Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Chaperone-mediated autophagy: Dice's 'wild' idea about lysosomal selectivity

Abstract

A little over 1 year ago, we lost a bright scientist and a dear colleague who, in his younger years, proposed the 'heretical' idea that lysosomes could selectively degrade cytosolic proteins. That scientist was J. Fred Dice, and his lifetime's discovery was the degradative pathway that we now know as chaperone-mediated autophagy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: J. Fred Dice.
Figure 2: Distinct types of autophagy.
Figure 3: Early key findings in support of selective lysosomal degradation of cytosolic proteins.
Figure 4: Current mechanistic model for chaperone-mediated autophagy.

References

  1. Yang, Z. & Klionsky, D. J. Eaten alive: a history of macroautophagy. Nature Cell Biol. 12, 814–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gianetto, R. & De Duve, C. Tissue fractionation studies. 4. Comparative study of the binding of acid phosphatase, β-glucuronidase and cathepsin by rat-liver particles. Biochem. J. 59, 433–438 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Duve, C. & Wattiaux, R. Functions of lysosomes. Ann. Rev. Physiol. 28, 435–492 (1966).

    Article  CAS  Google Scholar 

  5. Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature Rev. Mol. Cell Biol. 6, 79–87 (2005).

    Article  CAS  Google Scholar 

  6. Navon, A. & Ciechanover, A. The 26 S proteasome: from basic mechanisms to drug targeting. J. Biol. Chem. 284, 33713–33718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Noda, T. et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. Nature 395, 395–398 (1998).

    Article  PubMed  Google Scholar 

  8. Klionsky, D. J. et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5, 539–545 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Kirkin, V., McEwan, D. G., Novak, I. & Dikic, I. A role for ubiquitin in selective autophagy. Mol. Cell 34, 259–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Lamark, T., Kirkin, V., Dikic, I. & Johansen, T. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8, 1986–1990 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deter, R. L. & de Duve, C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J. Cell Biol. 33, 437–449 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schimke, R. T. in Mammalian Protein Metabolism Vol. 4 (ed. Munro, H. N.) 177–277 (Academic Press, New York, 1970).

    Book  Google Scholar 

  15. Marzella, L., Ahlberg, J. & Glaumann, H. Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation. Virchows Arch. B Cell Pathol. 36, 219–234 (1981).

    Article  CAS  Google Scholar 

  16. Dice, J. F., Dehlinger, P. J. & Schimke, R. T. Studies on the correlation between size and relative degradation rate of soluble proteins. J. Biol. Chem. 248, 4220–4228 (1973).

    CAS  PubMed  Google Scholar 

  17. Dice, J. F. & Goldberg, A. L. Relationship between in vivo degradative rates and isoelectric points of proteins. Proc. Natl Acad. Sci. USA 72, 3893–3897 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dice, J. F., Walker, C. D., Byrne, B. & Cardiel, A. General characteristics of protein degradation in diabetes and starvation. Proc. Natl Acad. Sci. USA 75, 2093–2097 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Neff, N., Bourret, L., Miao, P. & Dice, J. F. Degradation of proteins microinjected into IMR-90 human diploid fibroblasts. J. Cell Biol. 91, 184–194 (1981).

    Article  CAS  PubMed  Google Scholar 

  20. Auteri, J. S., Okada, A., Bochaki, V. & Dice, J. F. Regulation of intracellular protein degradation in IMR-90 human diploid fibroblasts. J. Cell Physiol. 115, 159–166 (1983).

    Article  Google Scholar 

  21. Backer, J. M., Bourret, L. & Dice, J. F. Regulation of catabolism of microinjected ribonuclease A requires the amino-terminal 20 amino acids. Proc. Natl Acad. Sci. USA 80, 2166–2170 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Backer, J. & Dice, J. Covalent linkage of ribonuclease S-peptide to microinjected proteins causes their intracellular degradation to be enhanced by serum withdrawal. Proc. Natl Acad. Sci. USA 83, 5830–5834 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chiang, H. I. & Dice, J. F. Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J. Biol. Chem. 263, 6797–6803 (1988).

    CAS  PubMed  Google Scholar 

  24. Goff, S. A., Short-Russell, S. R. & Dice, J. F. Efficient saturation mutagenesis of a pentapeptide coding sequence using mixed oligonucleotides. DNA 6, 381–388 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Chiang, H., Terlecky, S., Plant, C. & Dice, J. F. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246, 382–385 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Terlecky, S. R., Chiang, H.-L., Olson, T. S. & Dice, J. F. Protein and peptide binding and stimulation of in vitro lysosomal proteolysis by the 73-kDa heat shock cognate protein. J. Biol. Chem. 267, 9202–9209 (1992).

    CAS  PubMed  Google Scholar 

  27. Cuervo, A. M., Terlecky, S. R., Dice, J. F. & Knecht, E. Selective binding and uptake of ribonuclease A and glyceraldehyde-3-phosphate dehydrogenase by rat liver lysosomes. J. Biol. Chem. 269, 26374–26380 (1994).

    CAS  PubMed  Google Scholar 

  28. Dice, J. F. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem. Sci. 15, 305–309 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Knecht, E., Hernandez-Yago, J. & Grisolia, S. Regulation of lysosomal autophagy in transformed and non-transformed mouse fibroblasts under several growth conditions. Exp. Cell Res. 154, 224–232 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Knecht, E., Martinez-Ramon, A. & Grisolia, S. Autophagy of mitochondria in rat liver assessed by immunogold procedures. J. Histochem. Cytochem. 36, 1433–1440 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Aniento, F., Roche, E., Cuervo, A. M. & Knecht, E. Uptake and degradation of glyceraldehyde-3-phosphate dehydrogenase by rat liver lysosomes. J. Biol. Chem. 268, 10463–10470 (1993).

    CAS  PubMed  Google Scholar 

  32. Cuervo, A. M. & Dice, J. F. Age-related decline in chaperone-mediated autophagy. J. Biol. Chem. 275, 31505–31513 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Dice, J. F. Chaperone-mediated autophagy. Autophagy 3, 295–299 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Cuervo, A. M. Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol. Metab. 21, 142–150 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Kaushik, S. et al. Chaperone-mediated autophagy at a glance. J. Cell Sci. 124, 495–499 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Salvador, N., Aguado, C., Horst, M. & Knecht, E. Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J. Biol. Chem. 275, 27447–27456 (2000).

    CAS  PubMed  Google Scholar 

  37. Cuervo, A. M. & Dice, J. F. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273, 501–503 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Cuervo, A. M. & Dice, J. F. Unique properties of lamp2a compared to other lamp2 isoforms. J. Cell Sci. 113, 4441–4450 (2000).

    CAS  PubMed  Google Scholar 

  39. Massey, A. C., Kaushik, S., Sovak, G., Kiffin, R. & Cuervo, A. M. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl Acad. Sci. USA 103, 5905–5910 (2006).

    Article  Google Scholar 

  40. Bandyopadhyay, U., Kaushik, S., Varticovski, L. & Cuervo, A. M. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol. Cell Biol. 28, 5747–5763 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Agarraberes, F., Terlecky, S. & Dice, J. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J. Cell Biol. 137, 825–834 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cuervo, A. M., Dice, J. F. & Knecht, E. A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J. Biol. Chem. 272, 5606–5615 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Kaushik, S., Massey, A. C. & Cuervo, A. M. Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J. 25, 3921–3933 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bandyopadhyay, U., Sridhar, S., Kaushik, S., Kiffin, R. & Cuervo, A. M. Identification of regulators of chaperone-nediated autophagy. Mol. Cell 39, 535–547 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berger, J. J. & Dice, J. F. Effect of serum deprivation and replacement on proteolysis in cultured human fibroblasts. Prog. Clin. Biol. Res. 180, 479–481 (1985).

    CAS  PubMed  Google Scholar 

  46. Wing, S., Chiang, H. L., Goldberg, A. L. & Dice, J. F. Proteins containing peptide sequences related to KFERQ are selectively depleted in liver and heart, but not skeletal muscle, of fasted rats. Biochem. J. 275, 165–169 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cuervo, A. M., Knecht, E., Terlecky, S. R. & Dice, J. F. Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. Am. J. Physiol. 269, C1200–C1208 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Cuervo, A. M., Hildebrand, H., Bomhard, E. M. & Dice, J. F. Direct lysosomal uptake of α2-microglobulin contributes to chemically induced nephropathy. Kidney Int. 55, 529–545 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Kiffin, R., Christian, C., Knecht, E. & Cuervo, A. Activation of chaperone-mediated autophagy during oxidative stress. Mol. Biol. Cell 15, 4829–4840 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou, D. et al. Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 22, 571–581 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, Q. et al. Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science 323, 124–127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Franch, H., Sooparb, S., Du, J. & Brown, N. A mechanism regulating proteolysis of specific proteins during renal tubular cell growth. J. Biol. Chem. 276, 19126–19131 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. & Sulzer, D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Martinez-Vicente, M. et al. Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 118, 777–788 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kabuta, T. & Wada, K. Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J. Biol. Chem. 283, 23731–22373 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vogiatzi, T., Xilouri, M., Vekrellis, K. & Stefanis, L. Wild type α-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J. Biol. Chem. 283, 23542–23556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mak, S. K., McCormack, A. L., Manning-Bog, A. B., Cuervo, A. M. & Di Monte, D. A. Lysosomal degradation of α-synuclein in vivo. J. Biol. Chem. 285, 13621–13629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alvarez-Erviti, L. et al. Chaperone-mediated autophagy markers in Parkinson disease brains. Arch. Neurol. 67, 1464–1472 (2010).

    Article  PubMed  Google Scholar 

  59. Wang, Y. et al. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 18, 4153–4170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bauer, P. O. et al. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nature Biotech. 28, 256–263 (2010).

    Article  CAS  Google Scholar 

  61. Cuervo, A. M., Mann, L., Bonten, E. J., d'Azzo, A. & Dice, J. F. Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J. 22, 12–19 (2003).

    Article  Google Scholar 

  62. Sooparb, S., Price, S. R., Shaoguang, J. & Franch, H. A. Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus. Kidney Int. 65, 2135–2144 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Venugopal, B. et al. Chaperone-mediated autophagy is defective in mucolipidosis type IV. J. Cell Physiol. 219, 344–353 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Dice, J. F. Altered degradation of proteins microinjected into senescent human fibroblasts. J. Biol. Chem. 257, 14624–14627 (1982).

    CAS  PubMed  Google Scholar 

  65. Kiffin, R. et al. Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J. Cell Sci. 120, 782–791 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, C. & Cuervo, A. M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nature Med. 14, 959–965 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Klionsky, D. J. & Dice, J. F. Chaperone-mediated autophagy: the heretofore untold story of J. Fred “Paulo” Dice. Autophagy 5, 1079–1084 (2009).

    Article  Google Scholar 

  68. Aniento, F., Emans, N., Griffiths, G. & Gruenberg, J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol. 123, 1373–1387 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Finn, P. F. & Dice, J. F. Ketone bodies stimulate chaperone-mediated autophagy. J. Biol. Chem. 280, 25864–25870 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Kaushik, S., Massey, A., Mizushima, N. & Cuervo, A. M. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol. Biol. Cell 19, 2179–2192 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I want first to apologize for taking more than a year to find the strength to write about Paulo. I initially took this assignment the wrong way, as if I was closing a chapter that I did not want to end. But, thanks to the support of the members of the autophagy field, I came to realize that Paulo's legacy is too rich to not pass along and that I should feel privileged for being allowed to be the storyteller. My deepest thank you to all the numerous colleagues who have shared their memories of Paulo with me and the other members of the Dice laboratory, as well as the Physiology Department at Tufts University, Boston, Massachusetts, USA, during the last year and a half. And of course, there are no words that could express my gratitude to the man with the 'wild' idea who started it all. My dear Paulo, it has been an honour, a privilege and a joy!

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Ana Maria Cuervo's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuervo, A. Chaperone-mediated autophagy: Dice's 'wild' idea about lysosomal selectivity. Nat Rev Mol Cell Biol 12, 535–541 (2011). https://doi.org/10.1038/nrm3150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing