Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Mechanisms of nuclear reprogramming by eggs and oocytes: a deterministic process?

Abstract

Differentiated cells can be experimentally reprogrammed back to pluripotency by nuclear transfer, cell fusion or induced pluripotent stem cell technology. Nuclear transfer and cell fusion can lead to efficient reprogramming of gene expression. The egg and oocyte reprogramming process includes the exchange of somatic proteins for oocyte proteins, the post-translational modification of histones and the demethylation of DNA. These events occur in an ordered manner and on a defined timescale, indicating that reprogramming by nuclear transfer and by cell fusion rely on deterministic processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different experimental approaches to nuclear reprogramming.
Figure 2: Deterministic and stochastic events in transcriptional reprogramming.
Figure 3: Reprogramming of transplanted nuclei through the exchange of chromatin components.
Figure 4: A temporal sequence of events in transcriptional reprogramming following nuclear transfer to Xenopus laevis oocytes.

Similar content being viewed by others

References

  1. Gurdon, J. B., Elsdale, T. R. & Fischberg, M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182, 64–65 (1958).

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Blau, H. M., Chiu, C. P. & Webster, C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32, 1171–1180 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Eggan, K. et al. Mice cloned from olfactory sensory neurons. Nature 428, 44–49 (2004).

    CAS  PubMed  Google Scholar 

  5. Campbell, K. H., McWhir, J., Ritchie, W. A. & Wilmut, I. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Yamanaka, S. Elite and stochastic models for induced pluripotent stem cell generation. Nature 460, 49–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Stadtfeld, M. & Hochedlinger, K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 24, 2239–2263 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanna, J. H., Saha, K. & Jaenisch, R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143, 508–525 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamanaka, S. & Blau, H. M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704–712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Halley-Stott, R. P. et al. Mammalian nuclear transplantation to germinal vesicle stage Xenopus oocytes — a method for quantitative transcriptional reprogramming. Methods 51, 56–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jullien, J., Astrand, C., Halley-Stott, R. P., Garrett, N. & Gurdon, J. B. Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation. Proc. Natl Acad. Sci. USA 107, 5483–5488 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blau, H. M. et al. Plasticity of the differentiated state. Science 230, 758–766 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Kimura, H., Tada, M., Nakatsuji, N. & Tada, T. Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol. Cell. Biol. 24, 5710–5720 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taranger, C. K. et al. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol. Biol. Cell 16, 5719–5735 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanna, J. et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462, 595–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Byrne, J. A., Simonsson, S., Western, P. S. & Gurdon, J. B. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr. Biol. 13, 1206–1213 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Gao, T. et al. Nuclear reprogramming: the strategy used in normal development is also used in somatic cell nuclear transfer and parthenogenesis. Cell Res. 17, 135–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Gurdon, J. B. Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J. Embryol. Exp. Morphol. 20, 401–414 (1968).

    CAS  PubMed  Google Scholar 

  19. Harris, H. The reactivation of the red cell nucleus. J. Cell Sci. 2, 23–32 (1967).

    CAS  PubMed  Google Scholar 

  20. Terranova, R., Pereira, C. F., Du Roure, C., Merkenschlager, M. & Fisher, A. G. Acquisition and extinction of gene expression programs are separable events in heterokaryon reprogramming. J. Cell Sci. 119, 2065–2072 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Tamada, H. et al. Chromatin decondensation and nuclear reprogramming by nucleoplasmin. Mol. Cell. Biol. 26, 1259–1271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gurdon, J. B., Partington, G. A. & De Robertis, E. M. Injected nuclei in frog oocytes: RNA synthesis and protein exchange. J. Embryol. Exp. Morphol. 36, 541–553 (1976).

    CAS  PubMed  Google Scholar 

  23. Murata, K., Kouzarides, T., Bannister, A. J. & Gurdon, J. B. Histone H3 lysine 4 methylation is associated with the transcriptional reprogramming efficiency of somatic nuclei by oocytes. Epigenetics Chromatin 3, 4 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Egli, D., Rosains, J., Birkhoff, G. & Eggan, K. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 447, 679–685 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Greda, P., Karasiewicz, J. & Modlinski, J. A. Mouse zygotes as recipients in embryo cloning. Reproduction 132, 741–748 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Gao, S. et al. Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: evidence for a uniform developmental program in mice. Dev. Biol. 266, 62–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Teranishi, T. et al. Rapid replacement of somatic linker histones with the oocyte-specific linker histone H1foo in nuclear transfer. Dev. Biol. 266, 76–86 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. D'Alessio, J. A., Wright, K. J. & Tjian, R. Shifting players and paradigms in cell-specific transcription. Mol. Cell 36, 924–931 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kikyo, N., Wade, P. A., Guschin, D., Ge, H. & Wolffe, A. P. Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science 289, 2360–2362 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Goodrich, J. A. & Tjian, R. Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation. Nature Rev. Genet. 11, 549–558 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miyamoto, K., Pasque, V., Jullien, J. & Gurdon, J. B. Nuclear actin polymerization is required for transcriptional reprogramming of Oct4 by oocytes. Genes Dev. 25, 946–958 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kimura, H. & Cook, P. R. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 153, 1341–1353 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Phair, R. D. et al. Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell. Biol. 24, 6393–6402 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Misteli, T., Gunjan, A., Hock, R., Bustin, M. & Brown, D. T. Dynamic binding of histone H1 to chromatin in living cells. Nature 408, 877–881 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Schmiedeberg, L., Weisshart, K., Diekmann, S., Meyer Zu Hoerste, G. & Hemmerich, P. High- and low-mobility populations of HP1 in heterochromatin of mammalian cells. Mol. Biol. Cell 15, 2819–2833 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pereira, C. F. et al. Heterokaryon-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2. PLoS Genet. 4, e1000170 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rechsteiner, M. & Kuehl, L. Microinjection of the nonhistone chromosomal protein HMG1 into bovine fibroblasts and HeLa cells. Cell 16, 901–908 (1979).

    Article  CAS  PubMed  Google Scholar 

  39. Wu, L. H., Kuehl, L. & Rechsteiner, M. Dynamic behavior of histone H1 microinjected into HeLa cells. J. Cell Biol. 103, 465–474 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Boiani, M. et al. Proteomic analysis of mouse oocytes reveals 28 candidate factors of the 'reprogrammome'. J. Proteome Res. 10, 2140–2153 (2011).

    Article  PubMed  Google Scholar 

  41. Bian, Y., Alberio, R., Allegrucci, C., Campbell, K. H. & Johnson, A. D. Epigenetic marks in somatic chromatin are remodelled to resemble pluripotent nuclei by amphibian oocyte extracts. Epigenetics 4, 194–202 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Barreto, G. et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445, 671–675 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Simonsson, S. & Gurdon, J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nature Cell Biol. 6, 984–990 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Wossidlo, M. et al. Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J. 29, 1877–1888 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bhutani, N. et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463, 1042–1047 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wossidlo, M. et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nature Commun. 2, 241 (2011).

    Article  Google Scholar 

  47. Ficz, G. et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Biddle, A., Simeoni, I. & Gurdon, J. B. Xenopus oocytes reactivate muscle gene transcription in transplanted somatic nuclei independently of myogenic factors. Development 136, 2695–2703 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Efroni, S. et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2, 437–447 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pasque, V., Miyamoto, K. & Gurdon, J. B. Efficiencies and mechanisms of nuclear reprogramming. Cold Spring Harb. Symp. Quant. Biol. 75, 189–200 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Smith, Z. D., Nachman, I., Regev, A. & Meissner, A. Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nature Biotech. 28, 521–526 (2010).

    Article  CAS  Google Scholar 

  53. Smith, C. et al. Simultaneous gene quantitation of multiple genes in individual bovine nuclear transfer blastocysts. Reproduction 133, 231–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Smith, S. L. et al. Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning. Proc. Natl Acad. Sci. USA 102, 17582–17587 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Egli, D., Sandler, V. M., Shinohara, M. L., Cantor, H. & Eggan, K. Reprogramming after chromosome transfer into mouse blastomeres. Curr. Biol. 19, 1403–1409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Boiani, M., Eckardt, S., Scholer, H. R. & McLaughlin, K. J. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 16, 1209–1219 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bortvin, A. et al. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 130, 1673–1680 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Ng, R. K. & Gurdon, J. B. Epigenetic memory of active gene transcription is inherited through somatic cell nuclear transfer. Proc. Natl Acad. Sci. USA 102, 1957–1962 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Koche, R. P. et al. Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 8, 96–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stadtfeld, M., Maherali, N., Breault, D. T. & Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2, 230–240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sridharan, R. et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell 136, 364–377 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saeki, H. et al. Linker histone variants control chromatin dynamics during early embryogenesis. Proc. Natl Acad. Sci. USA 102, 5697–5702 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blelloch, R. et al. Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells 24, 2007–2013 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kishigami, S. et al. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem. Biophys. Res. Commun. 340, 183–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Inoue, K. et al. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 330, 496–499 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Gurdon, J. B. The developmental capacity of nuclei taken from differentiating endoderm cells of Xenopus laevis. J. Embryol. Exp. Morphol. 8, 505–526 (1960).

    CAS  PubMed  Google Scholar 

  67. Hiiragi, T. & Solter, D. Reprogramming is essential in nuclear transfer. Mol. Reprod. Dev. 70, 417–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250–264 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gu, P. et al. Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development. Mol. Cell. Biol. 25, 3492–3505 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gu, P. et al. Orphan nuclear receptor GCNF is required for the repression of pluripotency genes during retinoic acid-induced embryonic stem cell differentiation. Mol. Cell. Biol. 25, 8507–8519 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chuang, Y. S. et al. Promyelocytic leukemia protein in retinoic acid-induced chromatin remodeling of Oct4 gene promoter. Stem Cells 29, 660–669 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Epsztejn-Litman, S. et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nature Struct. Mol. Biol. 15, 1176–1183 (2008).

    Article  CAS  Google Scholar 

  73. Feldman, N. et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nature Cell Biol. 8, 188–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Pasque, V., Gillich, A., Garrett, N. & Gurdon, J. B. Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J. 6 May 2011 (doi:10.1038/emboj.2011.144).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

V.P. is supported by a Wallonia-Brussels International Excellence Grant. R.P.H.-S. is supported by the National Research Foundation of South Africa and the Cambridge Commonwealth Trust, UK. K.M. is supported by the Japan Society for the Promotion of Science (International Research Fellowship Program). This work was also supported by the Wellcome Trust (RHG54943).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Gurdon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

J. B. Gurdon's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jullien, J., Pasque, V., Halley-Stott, R. et al. Mechanisms of nuclear reprogramming by eggs and oocytes: a deterministic process?. Nat Rev Mol Cell Biol 12, 453–459 (2011). https://doi.org/10.1038/nrm3140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing