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Discovering pluripotency: 30 years of mouse embryonic stem cells

Abstract

Embryonic stem (ES) cells are pluripotent cells isolated from an early embryo and grown as a cell line in tissue culture. Their discovery came from the conjunction of studies in human pathology, mouse genetics, early mouse embryo development, cell surface immunology and tissue culture. ES cells provided a crucial tool for manipulating mouse embryos to study mouse genetics, development and physiology. They have not only revolutionized experimental mammalian genetics but, with the advent of equivalent human ES cells, have now opened new vistas for regenerative medicine.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Similarity between the differentiation of the embryo inner cell mass and a cluster of EC cells.

References

  1. Stevens, L. C. The biology of teratomas. Adv. Morphog. 6, 1–31 (1967).

    Article  CAS  Google Scholar 

  2. Pierce, G. B. Teratocarcinoma: model for a developmental concept of cancer. Curr. Top. Dev. Biol. 2, 223–246 (1967).

    Article  CAS  Google Scholar 

  3. Stevens, L. C. & Little, C. C. Spontaneous testicular teratomas in an inbred strain of mice. Proc. Natl Acad. Sci. USA 40, 1080–1087 (1954).

    Article  CAS  Google Scholar 

  4. Kleinsmith, L. J. & Pierce, G. B. Jr. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 24, 1544–1551 (1964).

    CAS  PubMed  Google Scholar 

  5. Rosenthal, M. D., Wishnow, R. M. & Sato, G. H. In vitro growth and differetiation of clonal populations of multipotential mouse clls derived from a transplantable testicular teratocarcinoma. J. Natl Cancer Inst. 44, 1001–1014 (1970).

    CAS  PubMed  Google Scholar 

  6. Kahan, B. W. & Ephrussi, B. Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. J. Natl Cancer Inst. 44, 1015–1036 (1970).

    CAS  PubMed  Google Scholar 

  7. Evans, M. J. The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratocarcinoma cells. J. Embryol. Exp. Morphol. 28, 163–196 (1972).

    CAS  PubMed  Google Scholar 

  8. Martin, G. R. & Evans, M. J. The morphology and growth of a pluripotent teratocarcinoma cell line and its derivatives in tissue culture. Cell 2, 163–172 (1974).

    Article  CAS  Google Scholar 

  9. Martin, G. R. & Evans, M. J. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Natl Acad. Sci. USA 72, 1441–1445 (1975).

    Article  CAS  Google Scholar 

  10. Nicolas, J. F., Dubois, P., Jakob, H., Gaillard, J. & Jacob, F. [Mouse teratocarcinoma: differentiation in cultures of a multipotential primitive cell line (author's transl.)]. Ann. Microbiol. (Paris) 126, 3–22 (1975).

    CAS  Google Scholar 

  11. Martin, G. R. & Evans, M. J. Multiple differentiation of clonal teratoma stem cells following embryoid body formation in vitro. Cell 6, 467–474 (1975).

    Article  Google Scholar 

  12. Rossant, J. Investigation of the determinative state of the mouse inner cell mass. II. The fate of isolated inner cell masses transferred to the oviduct. J. Embryol. Exp. Morphol. 33, 991–1001 (1975).

    CAS  PubMed  Google Scholar 

  13. Evans, M. J. in Germ Cell Tumours (eds Anderson, C. J., Jones, W. G. & Milford-Ward, A.) (Taylor and Francis, London, 1981).

    Google Scholar 

  14. Gardner, R. L. Contributions of blastocyst micromanipulation to the study of mammalian development. Bioessays 20, 168–180 (1998).

    Article  CAS  Google Scholar 

  15. Brinster, R. L. The effect of cells transferred into the mouse blastocyst on subsequent development. J. Exp. Med. 140, 1049–1056 (1974).

    Article  CAS  Google Scholar 

  16. Papaioannou, V. E., McBurney, M. W., Gardner, R. L. & Evans, M. J. Fate of teratocarcinoma cells injected into early mouse embryos. Nature 258, 70–73 (1975).

    Article  CAS  Google Scholar 

  17. Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA 72, 3585–3589 (1975).

    Article  CAS  Google Scholar 

  18. Artzt, K. et al. Surface antigens common to mouse cleavage embryos and primitive teratocarcinoma cells in culture. Proc. Natl Acad. Sci. USA 70, 2988–2992 (1973).

    Article  CAS  Google Scholar 

  19. Solter, D. & Knowles, B. B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl Acad. Sci. USA 75, 5565–5569 (1978).

    Article  CAS  Google Scholar 

  20. Gooi, H. C. et al. Stage-specific embryonic antigen involves α 1 goes to 3 fucosylated type 2 blood group chains. Nature 292, 156–158 (1981).

    Article  CAS  Google Scholar 

  21. Childs, R. A. et al. High-molecular-weight glycoproteins are the major carriers of the carbohydrate differentiation antigens I, i and SSEA-1 of mouse teratocarcinoma cells. Biochem. J. 215, 491–503 (1983).

    Article  CAS  Google Scholar 

  22. Stern, P. L., Martin, G. R. & Evans, M. J. Cell surface antigens of clonal teratocarcinoma cells at various stages of differentiation. Cell 6, 455–465 (1975).

    Article  Google Scholar 

  23. Evans, M. J., Lovell-Badge, R. H., Stern, P. L. & Stinnakre, M. G. in INSERM Symposium 10 (ed. Douarin, N. L.) 115–129 (Elsevier, Amsterdam, 1979).

    Google Scholar 

  24. Jacob, F. Mouse teratocarcinoma and embryonic antigens. Immunol. Rev. 33, 3–32 (1977).

    Article  CAS  Google Scholar 

  25. Adamson, E. D., Evans, M. J. & Magrane, G. G. Biochemical markers of the progress of differentiation in cloned teratocarcinoma cell lines. Eur. J. Biochem. 79, 607–615 (1977).

    Article  CAS  Google Scholar 

  26. Stern, P. L. et al. Monoclonal antibodies as probes for differentiation and tumor-associated antigens: a Forssman specificity on teratocarcinoma stem cells. Cell 14, 775–783 (1978).

    Article  CAS  Google Scholar 

  27. Lovell-Badge, R. H. & Evans, M. J. Changes in protein synthesis during differentiation of embryonal carcinoma cells and a comparison with embryo cells. J. Embryol. Exp. Morph. 59, 187–206 (1980).

    CAS  PubMed  Google Scholar 

  28. Stinnakre, M. G., Evans, M. J., Willison, K. R. & Stern, P. L. Expression of Forssman antigen in the post-implantation mouse embryo. J. Embryol. Exp. Morphol. 61, 117–131 (1981).

    CAS  PubMed  Google Scholar 

  29. Kapadia, A., Feizi, T. & Evans, M. J. Changes in the expression and polarization of blood group I and i antigens in post-implantation embryos and teratocarcinomas of mouse associated with cell differentiation. Exp. Cell Res. 131, 185–195 (1981).

    Article  CAS  Google Scholar 

  30. Evans, M. J. Origin of mouse embryonal carcinoma cells and the possibility of their direct isolation into tissue culture. J. Reprod. Fertil. 62, 625–631 (1981).

    Article  CAS  Google Scholar 

  31. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  Google Scholar 

  32. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  Google Scholar 

  33. Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256 (1984).

    Article  CAS  Google Scholar 

  34. Kuehn, M. R., Bradley, A., Robertson, E. J. & Evans, M. J. A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326, 295–298 (1987).

    Article  CAS  Google Scholar 

  35. Robertson, E., Bradley, A., Kuehn, M. & Evans, M. Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323, 445–448 (1986).

    Article  CAS  Google Scholar 

  36. Evans, M. Embryonic stem cells: the mouse source—vehicle for mammalian genetics and beyond (Nobel lecture). Chembiochem 9, 1690–1696 (2008).

    Article  CAS  Google Scholar 

  37. Evans, M. J., Bradley, A., Kuehn, M. R. & Robertson, E. J. The ability of EK cells to form chimeras after selection of clones in G418 and some observations on the integration of retroviral vector proviral DNA into EK cells. Cold Spring Harb. Symp. Quant. Biol. 50, 685–689 (1985).

    Article  CAS  Google Scholar 

  38. Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295 (1987).

    Article  CAS  Google Scholar 

  39. Conlon, F. L., Barth, K. S. & Robertson, E. J. A novel retrovirally induced embryonic lethal mutation in the mouse: assessment of the developmental fate of embryonic stem cells homozygous for the 413.d proviral integration. Development 111, 969–981 (1991).

    CAS  PubMed  Google Scholar 

  40. Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L. & Kuehn, M. R. Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation. Nature 361, 543–547 (1993).

    Article  CAS  Google Scholar 

  41. Evans, M. J., Carlton, M. B. L. & Russ, A. P. Gene trapping and functional genomics. Trends Genet. 13, 370–374 (1997).

    Article  CAS  Google Scholar 

  42. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  Google Scholar 

  43. Smithies, O. Turning pages (Nobel lecture). Chembiochem 9, 1342–1359 (2008).

    Article  CAS  Google Scholar 

  44. Capecchi, M. R. The making of a scientist II (Nobel Lecture). Chembiochem 9, 1530–1543 (2008).

    Article  CAS  Google Scholar 

  45. Askew, G. R., Doetschman, T. & Lingrel, J. B. Site-directed point mutations in embryonic stem cells: a gene-targeting tag-and-exchange strategy. Mol. Cell. Biol. 13, 4115–4124 (1993).

    Article  CAS  Google Scholar 

  46. Clarke, A. R. Manipulating the germline: its impact on the study of carcinogenesis. Carcinogenesis 21, 435–441 (2000).

    Article  CAS  Google Scholar 

  47. Pierce, G. B. & Dixon, F. J. Jr. Testicular teratomas. II. Teratocarcinoma as an ascitic tumor. Cancer 12, 584–589 (1959).

    Article  CAS  Google Scholar 

  48. Pierce, G. B. Jr & Verney, E. L. An in vitro and in vivo study of differentiation in teratocarcinomas. Cancer 14, 1017–1029 (1961).

    Article  Google Scholar 

  49. Gardner, R. L. Mouse chimeras obtained by the injection of cells into the blastocyst. Nature 220, 596–597 (1968).

    Article  CAS  Google Scholar 

  50. Evans, M. J., Bradley, A., Kuehn, M. R. & Robertson, E. J. The ability of EK Cells to form chimeras after selection of clones in G418 and some observations on the integration of retroviral vector proviral DNA into EK cells. Cold Spring Harb. Symp. Quant. Biol. 50, 685–689 (1985).

    Article  CAS  Google Scholar 

  51. Lovell-Badge, R. H. et al. Transformation of embryonic stem cells with the human type-II collagen gene and its expression in chimeric mice. Cold Spring Harb. Symp. Quant. Biol. 50, 707–711 (1985).

    Article  CAS  Google Scholar 

  52. Doetschman, T. et al. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576–578 (1987).

    Article  CAS  Google Scholar 

  53. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank my wife Judith for a lifetime of support. I would also like to acknowledge all the colleagues and students who have worked with me over the years, many of whom have gone on to remarkable careers in science and medicine. Our progress was often slow and usually enjoyable, with many memorable moments enhanced by their support. I have been supported mainly by CRC, BBSRC, MRC, SRC and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Evans, M.

Discovering pluripotency: 30 years of mouse embryonic stem cells. Nature Reviews Molecular Cell Biology. 12, 680–686 (2011); doi:10.1038/nrm3190

Martin Evans is a director and major shareholder of Cell Therapy, a company working in the area of cellular therapeutics. Some of the company's areas of interest are outlined in Box 2 of the article, but this is a general statement of the present position and is not specific to, or influenced by, the company's interest.

Related links

Related links

FURTHER INFORMATION

Martin Evans's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, M. Discovering pluripotency: 30 years of mouse embryonic stem cells. Nat Rev Mol Cell Biol 12, 680–686 (2011). https://doi.org/10.1038/nrm3190

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3190

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer