Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular mechanism and physiological functions of clathrin-mediated endocytosis

Key Points

  • Clathrin-mediated endocytosis is a modular process, in which the different stages of cargo collection and vesicle formation are made up of protein modules. An understanding of these modules facilitates a molecular description of the pathway.

  • The distinct modular nature allows for some clathrin modules to be used in non-clathrin pathways or additional modules to be used in variations of the clathrin pathway. This sometimes makes for ambiguity in the definition of the fundamental nature of the pathway.

  • The modular nature allows for adaptability, as the cargo selection can be fine-tuned in various tissues, for example by the addition of cargo-specific adaptor proteins. The concentration of different cargoes in a single vesicle, by using a wide range of cargo-specific adaptor proteins, allows the building of a complex vesicle by this process. For example, a synaptic vesicle formed by clathrin-mediated endocytosis can have over 20 different cargoes in specific stoichiometries.

  • By controlling the specific turnover of proteins deposited in the plasma membrane, clathrin-mediated endocytosis plays a fundamental part in signalling, cell motility, cell–cell communication and cell fate, and can be 'hijacked' by many human pathogens.

  • Although mutations are found in the clathrin-mediated endocytosis pathway, they tend to concentrate on non-essential (non-hub) components, as loss of the function of key components is embryonic lethal.

Abstract

Clathrin-mediated endocytosis is the endocytic portal into cells through which cargo is packaged into vesicles with the aid of a clathrin coat. It is fundamental to neurotransmission, signal transduction and the regulation of many plasma membrane activities and is thus essential to higher eukaryotic life. Morphological stages of vesicle formation are mirrored by progression through various protein modules (complexes). The process involves the formation of a putative FCH domain only (FCHO) initiation complex, which matures through adaptor protein 2 (AP2)-dependent cargo selection, and subsequent coat building, dynamin-mediated scission and finally auxilin- and heat shock cognate 70 (HSC70)-dependent uncoating. Some modules can be used in other pathways, and additions or substitutions confer cell specificity and adaptability.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Clathrin-dependent and -independent internalization pathways.
Figure 2: The clathrin-coated vesicle cycle.
Figure 3: Species variations and physiological functions of clathrin-mediated endocytosis.

References

  1. Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009).

    CAS  PubMed  Google Scholar 

  2. Rosenbluth, J. & Wissig, S. L. The distribution of exogenous ferritin in toad spinal ganglia and the mechanism of its uptake by neurons. J. Cell Biol. 23, 307–325 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Roth, T. F. & Porter, K. R. Yolk protein uptake in the oocyte of the mosquito Aedes Aegypti. L. J. Cell Biol. 20, 313–332 (1964). One of the first papers reporting electron microscopy images of coated pits and vesicles.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pearse, B. M. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc. Natl Acad. Sci. USA 73, 1255–1259 (1976). This seminal paper describes the discovery that clathrin forms the coat of purified coated vesicles.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hopkins, C. R., Miller, K. & Beardmore, J. M. Receptor-mediated endocytosis of transferrin and epidermal growth factor receptors: a comparison of constitutive and ligand-induced uptake. J. Cell Sci. 3, 173–186 (1985).

    CAS  Google Scholar 

  6. Grant, B. D. & Donaldson, J. G. Pathways and mechanisms of endocytic recycling. Nature Rev. Mol. Cell Biol. 10, 597–608 (2009).

    CAS  Google Scholar 

  7. Ohno, H. et al. Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269, 1872–1875 (1995).

    CAS  PubMed  Google Scholar 

  8. Honing, S. et al. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell 18, 519–531 (2005).

    PubMed  Google Scholar 

  9. Stimpson, H. E., Toret, C. P., Cheng, A. T., Pauly, B. S. & Drubin, D. G. Early-arriving Syp1p and Ede1p function in endocytic site placement and formation in budding yeast. Mol. Biol. Cell 20, 4640–4651 (2009). Shows that suppressor of yeast profilin 1 (Syp1) and EH domain-containing and endocytosis 1 (Ede1), the yeast homologues of FCHO proteins and EPS15, respectively, are early components of endocytic actin patches and defines their sites of formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Henne, W. M. et al. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328, 1281–1284 (2010). Reports that FCHO proteins are central components of a module comprising EPS15 and intersectins, which is required for clathrin-coated pit nucleation.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Reider, A. et al. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation. EMBO J. 28, 3103–3116 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Blondeau, F. et al. Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc. Natl Acad. Sci. USA 101, 3833–3838 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Robinson, M. S. Adaptable adaptors for coated vesicles. Trends Cell Biol. 14, 167–174 (2004).

    CAS  PubMed  Google Scholar 

  14. Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R. & Owen, D. J. Molecular architecture and functional model of the endocytic AP2 complex. Cell 109, 523–535 (2002).

    CAS  PubMed  Google Scholar 

  15. Kelly, B. T. et al. A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature 456, 976–979 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Traub, L. M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nature Rev. Mol. Cell Biol. 10, 583–596 (2009).

    CAS  Google Scholar 

  17. Haucke, V. & De Camilli, P. AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs. Science 285, 1268–1271 (1999).

    CAS  PubMed  Google Scholar 

  18. Yu, A. et al. Association of dishevelled with the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling. Dev. Cell 12, 129–141 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pryor, P. R. et al. Molecular basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell 134, 817–827 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmid, E. M. et al. Role of the AP2 β-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLoS Biol. 4, e262 (2006).

    PubMed  PubMed Central  Google Scholar 

  21. Edeling, M. A. et al. Molecular switches involving the AP-2 β2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev. Cell 10, 329–342 (2006).

    CAS  PubMed  Google Scholar 

  22. Ford, M. G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055 (2001).

    CAS  PubMed  Google Scholar 

  23. Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    CAS  PubMed  Google Scholar 

  24. Chidambaram, S., Zimmermann, J. & von Mollard, G. F. ENTH domain proteins are cargo adaptors for multiple SNARE proteins at the TGN endosome. J. Cell Sci. 121, 329–338 (2008).

    CAS  PubMed  Google Scholar 

  25. Dittman, J. S. & Kaplan, J. M. Factors regulating the abundance and localization of synaptobrevin in the plasma membrane. Proc. Natl Acad. Sci. USA 103, 11399–11404 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Motley, A., Bright, N. A., Seaman, M. N. & Robinson, M. S. Clathrin-mediated endocytosis in AP-2-depleted cells. J. Cell Biol. 162, 909–918 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Boucrot, E., Saffarian, S., Zhang, R. & Kirchhausen, T. Roles of AP-2 in clathrin-mediated endocytosis. PLoS ONE 5, e10597 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. Tebar, F., Sorkina, T., Sorkin, A., Ericsson, M. & Kirchhausen, T. Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits. J. Biol. Chem. 271, 28727–28730 (1996).

    CAS  PubMed  Google Scholar 

  29. Saffarian, S., Cocucci, E. & Kirchhausen, T. Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol. 7, e1000191 (2009).

    PubMed  PubMed Central  Google Scholar 

  30. Hinrichsen, L., Meyerholz, A., Groos, S. & Ungewickell, E. J. Bending a membrane: how clathrin affects budding. Proc. Natl Acad. Sci. USA 103, 8715–8720 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Heuser, J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol. 84, 560–583 (1980).

    CAS  PubMed  Google Scholar 

  32. Kosaka, T. & Ikeda, K. Reversible blockage of membrane retrieval and endocytosis in the garland cell of the temperature-sensitive mutant of Drosophila melanogaster, shibirets1. J. Cell Biol. 97, 499–507 (1983).

    CAS  PubMed  Google Scholar 

  33. Wigge, P. et al. Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol. Biol. Cell 8, 2003–2015 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferguson, S. M. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell 17, 811–822 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sundborger, A. et al. An endophilin-dynamin complex promotes budding of clathrin-coated vesicles during synaptic vesicle recycling. J. Cell Sci. 124, 133–143 (2011).

    CAS  PubMed  Google Scholar 

  36. Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995).

    CAS  PubMed  Google Scholar 

  37. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998). The first evidence of the mechanoenzymatic activity of dynamin.

    CAS  PubMed  Google Scholar 

  38. Stowell, M. H., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol. 1, 27–32 (1999).

    CAS  PubMed  Google Scholar 

  39. Roux., A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006).

    CAS  PubMed  Google Scholar 

  40. Bashkirov, P. V. et al. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135, 1276–1286 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. van der Bliek, A. M. et al. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol. 122, 553–563 (1993).

    CAS  PubMed  Google Scholar 

  42. Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006).

    CAS  PubMed  Google Scholar 

  43. Schlossman, D. M., Schmid, S. L., Braell, W. A. & Rothman, J. E. An enzyme that removes clathrin coats: purification of an uncoating ATPase. J. Cell Biol. 99, 723–733 (1984). Discovery of HSC70 as the enzyme that removes clathrin coats.

    CAS  PubMed  Google Scholar 

  44. Ungewickell, E. et al. Role of auxilin in uncoating clathrin-coated vesicles. Nature 378, 632–635 (1995).

    CAS  PubMed  Google Scholar 

  45. Massol, R. H., Boll, W., Griffin, A. M. & Kirchhausen, T. A burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating. Proc Natl Acad. Sci. USA 103, 10265–10270 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011). The most extensive characterization to date of the arrival timing of all major proteins involved in clathrin-mediated endocytosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Scheele, U., Kalthoff, C. & Ungewickell, E. Multiple interactions of auxilin 1 with clathrin and the AP-2 adaptor complex. J. Biol. Chem. 276, 36131–36138 (2001).

    CAS  PubMed  Google Scholar 

  48. Fotin, A. et al. Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating. Nature 432, 649–653 (2004).

    CAS  PubMed  Google Scholar 

  49. Rapoport, I., Boll, W., Yu, A., Bocking, T. & Kirchhausen, T. A motif in the clathrin heavy chain required for the Hsc70/auxilin uncoating reaction. Mol. Biol. Cell 19, 405–413 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Xing, Y. et al. Structure of clathrin coat with bound Hsc70 and auxilin: mechanism of Hsc70-facilitated disassembly. EMBO J. 29, 655–665 (2010).

    CAS  PubMed  Google Scholar 

  51. Bocking, T., Aguet, F., Harrison, S. C. & Kirchhausen, T. Single-molecule analysis of a molecular disassemblase reveals the mechanism of Hsc70-driven clathrin uncoating. Nature Struct. Mol. Biol. 18, 295–301 (2011).

    CAS  Google Scholar 

  52. Rothnie, A., Clarke, A. R., Kuzmic, P., Cameron, A. & Smith, C. J. A sequential mechanism for clathrin cage disassembly by 70-kDa heat-shock cognate protein (Hsc70) and auxilin. Proc. Natl Acad. Sci. USA 108, 6927–6932 (2011). References 51 and 52 use in vitro uncoating assays to determine a requirement of three or fewer HSC70 molecules per triskelion for clathrin uncoating.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188 (1999).

    CAS  PubMed  Google Scholar 

  54. Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005). Systematic study of deletion mutants revealing the modular organization of the clathrin machinery.

    CAS  PubMed  Google Scholar 

  55. Schmid, E. M. & McMahon, H. T. Integrating molecular and network biology to decode endocytosis. Nature 448, 883–888 (2007).

    CAS  PubMed  Google Scholar 

  56. Marks, B. & McMahon, H. T. Calcium triggers calcineurin-dependent synaptic vesicle recycling in mammalian nerve terminals. Curr. Biol. 8, 740–749 (1998).

    CAS  PubMed  Google Scholar 

  57. Tan, T. C. et al. Cdk5 is essential for synaptic vesicle endocytosis. Nature Cell Biol. 5, 701–710 (2003).

    CAS  PubMed  Google Scholar 

  58. Garcia, C. K. et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 292, 1394–1398 (2001). Discovery of ARH as an LDLR cargo-specific adaptor protein, mutations of which cause a form of autosomal recessive hypercholesterolaemia.

    CAS  PubMed  Google Scholar 

  59. Keyel, P. A. et al. A single common portal for clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors. Mol. Biol. Cell 17, 4300–4317 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Santolini, E. et al. Numb is an endocytic protein. J. Cell Biol. 151, 1345–1352 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ferguson, S. S. et al. Role of β-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271, 363–366 (1996).

    CAS  PubMed  Google Scholar 

  62. Warren, R. A., Green, F. A. & Enns, C. A. Saturation of the endocytic pathway for the transferrin receptor does not affect the endocytosis of the epidermal growth factor receptor. J. Biol. Chem. 272, 2116–2121 (1997).

    CAS  PubMed  Google Scholar 

  63. Warren, R. A., Green, F. A., Stenberg, P. E. & Enns, C. A. Distinct saturable pathways for the endocytosis of different tyrosine motifs. J. Biol. Chem. 273, 17056–17063 (1998).

    CAS  PubMed  Google Scholar 

  64. Diril, M. K., Wienisch, M., Jung, N., Klingauf, J. & Haucke, V. Stonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling. Dev. Cell 10, 233–244 (2006).

    CAS  PubMed  Google Scholar 

  65. Puthenveedu, M. A. & von Zastrow, M. Cargo regulates clathrin-coated pit dynamics. Cell 127, 113–124 (2006).

    CAS  PubMed  Google Scholar 

  66. Mettlen, M., Loerke, D., Yarar, D., Danuser, G. & Schmid, S. L. Cargo- and adaptor-specific mechanisms regulate clathrin-mediated endocytosis. J. Cell Biol. 188, 919–933 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fujimoto, L. M., Roth, R., Heuser, J. E. & Schmid, S. L. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1, 161–171 (2000).

    CAS  PubMed  Google Scholar 

  68. Boucrot, E., Saffarian, S., Massol, R., Kirchhausen, T. & Ehrlich, M. Role of lipids and actin in the formation of clathrin-coated pits. Exp. Cell Res. 312, 4036–4048 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cureton, D. K., Massol, R. H., Saffarian, S., Kirchhausen, T. L. & Whelan, S. P. Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog. 5, e1000394 (2009).

    PubMed  PubMed Central  Google Scholar 

  70. Aghamohammadzadeh, S. & Ayscough, K. R. Differential requirements for actin during yeast and mammalian endocytosis. Nature Cell Biol. 11, 1039–1042 (2009).

    CAS  PubMed  Google Scholar 

  71. Veiga, E. et al. Invasive and adherent bacterial pathogens co-opt host clathrin for infection. Cell Host Microbe 2, 340–351 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kanaseki, T. & Kadota, K. The “vesicle in a basket”. A morphological study of the coated vesicle isolated from the nerve endings of the guinea pig brain, with special reference to the mechanism of membrane movements. J. Cell Biol. 42, 202–220 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Shapiro, S. Z. & Webster, P. Coated vesicles from the protozoan parasite Trypanosoma brucei: purification and characterization. J. Protozool. 36, 344–349 (1989).

    CAS  PubMed  Google Scholar 

  74. Mueller, S. C. & Branton, D. Identification of coated vesicles in Saccharomyces cerevisiae. J. Cell Biol. 98, 341–346 (1984).

    CAS  PubMed  Google Scholar 

  75. Holstein, S. E., Drucker, M. & Robinson, D. G. Identification of a β-type adaptin in plant clathrin-coated vesicles. J. Cell Sci. 107, 945–953 (1994).

    CAS  PubMed  Google Scholar 

  76. Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    CAS  PubMed  Google Scholar 

  77. Dhonukshe, P. et al. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr. Biol. 17, 520–527 (2007).

    CAS  PubMed  Google Scholar 

  78. Smaczynska-de Rooij, I. I. et al. A role for the dynamin-like protein Vps1 during endocytosis in yeast. J. Cell Sci. 123, 3496–3506 (2010). Establishes a role for vacuolar protein sorting-associated 1 (Vps1), the yeast homologue of dynamin, in vesicle endocytosis.

    CAS  PubMed  Google Scholar 

  79. Bretscher, M. S., Thomson, J. N. & Pearse, B. M. Coated pits act as molecular filters. Proc. Natl Acad. Sci. USA 77, 4156–4159 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Perry, M. M. & Gilbert, A. B. Yolk transport in the ovarian follicle of the hen (Gallus domesticus): lipoprotein-like particles at the periphery of the oocyte in the rapid growth phase. J. Cell Sci. 39, 257–272 (1979).

    CAS  PubMed  Google Scholar 

  81. Cheng, Y., Boll, W., Kirchhausen, T., Harrison, S. C. & Walz, T. Cryo-electron tomography of clathrin-coated vesicles: structural implications for coat assembly. J. Mol. Biol. 365, 892–899 (2007).

    CAS  PubMed  Google Scholar 

  82. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    CAS  PubMed  Google Scholar 

  83. Bazinet, C., Katzen, A. L., Morgan, M., Mahowald, A. P. & Lemmon, S. K. The Drosophila clathrin heavy chain gene: clathrin function is essential in a multicellular organism. Genetics 134, 1119–1134 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Inoue, T., Hayashi, T., Takechi, K. & Agata, K. Clathrin-mediated endocytic signals are required for the regeneration of, as well as homeostasis in, the planarian CNS. Development 134, 1679–1689 (2007).

    CAS  PubMed  Google Scholar 

  85. Seeger, M. & Payne, G. S. A role for clathrin in the sorting of vacuolar proteins in the Golgi complex of yeast. EMBO J. 11, 2811–2818 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Allen, C. L., Goulding, D. & Field, M. C. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J. 22, 4991–5002 (2003). Although clathrin is important for many intracellular functions, endocytosis still occurs in T. brucei clathrin mutants.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hung, C. H., Qiao, X., Lee, P. T. & Lee, M. G. Clathrin-dependent targeting of receptors to the flagellar pocket of procyclic-form Trypanosoma brucei. Eukaryot. Cell 3, 1004–1014 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Huang, K. M., D'Hondt, K., Riezman, H. & Lemmon, S. K. Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO J. 18, 3897–3908 (1999). An initial indication that adaptor complexes may not play such a central part in clathrin-mediated endocytosis in yeast.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Nannapaneni, S. et al. The yeast dynamin-like protein Vps1:vps1 mutations perturb the internalization and the motility of endocytic vesicles and endosomes via disorganization of the actin cytoskeleton. Eur. J. Cell Biol. 89, 499–508 (2010).

    CAS  PubMed  Google Scholar 

  90. Gonzalez-Gaitan, M. & Jackle, H. Role of Drosophila α-adaptin in presynaptic vesicle recycling. Cell 88, 767–776 (1997).

    CAS  PubMed  Google Scholar 

  91. Greener, T. et al. Caenorhabditis elegans auxilin: a J-domain protein essential for clathrin-mediated endocytosis in vivo. Nature Cell Biol. 3, 215–219 (2001).

    CAS  PubMed  Google Scholar 

  92. Koh, T. W., Verstreken, P. & Bellen, H. J. Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron 43, 193–205 (2004).

    CAS  PubMed  Google Scholar 

  93. Koh, T. W. et al. Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. J. Cell Biol. 178, 309–322 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Verstreken, P. et al. Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release. Cell 109, 101–112 (2002).

    CAS  PubMed  Google Scholar 

  95. Zhang, B. et al. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21, 1465–1475 (1998).

    CAS  PubMed  Google Scholar 

  96. Stimson, D. T. et al. Drosophila stoned proteins regulate the rate and fidelity of synaptic vesicle internalization. J. Neurosci. 21, 3034–3044 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Jung, N. et al. Molecular basis of synaptic vesicle cargo recognition by the endocytic sorting adaptor stonin 2. J. Cell Biol. 179, 1497–1510 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Nonet, M. L. et al. UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles. Mol. Biol. Cell 10, 2343–2360 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Holmes, A., Flett, A., Coudreuse, D., Korswagen, H. C. & Pettitt, J. C. elegans Disabled is required for cell-type specific endocytosis and is essential in animals lacking the AP-3 adaptor complex. J. Cell Sci. 120, 2741–2751 (2007).

    CAS  PubMed  Google Scholar 

  100. O'Halloran, T. J. & Anderson, R. G. Clathrin heavy chain is required for pinocytosis, the presence of large vacuoles, and development in Dictyostelium. J. Cell Biol. 118, 1371–1377 (1992).

    CAS  PubMed  Google Scholar 

  101. Tan, P. K., Davis, N. G., Sprague, G. F. & Payne, G. S. Clathrin facilitates the internalization of seven transmembrane segment receptors for mating pheromones in yeast. J. Cell Biol. 123, 1707–1716 (1993).

    CAS  PubMed  Google Scholar 

  102. Huang, F., Khvorova, A., Marshall, W. & Sorkin, A. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J. Biol. Chem. 279, 16657–16661 (2004). References 26, 27 and 102 show that AP2 is crucial for clathrin-coated pit formation and internalization of transferrin (Ref. 26), EGF (Ref. 102) and LDLRs (Ref. 27). Upon depletion of AP2, there is a reduction of tenfold in the number of clathrin-coated pits forming (Ref. 26), with the remaining pits still containing AP2 (Ref. 27).

    CAS  PubMed  Google Scholar 

  103. Anderson, R. G., Brown, M. S. & Goldstein, J. L. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell 10, 351–364 (1977). A seminal study establishing receptor-mediated endocytosis of LDLR by clathrin-coated pits.

    CAS  PubMed  Google Scholar 

  104. Pearse, B. M. Coated vesicles from human placenta carry ferritin, transferrin, and immunoglobulin G. Proc. Natl Acad. Sci. USA 79, 451–455 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Jing, S. Q., Spencer, T., Miller, K., Hopkins, C. & Trowbridge, I. S. Role of the human transferrin receptor cytoplasmic domain in endocytosis: localization of a specific signal sequence for internalization. J. Cell Biol. 110, 283–294 (1990). Identification of the internalization sequence in the cytoplasmic tail of TfR.

    CAS  PubMed  Google Scholar 

  106. Sorkin, A. & von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nature Rev. Mol. Cell Biol. 10, 609–622 (2009).

    CAS  Google Scholar 

  107. Vanneste, S. & Friml, J. Auxin: a trigger for change in plant development. Cell 136, 1005–1016 (2009).

    CAS  PubMed  Google Scholar 

  108. Scita, G. & Di Fiore, P. P. The endocytic matrix. Nature 463, 464–473 (2010).

    CAS  PubMed  Google Scholar 

  109. Haucke, V., Neher, E. & Sigrist, S. J. Protein scaffolds in the coupling of synaptic exocytosis and endocytosis. Nature Rev. Neurosci. 12, 127–138 (2011).

    CAS  Google Scholar 

  110. Sigismund, S. et al. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev. Cell 15, 209–219 (2008).

    CAS  PubMed  Google Scholar 

  111. McMahon, H. T. & Nicholls, D. G. Transmitter glutamate release from isolated nerve terminals: evidence for biphasic release and triggering by localized Ca2+. J. Neurochem. 56, 86–94 (1991).

    CAS  PubMed  Google Scholar 

  112. Heuser, J. E. & Reese, T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973). Seminal study on the morphology of clathrin-coated vesicle formation in synapses.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sato, K. et al. Differential requirements for clathrin in receptor-mediated endocytosis and maintenance of synaptic vesicle pools. Proc. Natl Acad. Sci. USA 106, 1139–1144 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Shupliakov, O. et al. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276, 259–263 (1997).

    CAS  PubMed  Google Scholar 

  115. Kasprowicz, J. et al. Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. J. Cell Biol. 182, 1007–1016 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Maycox, P. R., Link, E., Reetz, A., Morris, S. A. & Jahn, R. Clathrin-coated vesicles in nervous tissue are involved primarily in synaptic vesicle recycling. J. Cell Biol. 118, 1379–1388 (1992).

    CAS  PubMed  Google Scholar 

  117. Slepnev, V. I., Ochoa, G. C., Butler, M. H., Grabs, D. & De Camilli, P. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science 281, 821–824 (1998).

    CAS  PubMed  Google Scholar 

  118. Neher, E. & Zucker, R. S. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10, 21–30 (1993).

    CAS  PubMed  Google Scholar 

  119. Thomas, P., Lee, A. K., Wong, J. G. & Almers, W. A triggered mechanism retrieves membrane in seconds after Ca2+-stimulated exocytosis in single pituitary cells. J. Cell Biol. 124, 667–675 (1994).

    CAS  PubMed  Google Scholar 

  120. Jockusch, W. J., Praefcke, G. J., McMahon, H. T. & Lagnado, L. Clathrin-dependent and clathrin-independent retrieval of synaptic vesicles in retinal bipolar cells. Neuron 46, 869–878 (2005).

    CAS  PubMed  Google Scholar 

  121. Dong, M. et al. Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J. Cell Biol. 162, 1293–1303 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Morris, R. E., Gerstein, A. S., Bonventre, P. F. & Saelinger, C. B. Receptor-mediated entry of diphtheria toxin into monkey kidney (Vero) cells: electron microscopic evaluation. Infect. Immun. 50, 721–727 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sandvig, K., Olsnes, S., Brown, J. E., Petersen, O. W. & van Deurs, B. Endocytosis from coated pits of Shiga toxin: a glycolipid-binding protein from Shigella dysenteriae 1. J. Cell Biol. 108, 1331–1343 (1989).

    CAS  PubMed  Google Scholar 

  124. Abrami, L., Liu, S., Cosson, P., Leppla, S. H. & van der Goot, F. G. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 160, 321–328 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Deinhardt, K., Berninghausen, O., Willison, H. J., Hopkins, C. R. & Schiavo, G. Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1. J. Cell Biol. 174, 459–471 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Skretting, G., Torgersen, M. L., van Deurs, B. & Sandvig, K. Endocytic mechanisms responsible for uptake of GPI-linked diphtheria toxin receptor. J. Cell Sci. 112, 3899–3909 (1999).

    CAS  PubMed  Google Scholar 

  127. Boll, W., Ehrlich, M., Collier, R. J. & Kirchhausen, T. Effects of dynamin inactivation on pathways of anthrax toxin uptake. Eur. J. Cell Biol. 83, 281–288 (2004).

    CAS  PubMed  Google Scholar 

  128. Saint-Pol, A. et al. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Dev. Cell 6, 525–538 (2004).

    CAS  PubMed  Google Scholar 

  129. Romer, W. et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450, 670–675 (2007).

    PubMed  Google Scholar 

  130. Abrami, L., Bischofberger, M., Kunz, B., Groux, R. & van der Goot, F. G. Endocytosis of the anthrax toxin is mediated by clathrin, actin and unconventional adaptors. PLoS Pathog. 6, e1000792 (2010).

    PubMed  PubMed Central  Google Scholar 

  131. Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Deborde, S. et al. Clathrin is a key regulator of basolateral polarity. Nature 452, 719–723 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Rust, M. J., Lakadamyali, M., Zhang, F. & Zhuang, X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nature Struct. Mol. Biol. 11, 567–573 (2004).

    CAS  Google Scholar 

  134. Cureton, D. K., Massol, R. H., Whelan, S. P. & Kirchhausen, T. The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis. PLoS Pathog. 6, e1001127 (2010). Shows the influence that size has the recruitment of actin to clathrin-coated pits.

    PubMed  PubMed Central  Google Scholar 

  135. Ezratty, E. J., Bertaux, C., Marcantonio, E. E. & Gundersen, G. G. Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J. Cell Biol. 187, 733–747 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Veiga, E. & Cossart, P. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nature Cell Biol. 7, 894–900 (2005).

    CAS  PubMed  Google Scholar 

  137. Eto, D. S., Gordon, H. B., Dhakal, B. K., Jones, T. A. & Mulvey, M. A. Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cell. Microbiol. 10, 2553–2567 (2008).

    CAS  PubMed  Google Scholar 

  138. Moreno-Ruiz, E. et al. Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism. Cell. Microbiol. 11, 1179–1189 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Pizarro-Cerda, J. et al. Type II phosphatidylinositol 4-kinases promote Listeria monocytogenes entry into target cells. Cell. Microbiol. 9, 2381–2390 (2007).

    CAS  PubMed  Google Scholar 

  140. Braun, V. et al. AP-1 and ARF1 control endosomal dynamics at sites of FcR mediated phagocytosis. Mol. Biol. Cell 18, 4921–4931 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mitsunari, T. et al. Clathrin adaptor AP-2 is essential for early embryonal development. Mol. Cell. Biol. 25, 9318–9323 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Chen, H. et al. Embryonic arrest at midgestation and disruption of Notch signaling produced by the absence of both epsin 1 and epsin 2 in mice. Proc. Natl Acad. Sci. USA 106, 13838–13843 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Bernard, O. A., Mauchauffe, M., Mecucci, C., Van den Berghe, H. & Berger, R. A novel gene, AF-1p, fused to HRX in t(1;11)(p32;q23), is not related to AF-4, AF-9 nor ENL. Oncogene 9, 1039–1045 (1994).

    CAS  PubMed  Google Scholar 

  144. Dreyling, M. H. et al. The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc. Natl Acad. Sci. USA 93, 4804–4809 (1996). References 143 and 144 are the first reports of gene fusions involving the clathrin machinery.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).

    CAS  PubMed  Google Scholar 

  147. Wettey, F. R. et al. Controlled elimination of clathrin heavy-chain expression in DT40 lymphocytes. Science 297, 1521–1525 (2002).

    CAS  PubMed  Google Scholar 

  148. Borlido, J., Veltri, G., Jackson, A. P. & Mills, I. G. Clathrin is spindle-associated but not essential for mitosis. PLoS ONE 3, e3115 (2008).

    PubMed  PubMed Central  Google Scholar 

  149. Royle, S. J., Bright, N. A. & Lagnado, L. Clathrin is required for the function of the mitotic spindle. Nature 434, 1152–1157 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Boucrot, E. & Kirchhausen, T. Endosomal recycling controls plasma membrane area during mitosis. Proc. Natl Acad. Sci. USA 104, 7939–7944 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Bitoun, M. et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nature Genet. 37, 1207–1209 (2005).

    CAS  PubMed  Google Scholar 

  152. Zuchner, S. et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot–Marie–Tooth disease. Nature Genet. 37, 289–294 (2005).

    PubMed  Google Scholar 

  153. Nicot, A. S. et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nature Genet. 39, 1134–1139 (2007). References 151–153 report mutations in amphiphysin and dynamin in patients with myopathy and neuropathy.

    CAS  PubMed  Google Scholar 

  154. Razzaq, A. et al. Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev. 15, 2967–2979 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Clement, S. et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409, 92–97 (2001).

    CAS  PubMed  Google Scholar 

  156. Arai, Y., Ijuin, T., Takenawa, T., Becker, L. E. & Takashima, S. Excessive expression of synaptojanin in brains with Down syndrome. Brain Dev. 24, 67–72 (2002).

    PubMed  Google Scholar 

  157. Pucharcos, C. et al. Alu-splice cloning of human Intersectin (ITSN), a putative multivalent binding protein expressed in proliferating and differentiating neurons and overexpressed in Down syndrome. Eur. J. Hum. Genet. 7, 704–712 (1999).

    CAS  PubMed  Google Scholar 

  158. Doyon, J. B. et al. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nature Cell Biol. 13, 331–337 (2011).

    CAS  PubMed  Google Scholar 

  159. Jones, S. A., Shim, S. H., He, J. & Zhuang, X. Fast, three-dimensional super-resolution imaging of live cells. Nature Methods 8, 499–505 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Keyel, P. A., Watkins, S. C. & Traub, L. M. Endocytic adaptor molecules reveal an endosomal population of clathrin by total internal reflection fluorescence microscopy. J. Biol. Chem. 279, 13190–13204 (2004).

    CAS  PubMed  Google Scholar 

  161. Damke, H., Baba, T., van der Bliek, A. M. & Schmid, S. L. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Cell Biol. 131, 69–80 (1995).

    CAS  PubMed  Google Scholar 

  162. Vallis, Y., Wigge, P., Marks, B., Evans, P. R. & McMahon, H. T. Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr. Biol. 9, 257–260 (1999).

    CAS  PubMed  Google Scholar 

  163. Hill, T. A. et al. Inhibition of dynamin mediated endocytosis by the dynoles—synthesis and functional activity of a family of indoles. J. Med. Chem. 52, 3762–3773 (2009).

    CAS  PubMed  Google Scholar 

  164. Howes, M. T. et al. Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. J. Cell Biol. 190, 675–691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. McMahon, H. T. & Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005). Summarizes the role of curvature in cell membrane remodelling.

    CAS  PubMed  Google Scholar 

  166. Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).

    CAS  PubMed  Google Scholar 

  167. Henne, W. M. et al. Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15, 839–852 (2007).

    CAS  PubMed  Google Scholar 

  168. Frost, A. et al. Structural basis of membrane invagination by F-BAR domains. Cell 132, 807–817 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Roux, A. et al. Membrane curvature controls dynamin polymerization. Proc. Natl Acad. Sci. USA 107, 4141–4146 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Ramachandran, R. et al. Membrane insertion of the pleckstrin homology domain variable loop 1 is critical for dynamin-catalyzed vesicle scission. Mol. Biol. Cell 20, 4630–4639 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Chang-Ileto, B. et al. Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev. Cell 20, 206–218 (2011). Highlights the importance of membrane curvature in the function of synaptojanin.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Schlegel, R., Dickson, R. B., Willingham, M. C. & Pastan, I. H. Amantadine and dansylcadaverine inhibit vesicular stomatitis virus uptake and receptor-mediated endocytosis of α2-macroglobulin. Proc. Natl Acad. Sci. USA 79, 2291–2295 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Larkin, J. M., Brown, M. S., Goldstein, J. L. & Anderson, R. G. Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts. Cell 33, 273–285 (1983).

    CAS  PubMed  Google Scholar 

  174. Gibson, A. E., Noel, R. J., Herlihy, J. T. & Ward, W. F. Phenylarsine oxide inhibition of endocytosis: effects on asialofetuin internalization. Am. J. Physiol. 257, C182–C184 (1989).

    CAS  PubMed  Google Scholar 

  175. Cosson, P., de Curtis, I., Pouyssegur, J., Griffiths, G. & Davoust, J. Low cytoplasmic pH inhibits endocytosis and transport from the trans-Golgi network to the cell surface. J. Cell Biol. 108, 377–387 (1989).

    CAS  PubMed  Google Scholar 

  176. Heuser, J. E. & Anderson, R. G. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J. Cell Biol. 108, 389–400 (1989).

    CAS  PubMed  Google Scholar 

  177. Wang, L. H., Rothberg, K. G. & Anderson, R. G. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell Biol. 123, 1107–1117 (1993).

    CAS  PubMed  Google Scholar 

  178. Benmerah, A., Bayrou, M., Cerf-Bensussan, N. & Dautry-Varsat, A. Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J. Cell Sci. 112, 1303–1311 (1999).

    CAS  PubMed  Google Scholar 

  179. Robinson, M. S., Sahlender, D. A. & Foster, S. D. Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Dev. Cell 18, 324–331 (2010). Shows that rerouting AP2 to mitochondria is a rapid and acute way of inactivating clathrin-mediated endocytosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Pechstein, A. et al. Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2. Proc. Natl Acad. Sci. USA 107, 4206–4211 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Aggeler, J. & Werb, Z. Initial events during phagocytosis by macrophages viewed from outside and inside the cell: membrane-particle interactions and clathrin. J. Cell Biol. 94, 613–623 (1982).

    CAS  PubMed  Google Scholar 

  182. Mengaud, J., Ohayon, H., Gounon, P., Mege, R. M. & Cossart, P. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84, 923–932 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Robinson and R. Mittal for critical reading of the manuscript. H.T.M. and E.B. are supported by the Medical Research Council, UK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harvey T. McMahon or Emmanuel Boucrot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Harvey T. McMahon's homepage

Glossary

Adaptor proteins

Proteins linking receptors to clathrin triskelia.

Triskelia

Shapes that consists of three bent limbs radiating from a centre.

Module

A set of proteins working together to carry out a specific function.

F-BAR domain

FES–CIP4 homology (FCH) Bin–amphiphysin–Rvs (BAR) domain.

Synapses

Specialized junctions between cells that allow neurons to transmit chemical signals to other cells (neural or otherwise).

SNARE proteins

(Soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor proteins). Members of a family of membrane-tethered coiled-coil proteins that regulate fusion reactions and target specificity. On the basis of their localization, they can be divided into vesicle membrane SNAREs (v-SNAREs) and target membrane SNAREs (t-SNAREs).

G protein-coupled receptors

(GPCRs; also known as seven transmembrane domain receptors). The largest family of cell surface receptors (>800 members) that sense molecules outside the cell and activate signal transduction pathways.

Phagocytosis

A specific form of endocytosis involving the internalization of solid particles, such as bacteria.

Vacuole

A membrane-bound organelle that is present in all plant and fungal cells, as well as in the cells of some other organisms. It is the equivalent to the lysosomes in other organisms.

GPI-anchored protein

A protein anchored by glycosylphosphatidylinositol (GPI) in the secretory pathway to reach the extracellular leaflet of the plasma membrane.

Fluid-phase uptake

(Also called macropinocytosis). Endocytosis of large (0.5–5 mm diameter) vesicles derived from ruffling of the plasma membrane, taking up extracellular fluid in a nonspecific manner.

α-factor

A yeast mating pheromone that is recognized by the receptor Ste2.

Neurotransmitters

Endogenous molecules that transmit signals from a neuron to a target cell across a synapse.

Exocytosis

The process by which the content of secretory vesicles (such as a synaptic vesicle) is released out of the cell.

Fc receptor

A surface molecule found on various cells that binds to the crystallizable fragment (Fc) regions of immunoglobulins, thereby initiating immune effector functions.

Somatic mutations

Mutations, or change in genomic sequence, happening in somatic cells (thus, non-inheritable).

Multiploidy

An abnormal number of chromosomes (>2n), usually the result of defective cell division.

Single nucleotide polymorphisms

DNA sequence variations occurring when a single nucleotide differs between paired chromosomes in an individual or between members of a biological species.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McMahon, H., Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12, 517–533 (2011). https://doi.org/10.1038/nrm3151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3151

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer