Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Understanding morphogenetic growth control — lessons from flies

Key Points

  • Morphogens are secreted signalling molecules that control the patterning and growth of developing organs. How they regulate patterning is well described, but growth control is less well understood.

  • The study of the role of the morphogen Decapentaplegic (DPP) in imaginal disc growth will be useful for understanding other morphogenetic growth systems.

  • Four models have been proposed to explain growth control of the wing imaginal disc of Drosophila melanogaster by the morphogen DPP: a permissive growth model based on growth factors and mechanical stress; a permissive growth model centred on Brinker (BRK), the transcriptional repressor in the DPP pathway; an instructive growth model based on relative spatial differences in DPP levels between neighbouring cells; and an instructive growth model based on relative temporal changes in cellular DPP levels.

  • DPP signalling also interacts with the Fat–Hippo pathway, which regulates organ size, and this interaction may facilitate growth regulation.

Abstract

Morphogens are secreted signalling molecules that control the patterning and growth of developing organs. How morphogens regulate patterning is fairly well understood; however, how they control growth is less clear. Four principal models have been proposed to explain how the morphogenetic protein Decapentaplegic (DPP) controls the growth of the wing imaginal disc in the fly. Recent studies in this model system have provided a wealth of experimental data on growth and DPP gradient properties, as well as on the interactions of DPP with other signalling pathways. These findings have allowed a more precise formulation and evaluation of morphogenetic growth models. The insights into growth control by the DPP gradient will also be useful for understanding other morphogenetic growth systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Decapentaplegic gradient.
Figure 2: Decapentaplegic gradient properties during growth.
Figure 3: Possible mechanisms for morphogen gradient expansion and scaling.
Figure 4: Models for growth control by morphogen gradients.
Figure 5: The role of BRK in signal transduction and growth.
Figure 6: Interaction between Decapentaplegic and the Fat–Hippo pathway.

References

  1. Wolpert, L. Positional information and patterning revisited. J. Theor. Biol. 269, 359–365 (2011).

    Article  PubMed  Google Scholar 

  2. Lecuit, T. & Le Goff, L. Orchestrating size and shape during morphogenesis. Nature 450, 189–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Schwank, G. & Basler, K. Regulation of organ growth by morphogen gradients. Cold Spring Harb. Perspect. Biol. 2, a001669 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Affolter, M. & Basler, K. The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nature Rev. Genet. 8, 663–674 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Bollenbach, T. et al. Precision of the Dpp gradient. Development 135, 1137–1146 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Entchev, E. V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–991 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Teleman, A. A. & Cohen, S. M. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–980 (2000). References 6 and 7 show the distribution of the DPP ligand as a gradient by using DPP tagged to green fluorescent protein.

    Article  CAS  PubMed  Google Scholar 

  8. Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Lecuit, T. et al. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381, 387–393 (1996). References 8 and 9 reveal that DPP acts as a morphogen that directly activates target genes at different distances from the source of production in a DPP concentration-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  10. Kim, J., Johnson, K., Chen, H. J., Carroll, S. & Laughon, A. Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388, 304–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Ruberte, E., Marty, T., Nellen, D., Affolter, M. & Basler, K. An absolute requirement for both the type II and type I receptors, Punt and Thick veins, for Dpp signaling in vivo. Cell 80, 889–897 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Campbell, G. & Tomlinson, A. Transducing the Dpp morphogen gradient in the wing of Drosophila: regulation of Dpp targets by brinker. Cell 96, 553–562 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Jazwinska, A., Kirov, N., Wieschaus, E., Roth, S. & Rushlow, C. The Drosophila gene brinker reveals a novel mechanism of Dpp target gene regulation. Cell 96, 563–573 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Marty, T., Muller, B., Basler, K. & Affolter, M. Schnurri mediates Dpp-dependent repression of brinker transcription. Nature Cell Biol. 2, 745–749 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Minami, M., Kinoshita, N., Kamoshida, Y., Tanimoto, H. & Tabata, T. brinker is a target of Dpp in Drosophila that negatively regulates Dpp-dependent genes. Nature 398, 242–246 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Weiss, A. et al. A conserved activation element in BMP signaling during Drosophila development. Nature Struct. Mol. Biol. 17, 69–76 (2009).

    Article  CAS  Google Scholar 

  17. Garcia-Bellido, A. & Merriam, J. R. Parameters of the wing imaginal disc development of Drosophila melanogaster. Dev. Biol. 24, 61–87 (1971).

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez-Gaitan, M., Capdevila, M. P. & Garcia-Bellido, A. Cell proliferation patterns in the wing imaginal disc of Drosophila. Mech. Dev. 46, 183–200 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Martin-Castellanos, C. & Edgar, B. A. A characterization of the effects of Dpp signaling on cell growth and proliferation in the Drosophila wing. Development 129, 1003–1013 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Aegerter-Wilmsen, T., Aegerter, C. M., Hafen, E. & Basler, K. Model for the regulation of size in the wing imaginal disc of Drosophila. Mech. Dev. 124, 318–326 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Hufnagel, L., Teleman, A. A., Rouault, H., Cohen, S. M. & Shraiman, B. I. On the mechanism of wing size determination in fly development. Proc. Natl Acad. Sci. USA 104, 3835–3840 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shraiman, B. I. Mechanical feedback as a possible regulator of tissue growth. Proc. Natl Acad. Sci. USA 102, 3318–3323 (2005). References 20–22 are the first theoretical proposals of the role of mechanics on growth control in the imaginal discs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Day, S. J. & Lawrence, P. A. Measuring dimensions: the regulation of size and shape. Development 127, 2977–2987 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Wartlick, O. et al. Dynamics of Dpp signaling and proliferation control. Science 331, 1154–1159 (2011). Analyses quantitatively both the growth of imaginal discs and the properties of the DPP gradient, showing that the gradient scales owing to the regulation of the degradation rate of DPP and that cells divide when they increase their signalling levels by 50%.

    Article  CAS  PubMed  Google Scholar 

  25. Schwank, G., Restrepo, S. & Basler, K. Growth regulation by Dpp: an essential role for Brinker and a non-essential role for graded signaling levels. Development 135, 4003–4013 (2008). Questions whether the graded distribution of DPP is relevant to growth control, based on the assumption that brk mutants (or brk dpp double mutants) show uniform DPP signalling. The authors also propose that DPP controls growth permissively in the centre of the discs, whereas growth in the periphery is independent of the DPP gradient.

    Article  CAS  PubMed  Google Scholar 

  26. Tanimoto, H., Itoh, S., ten Dijke, P. & Tabata, T. Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol. Cell 5, 59–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Kicheva, A. et al. Kinetics of morphogen gradient formation. Science 315, 521–525 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Barkai, N. & Ben-Zvi, D. 'Big frog, small frog' — maintaining proportions in embryonic development: delivered on 2 July 2008 at the 33rd FEBS Congress in Athens, Greece. FEBS J. 276, 1196–1207 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Ben-Zvi, D., Shilo, B. Z., Fainsod, A. & Barkai, N. Scaling of the BMP activation gradient in Xenopus embryos. Nature 453, 1205–1211 (2008). The first theoretical analysis of a possible mechanism of gradient scaling.

    Article  CAS  PubMed  Google Scholar 

  30. Ben-Zvi, D. & Barkai, N. Scaling of morphogen gradients by an expansion-repression integral feedback control. Proc. Natl Acad. Sci. USA 107, 6924–6929 (2010). Proposes for the first time an expander mechanism based on expansion–repression feedback.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vuilleumier, R. et al. Control of Dpp morphogen signalling by a secreted feedback regulator. Nature Cell Biol. 12, 611–617 (2010). The first report of the effects of PENT on the DPP gradient. PENT displays properties akin to the expander by expansion–repression feedback, as proposed in reference 30.

    Article  CAS  PubMed  Google Scholar 

  32. Akiyama, T. et al. Dally regulates Dpp morphogen gradient formation by stabilizing Dpp on the cell surface. Dev. Biol. 313, 408–419 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Takeo, S., Akiyama, T., Firkus, C., Aigaki, T. & Nakato, H. Expression of a secreted form of Dally, a Drosophila glypican, induces overgrowth phenotype by affecting action range of Hedgehog. Dev. Biol. 284, 204–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Han, C., Yan, D., Belenkaya, T. Y. & Lin, X. Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc. Development 132, 667–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Fujise, M. et al. Dally regulates Dpp morphogen gradient formation in the Drosophila wing. Development 130, 1515–1522 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Bangi, E. & Wharton, K. Dpp and Gbb exhibit different effective ranges in the establishment of the BMP activity gradient critical for Drosophila wing patterning. Dev. Biol. 295, 178–193 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Ray, R. P. & Wharton, K. A. Context-dependent relationships between the BMPs gbb and dpp during development of the Drosophila wing imaginal disk. Development 128, 3913–3925 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Wharton, K. A. et al. Genetic analysis of the bone morphogenetic protein-related gene, gbb, identifies multiple requirements during Drosophila development. Genetics 152, 629–640 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khalsa, O., Yoon, J. W., Torres-Schumann, S. & Wharton, K. A. TGF-β/BMP superfamily members, Gbb-60A and Dpp, cooperate to provide pattern information and establish cell identity in the Drosophila wing. Development 125, 2723–2734 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Basan, M., Risler, T., Joanny, J. F., Sastre-Garau, X. & Prost, J. Homeostatic competition drives tumor growth and metastasis nucleation. HFSP J. 3, 265–272 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nienhaus, U., Aegerter-Wilmsen, T. & Aegerter, C. M. Determination of mechanical stress distribution in Drosophila wing discs using photoelasticity. Mech. Dev. 126, 942–949 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Schluck, T. & Aegerter, C. M. Photo-elastic properties of the wing imaginal disc of Drosophila. Eur. Phys. J. E Soft Matter 33, 111–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Bittig, T., Wartlick, O., Gonzalez-Gaitan, M. & Julicher, F. Quantification of growth asymmetries in developing epithelia. Eur. Phys. J. E Soft Matter 30, 93–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Couso, J. P., Bishop, S. A. & Martinez Arias, A. The wingless signalling pathway and the patterning of the wing margin in Drosophila. Development 120, 621–636 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Piddini, E. & Vincent, J. P. Interpretation of the wingless gradient requires signaling-induced self-inhibition. Cell 136, 296–307 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Schwank, G. et al. Antagonistic growth regulation by Dpp and Fat drives uniform cell proliferation. Dev. Cell 20, 123–130 (2011). Following along the lines of reference 25, this report proposes that, whereas in the centre of the imaginal disc growth control is mediated by permissive DPP, in the periphery growth is mediated by DPP-independent Fat signalling.

    Article  CAS  PubMed  Google Scholar 

  47. Serrano, N. & O'Farrell, P. H. Limb morphogenesis: connections between patterning and growth. Curr. Biol. 7, R186–R195 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rogulja, D., Rauskolb, C. & Irvine, K. D. Morphogen control of wing growth through the Fat signaling pathway. Dev. Cell 15, 309–321 (2008). Shows that cells can measure the differences in DPP signalling levels between adjacent cells, as monitored by the localization of Dachs at the interfaces between cells, where differences in DPP signalling are maximal. Also shows that Fat signalling is affected by DPP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bohn, H. Extent and properties of the regeneration field in the larval legs of cockroaches (Leucophaea maderae) III. Origin of the tissues and determination of symmetry properties in the regenerates. J. Embryol. Exp. Morphol. 32, 81–98 (1974).

    CAS  PubMed  Google Scholar 

  50. Rogulja, D. & Irvine, K. D. Regulation of cell proliferation by a morphogen gradient. Cell 123, 449–461 (2005). Proposal that growth is controlled by the differences in signalling between adjacent cells, based on an assay consisting of the activation of DPP in clones of cells.

    Article  CAS  PubMed  Google Scholar 

  51. Kruse, K., Pantazis, P., Bollenbach, T., Julicher, F. & Gonzalez-Gaitan, M. Dpp gradient formation by dynamin-dependent endocytosis: receptor trafficking and the diffusion model. Development 131, 4843–4856 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Bayly, R. & Axelrod, J. D. Pointing in the right direction: new developments in the field of planar cell polarity. Nature Rev. Genet. 12, 385–391 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Reddy, B. V. & Irvine, K. D. The Fat and Warts signaling pathways: new insights into their regulation, mechanism and conservation. Development 135, 2827–2838 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Ma, D., Yang, C. H., McNeill, H., Simon, M. A. & Axelrod, J. D. Fidelity in planar cell polarity signalling. Nature 421, 543–547 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Yang, C. H., Axelrod, J. D. & Simon, M. A. Regulation of Frizzled by Fat-like cadherins during planar polarity signaling in the Drosophila compound eye. Cell 108, 675–688 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Cho, E. & Irvine, K. D. Action of Fat, Four-jointed, Dachsous and Dachs in distal-to-proximal wing signaling. Development 131, 4489–4500 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Mao, Y. et al. Dachs: an unconventional myosin that functions downstream of Fat to regulate growth, affinity and gene expression in Drosophila. Development 133, 2539–2551 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Bennett, F. C. & Harvey, K. F. Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr. Biol. 16, 2101–2110 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Cho, E. et al. Delineation of a Fat tumor suppressor pathway. Nature Genet. 38, 1142–1150 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122, 421–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Neto-Silva, R. M., de Beco, S. & Johnston, L. A. Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Dev. Cell 19, 507–520 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nolo, R., Morrison, C. M., Tao, C., Zhang, X. & Halder, G. The bantam microRNA is a target of the Hippo tumor-suppressor pathway. Curr. Biol. 16, 1895–1904 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Silva, E., Tsatskis, Y., Gardano, L., Tapon, N. & McNeill, H. The tumor-suppressor gene fat controls tissue growth upstream of expanded in the Hippo signaling pathway. Curr. Biol. 16, 2081–2089 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Thompson, B. J. & Cohen, S. M. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126, 767–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Willecke, M. et al. The Fat cadherin acts through the Hippo tumor-suppressor pathway to regulate tissue size. Curr. Biol. 16, 2090–2100 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Oh, H. & Irvine, K. D. Cooperative regulation of growth by Yorkie and Mad through bantam. Dev. Cell 20, 109–122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grusche, F. A., Degoutin, J. L., Richardson, H. E. & Harvey, K. F. The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev. Biol. 350, 255–266 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Sun, G. & Irvine, K. D. Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Dev. Biol. 350, 139–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Moreno, E. & Basler, K. dMyc transforms cells into super-competitors. Cell 117, 117–129 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Moreno, E., Basler, K. & Morata, G. Cells compete for Decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature 416, 755–759 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (eds Etheridge, A. M. et al.) (Chapman & Hall/CRC Press, Taylor and Francis Group, London, 2007).

    Google Scholar 

  72. Shoval, O. et al. Fold-change detection and scalar symmetry of sensory input fields. Proc. Natl Acad. Sci. USA 107, 15995–16000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Friedrich, B. M. & Julicher, F. Chemotaxis of sperm cells. Proc. Natl Acad. Sci. USA 104, 13256–13261 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bargmann, C. I. Chemosensation in C. elegans. WormBook 25 Oct 2006 (doi:10.1895/wormbook.1.123.1).

    Google Scholar 

  76. Levchenko, A. & Iglesias, P. A. Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys. J. 82, 50–63 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Goentoro, L., Shoval, O., Kirschner, M. W. & Alon, U. The incoherent feedforward loop can provide fold-change detection in gene regulation. Mol. Cell 36, 894–899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell 138, 760–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hopyan, S., Sharpe, J. & Yang, Y. Budding behaviors: growth of the limb as a model of morphogenesis. Dev. Dyn. 240, 1054–1062 (2011).

    Article  PubMed  Google Scholar 

  80. Boehm, B. et al. The role of spatially controlled cell proliferation in limb bud morphogenesis. PLoS Biol. 8, e1000420 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Dobbing, J. & Sands, J. Quantitative growth and development of human brain. Arch. Dis. Child. 48, 757–767 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hornbruch, A. & Wolpert, L. Cell division in the early growth and morphogenesis of the chick limb. Nature 226, 764–766 (1970).

    Article  CAS  PubMed  Google Scholar 

  83. McClure, K. D. & Schubiger, G. Developmental analysis and squamous morphogenesis of the peripodial epithelium in Drosophila imaginal discs. Development 132, 5033–5042 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Widmann, T. J. & Dahmann, C. Dpp signaling promotes the cuboidal-to-columnar shape transition of Drosophila wing disc epithelia by regulating Rho1. J. Cell Sci. 122, 1362–1373 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Thompson, B. J. Developmental control of cell growth and division in Drosophila. Curr. Opin. Cell Biol. 22, 788–794 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Resino, J. & Garcia-Bellido, A. Drosophila genetic variants that change cell size and rate of proliferation affect cell communication and hence patterning. Mech. Dev. 121, 351–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Milan, M., Campuzano, S. & Garcia-Bellido, A. Developmental parameters of cell death in the wing disc of Drosophila. Proc. Natl Acad. Sci. USA 94, 5691–5696 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Genevet for comments on the manuscript. This work was supported by the Max-Planck-Gesellschaft, the Swiss National Science Foundation, grants from the Swiss SystemsX.ch initiative and LipidX-2008/011, and by an ERC advanced investigator grant to M.G.-G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Gonzalez-Gaitan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

41580_2011_BFnrm3169_MOESM1_ESM.pdf

Supplementary information S1 (table) | Useful parameters and equations to characterize growth and morphogen gradients. (PDF 343 kb)

Related links

Related links

FURTHER INFORMATION

Frank Jülicher's homepage

Marcos Gonzalez Gaitan's homepage

Glossary

Imaginal disc

A flat epithelial pouch in the larva that, during metamorphosis in the pupa, will give rise to an adult structure of the fly.

Amplitude

The maximum concentration of a protein in the target region. In the case of Decapentaplegic (DPP), amplitude refers to the concentration at the DPP source boundary. Its value depends on DPP production and degradation rates, as well as on the number of DPP-producing cells (the source width) and on the rate of diffusion.

Decay length

A measure for the spatial range of a protein gradient (how far it reaches into the tissue): the position at which the concentration of the protein is a fixed fraction of its amplitude (C0/e; in which e is Euler's number). Its value depends on how fast the molecules diffuse and are degraded (less degradation equals a higher decay length).

Gradient scaling

If the gradient expands at the same rate as the tissue, it scales with tissue size; the decay length of the gradient is proportional to the width of the tissue.

Anisotropic tissue growth

Directionally dependent growth of a tissue: more growth along one axis (for example, horizontal) than another (for example, vertical) in the plane of the epithelium.

Spatial derivative

The spatial difference in a quantity (for example, concentration) across one spatial unit (for example, a cell); the spatial derivative is denoted with a prime symbol, for example dC/dx = C′.

Time derivative

The rate of change of a quantity (for example, concentration) over time; the time derivative is denoted with a dot symbol, for example dC/dt = Ċ.

Planar cell polarity

A mechanism of cellular organization, distinct from apical–basal polarity, by which cells acquire information about their orientation within the tissue in the plane of the epithelium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wartlick, O., Mumcu, P., Jülicher, F. et al. Understanding morphogenetic growth control — lessons from flies. Nat Rev Mol Cell Biol 12, 594–604 (2011). https://doi.org/10.1038/nrm3169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing