Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cubism and the cell cycle: the many faces of the APC/C

A Corrigendum to this article was published on 06 July 2011

This article has been updated

Key Points

  • The APC/C (anaphase-promoting complex, also known as the cyclosome) is a multisubunit ubiquitin ligase that regulates the cell cycle by targeting different substrates for degradation at different time points.

  • The APC/C is essential to impose the correct temporal order on the cell cycle.

  • Recent structural data have begun to reveal how the APC/C recognizes its substrates, and in particular the role of its co-activators, CDC20 and CDC20 homologue 1 (CDH1), in forming a bipartite degron receptor.

  • In early mitosis, the APC/C is regulated by the spindle assembly checkpoint (SAC), which sequesters CDC20 into a protein complex to prevent it from forming the substrate receptor for cyclin B and securin. At this time, cyclin A can still be degraded because it can compete with the SAC proteins to bind CDC20.

  • In G1 phase, the CDH1 co-activator replaces CDC20 and has an essential role in regulating cell fate decisions: mating in yeast and differentiation (in particular, endoreplication) in animal cells.

  • The APC/C must be turned off at the end of G1 phase to allow the S phase cyclins to accumulate and cells to begin DNA replication. This requires phosphorylation by cyclin–CDKs in yeast and the early mitotic inhibitor 1 (EMI1; also known as FBXO5) or RCA1 in animal cells.

Abstract

One does not often look to analytic cubism for insights into the control of the cell cycle, but Pablo Picasso beautifully encapsulated the fundamentals when he said that “every act of creation is, first of all, an act of destruction”. The rapid destruction of specific cell cycle regulators at just the right moment in the cell cycle ensures that daughter cells receive an equal and identical set of chromosomes from their mother and that DNA replication always follows mitosis. Remarkably, one protein complex is responsible for this surgical precision, the APC/C (anaphase-promoting complex, also known as the cyclosome). The APC/C is tightly regulated by its co-activators and by the spindle assembly checkpoint.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cell cycle.
Figure 2: The APC/C structure.
Figure 3: The spindle assembly checkpoint and the APC/C.
Figure 4: Waves of APC/C-directed proteolysis during mitosis.
Figure 5: Feedback loops between APC/CCDH1, cyclin A, SKP2 and p27KIP1 in G1 phase.

Similar content being viewed by others

Change history

  • 06 July 2011

    On page 435 of this article, there was a mistake in the personal communication. The scientists the author received the information from are R. Wolthuis and W. van Zon. This has been corrected online.

References

  1. Coudreuse, D. & Nurse, P. Driving the cell cycle with a minimal CDK control network. Nature 468, 1074–1079 (2010). Destined to be a classic paper. Shows that different thresholds of CDK activity drive DNA replication and mitosis in fission yeast.

    CAS  PubMed  Google Scholar 

  2. Noton, E. & Diffley, J. F. CDK inactivation is the only essential function of the APC/C and the mitotic exit network proteins for origin resetting during mitosis. Mol. Cell 5, 85–95 (2000).

    CAS  PubMed  Google Scholar 

  3. Amon, A., Irniger, S. & Nasmyth, K. Closing the cell cycle circle in yeast: G2 cyclin proteolysis initiated at mitosis persists until the activation of G1 cyclins in the next cycle. Cell 77, 1037–1050 (1994).

    CAS  PubMed  Google Scholar 

  4. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  5. Pesin, J. A. & Orr-Weaver, T. L. Regulation of APC/C activators in mitosis and meiosis. Annu. Rev. Cell Dev. Biol. 24, 475–499 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Verlhac, M. H., Terret, M. E. & Pintard, L. Control of the oocyte-to-embryo transition by the ubiquitin-proteolytic system in mouse and C. elegans. Curr. Opin. Cell Biol. 22, 758–763 (2010).

    CAS  PubMed  Google Scholar 

  7. Schreiber, A. et al. Structural basis for the subunit assembly of the anaphase-promoting complex. Nature 470, 227–232 (2011). The highest-resolution structure of the APC/C to date.

    CAS  PubMed  Google Scholar 

  8. Vodermaier, H. C., Gieffers, C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J. M. TPR subunits of the anaphase-promoting complex mediate binding to the activator protein CDH1. Curr. Biol. 13, 1459–1468 (2003).

    CAS  PubMed  Google Scholar 

  9. Thornton, B. R. et al. An architectural map of the anaphase-promoting complex. Genes Dev. 20, 449–460 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gmachl, M., Gieffers, C., Podtelejnikov, A. V., Mann, M. & Peters, J. M. The RING-H2 finger protein APC11 and the E2 enzyme UBC4 are sufficient to ubiquitinate substrates of the anaphase-promoting complex. Proc. Natl Acad. Sci. USA 97, 8973–8978 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang, Z. et al. APC2 cullin protein and APC11 RING protein comprise the minimal ubiquitin ligase module of the anaphase-promoting complex. Mol. Biol. Cell 12, 3839–3851 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ohi, M. D. et al. Structural organization of the anaphase-promoting complex bound to the mitotic activator Slp1. Mol. Cell 28, 871–885 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Passmore, L. A. et al. Structural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitylation. Mol. Cell 20, 855–866 (2005).

    CAS  PubMed  Google Scholar 

  14. Herzog, F. et al. Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex. Science 323, 1477–1481 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gieffers, C., Dube, P., Harris, J. R., Stark, H. & Peters, J. M. Three-dimensional structure of the anaphase-promoting complex. Mol. Cell 7, 907–913 (2001).

    CAS  PubMed  Google Scholar 

  16. da Fonseca, P. C. A. et al. Structures of APC/CCdh1 with substrates identify Cdh1 and Apc10 as the D-box co-receptor. Nature 470, 274–278 (2011).

    CAS  PubMed  Google Scholar 

  17. Buschhorn, B. A. et al. Substrate binding on the APC/C occurs between the coactivator Cdh1 and the processivity factor Doc1. Nature Struct. Mol. Biol. 18, 6–13 (2011). References 16 and 17 provide structural data supporting the role of CDH1 and APC10 as a bipartite degron receptor.

    CAS  Google Scholar 

  18. Carroll, C. W. & Morgan, D. O. The Doc1 subunit is a processivity factor for the anaphase-promoting complex. Nature Cell Biol. 4, 880–887 (2002).

    CAS  PubMed  Google Scholar 

  19. Carroll, C. W., Enquist-Newman, M. & Morgan, D. O. The APC subunit Doc1 promotes recognition of the substrate destruction box. Curr. Biol. 15, 11–18 (2005).

    CAS  PubMed  Google Scholar 

  20. Passmore, L. A. et al. Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. EMBO J. 22, 786–796 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Passmore, L. A. & Barford, D. Coactivator functions in a stoichiometric complex with anaphase-promoting complex/cyclosome to mediate substrate recognition. EMBO Rep. 6, 873–878 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Matyskiela, M. E. & Morgan, D. O. Analysis of activator-binding sites on the APC/C supports a cooperative substrate-binding mechanism. Mol. Cell 34, 68–80 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Izawa, D. & Pines, J. How APC/C–Cdc20 changes its substrate specificity in mitosis. Nature Cell Biol. 13, 223–233 (2011). References 22 and 23 provide biochemical evidence that the APC/C binds substrates through a bipartite degron receptor involving a co-activator.

    CAS  PubMed  Google Scholar 

  24. Mailand, N. & Diffley, J. F. CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122, 915–926 (2005).

    CAS  PubMed  Google Scholar 

  25. Holt, L. J., Krutchinsky, A. N. & Morgan, D. O. Positive feedback sharpens the anaphase switch. Nature 454, 353–357 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodier, G., Coulombe, P., Tanguay, P. L., Boutonnet, C. & Meloche, S. Phosphorylation of Skp2 regulated by CDK2 and Cdc14B protects it from degradation by APCCdh1 in G1 phase. EMBO J. 27, 679–691 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Choi, E. et al. BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing of mitosis. EMBO J. 28, 2077–2089 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamano, H., Tsurumi, C., Gannon, J. & Hunt, T. The role of the destruction box and its neighbouring lysine residues in cyclin B for anaphase ubiquitin-dependent proteolysis in fission yeast: defining the D-box receptor. EMBO J. 17, 5670–5678 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. King, R. W., Glotzer, M. & Kirschner, M. W. Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Mol. Biol. Cell 7, 1343–1357 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jin, L., Williamson, A., Banerjee, S., Philipp, I. & Rape, M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653–665 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Summers, M. K., Pan, B., Mukhyala, K. & Jackson, P. K. The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Mol. Cell 31, 544–556 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Williamson, A. et al. Identification of a physiological E2 module for the human anaphase-promoting complex. Proc. Natl Acad. Sci. USA 106, 18213–18218 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodrigo-Brenni, M. C., Foster, S. A. & Morgan, D. O. Catalysis of lysine 48-specific ubiquitin chain assembly by residues in E2 and ubiquitin. Mol. Cell 39, 548–559 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Garnett, M. J. et al. UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit. Nature Cell Biol. 11, 1363–1369 (2009).

    CAS  PubMed  Google Scholar 

  35. Wu, T. et al. UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex. Proc. Natl Acad. Sci. USA 107, 1355–1360 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Seino, H., Kishi, T., Nishitani, H. & Yamao, F. Two ubiquitin-conjugating enzymes, UbcP1/Ubc4 and UbcP4/Ubc11, have distinct functions for ubiquitination of mitotic cyclin. Mol. Cell. Biol. 23, 3497–3505 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mathe, E. et al. The E2-C vihar is required for the correct spatiotemporal proteolysis of cyclin B and itself undergoes cyclical degradation. Curr. Biol. 14, 1723–1733 (2004).

    CAS  PubMed  Google Scholar 

  38. Townsley, F. M., Aristarkhov, A., Beck, S., Hershko, A. & Ruderman, J. V. Dominant-negative cyclin-selective ubiquitin carrier protein E2-C/UbcH10 blocks cells in metaphase. Proc. Natl Acad. Sci. USA 94, 2362–2367 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rape, M. & Kirschner, M. W. Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432, 588–595 (2004).

    CAS  PubMed  Google Scholar 

  40. Kirkpatrick, D. S. et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nature Cell Biol. 8, 700–710 (2006).

    CAS  PubMed  Google Scholar 

  41. Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565 (2002).

    CAS  PubMed  Google Scholar 

  42. McGarry, T. J. & Kirschner, M. W. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043–1053 (1998).

    CAS  PubMed  Google Scholar 

  43. Littlepage, L. E. & Ruderman, J. V. Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes Dev. 16, 2274–2285 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lindon, C. & Pines, J. Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J. Cell Biol. 164, 233–241 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Castro, A. et al. The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-Box sequence of Aurora-A. EMBO Rep. 3, 1209–1214 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rudner, A. D. & Murray, A. W. Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. J. Cell Biol. 149, 1377–1390 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kraft, C. et al. Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J. 22, 6598–6609 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shteinberg, M., Protopopov, Y., Listovsky, T., Brandeis, M. & Hershko, A. Phosphorylation of the cyclosome is required for its stimulation by Fizzy/cdc20. Biochem. Biophys. Res. Commun. 260, 193–198 (1999).

    CAS  PubMed  Google Scholar 

  49. Rudner, A. D., Hardwick, K. G. & Murray, A. W. Cdc28 activates exit from mitosis in budding yeast. J. Cell Biol. 149, 1361–1376 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cross, F. R. Two redundant oscillatory mechanisms in the yeast cell cycle. Dev. Cell 4, 741–752 (2003).

    CAS  PubMed  Google Scholar 

  51. Kotani, S. et al. PKA and MPF-activated Polo-like kinase regulate anaphase-promoting complex activity and mitosis progression. Mol. Cell 1, 371–380 (1998).

    CAS  PubMed  Google Scholar 

  52. Reimann, J. D. et al. Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105, 645–655 (2001).

    CAS  PubMed  Google Scholar 

  53. Hansen, D. V., Loktev, A. V., Ban, K. H. & Jackson, P. K. Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFβTrCP-dependent destruction of the APC inhibitor Emi1. Mol. Biol. Cell 15, 5623–5634 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Moshe, Y., Boulaire, J., Pagano, M. & Hershko, A. Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc. Natl Acad. Sci. USA 101, 7937–7942 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Di Fiore, B. & Pines, J. Emi1 is needed to couple DNA replication with mitosis but does not regulate activation of the mitotic APC/C. J. Cell Biol. 177, 425–437 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lenart, P. et al. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of Polo-like kinase 1. Curr. Biol. 17, 304–315 (2007).

    CAS  PubMed  Google Scholar 

  57. Kimata, Y., Baxter, J. E., Fry, A. M. & Yamano, H. A role for the Fizzy/Cdc20 family of proteins in activation of the APC/C distinct from substrate recruitment. Mol. Cell 32, 576–583 (2008). Evidence that CDC20 may have additional properties in activating the APC/C, aside from forming a degron receptor.

    CAS  PubMed  Google Scholar 

  58. Saha, A. & Deshaies, R. J. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell 32, 21–31 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Duda, D. M. et al. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134, 995–1006 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gavet, O. & Pines, J. Activation of Cyclin B1–Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J. Cell Biol. 189, 247–259 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wolthuis, R. et al. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol. Cell 30, 290–302 (2008).

    CAS  PubMed  Google Scholar 

  62. Geley, S. et al. APC/C-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol. 153, 137–148 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Di Fiore, B. & Pines, J. How cyclin A destruction escapes the spindle assembly checkpoint. J. Cell Biol. 190, 501–509 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. den Elzen, N. & Pines, J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J. Cell Biol. 153, 121–136 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rieder, C. L., Cole, R. W., Khodjakov, A. & Sluder, G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol. 130, 941–948 (1995). A classic paper showing that unattached kinetochores are the source of the signal that prevents anaphase.

    CAS  PubMed  Google Scholar 

  66. Zich, J. & Hardwick, K. G. Getting down to the phosphorylated 'nuts and bolts' of spindle checkpoint signalling. Trends Biochem. Sci. 35, 18–27 (2010).

    CAS  PubMed  Google Scholar 

  67. De Antoni, A. et al. The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr. Biol. 15, 214–225 (2005). A very influential model for how the SAC may work.

    CAS  PubMed  Google Scholar 

  68. Kulukian, A., Han, J. S. & Cleveland, D. W. Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev. Cell 16, 105–117 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fang, G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol. Biol. Cell 13, 755–766 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sudakin, V., Chan, G. K. & Yen, T. J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol. 154, 925–936 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Burton, J. L. & Solomon, M. J. Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev. 21, 655–667 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. King, E. M., van der Sar, S. J. & Hardwick, K. G. Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint. PLoS ONE 2, e342 (2007).

    PubMed  PubMed Central  Google Scholar 

  73. Reddy, S. K., Rape, M., Margansky, W. A. & Kirschner, M. W. Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature 446, 921–925 (2007).

    CAS  PubMed  Google Scholar 

  74. Stegmeier, F. et al. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446, 876–881 (2007).

    CAS  PubMed  Google Scholar 

  75. Pan, J. & Chen, R. H. Spindle checkpoint regulates Cdc20p stability in Saccharomyces cerevisiae. Genes Dev. 18, 1439–1451 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nilsson, J., Yekezare, M., Minshull, J. & Pines, J. The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nature Cell Biol. 10, 1411–1420 (2008).

    CAS  PubMed  Google Scholar 

  77. Ge, S., Skaar, J. R. & Pagano, M. APC/C- and Mad2-mediated degradation of Cdc20 during spindle checkpoint activation. Cell Cycle 8, 167–171 (2009).

    CAS  PubMed  Google Scholar 

  78. Song, M. S. et al. The tumour suppressor RASSF1A regulates mitosis by inhibiting the APC–Cdc20 complex. Nature Cell Biol. 6, 129–37 (2004).

    CAS  PubMed  Google Scholar 

  79. Jeganathan, K. B., Malureanu, L. & van Deursen, J. M. The Rae1–Nup98 complex prevents aneuploidy by inhibiting securin degradation. Nature 438, 1036–1039 (2005).

    CAS  PubMed  Google Scholar 

  80. Tommasi, S. et al. Tumor susceptibility of Rassf1a knockout mice. Cancer Res. 65, 92–98 (2005).

    CAS  PubMed  Google Scholar 

  81. Wang, Q. et al. BUBR1 deficiency results in abnormal megakaryopoiesis. Blood 103, 1278–1285 (2004).

    CAS  PubMed  Google Scholar 

  82. Dobles, M., Liberal, V., Scott, M. L., Benezra, R. & Sorger, P. K. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 101, 635–645 (2000).

    CAS  PubMed  Google Scholar 

  83. Hayes, M. J. et al. Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C. Nature Cell Biol. 8, 607–614 (2006).

    CAS  PubMed  Google Scholar 

  84. Gabellini, D. et al. Early mitotic degradation of the homeoprotein HOXC10 is potentially linked to cell cycle progression. EMBO J. 22, 3715–3724 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Clute, P. & Pines, J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nature Cell Biol. 1, 82–87 (1999).

    CAS  PubMed  Google Scholar 

  86. Acquaviva, C., Herzog, F., Kraft, C. & Pines, J. The anaphase promoting complex/cyclosome is recruited to centromeres by the spindle assembly checkpoint. Nature Cell Biol. 6, 892–898 (2004).

    CAS  PubMed  Google Scholar 

  87. Huang, J. & Raff, J. W. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J. 18, 2184–2195 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Manchado, E. et al. Targeting mitotic exit leads to tumor regression in vivo: modulation by Cdk1, Mastl, and the PP2A/B55α,δ phosphatase. Cancer Cell 18, 641–654 (2010).

    CAS  PubMed  Google Scholar 

  89. Li, M., York, J. P. & Zhang, P. Loss of Cdc20 causes a securin-dependent metaphase arrest in two-cell mouse embryos. Mol. Cell. Biol. 27, 3481–3488 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang, H. C., Shi, J., Orth, J. D. & Mitchison, T. J. Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell 16, 347–358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Chow, J. P., Poon, R. Y. & Ma, H. T. Inhibitory phosphorylation of CDK1 as a compensatory mechanism for mitosis exit. Mol. Cell. Biol. 31, 1478–1491 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Baumgarten, A. J., Felthaus, J. & Wasch, R. Strong inducible knockdown of APC/CCdc20 does not cause mitotic arrest in human somatic cells. Cell Cycle 8, 643–646 (2009).

    CAS  PubMed  Google Scholar 

  93. Kraft, C., Vodermaier, H. C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J. M. The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol. Cell 18, 543–553 (2005).

    CAS  PubMed  Google Scholar 

  94. Hagting, A. et al. Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J. Cell Biol. 157, 1125–1137 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Sigl, R. et al. Loss of the mammalian APC/C activator FZR1 shortens G1 and lengthens S phase but has little effect on exit from mitosis. J. Cell Sci. 122, 4208–4217 (2009).

    CAS  PubMed  Google Scholar 

  96. Garcia-Higuera, I. et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nature Cell Biol. 10, 802–811 (2008).

    PubMed  Google Scholar 

  97. Floyd, S., Pines, J. & Lindon, C. APC/C Cdh1 targets Aurora kinase to control reorganization of the mitotic spindle at anaphase. Curr. Biol. 18, 1649–1658 (2008).

    CAS  PubMed  Google Scholar 

  98. Sigrist, S. J. & Lehner, C. F. Drosophila Fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 90, 671–681 (1997).

    CAS  PubMed  Google Scholar 

  99. Blanco, M. A., Sanchez-Diaz, A., de Prada, J. M. & Moreno, S. APCste9/srw1 promotes degradation of mitotic cyclins in G1 and is inhibited by cdc2 phosphorylation. EMBO J. 19, 3945–3955 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schwab, M., Lutum, A. S. & Seufert, W. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell 90, 683–693 (1997).

    CAS  PubMed  Google Scholar 

  101. Visintin, R., Prinz, S. & Amon, A. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278, 460–463 (1997).

    CAS  PubMed  Google Scholar 

  102. D'Amours, D. & Amon, A. At the interface between signaling and executing anaphase—Cdc14 and the FEAR network. Genes Dev. 18, 2581–2595 (2004).

    CAS  PubMed  Google Scholar 

  103. Rape, M., Reddy, S. K. & Kirschner, M. W. The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 124, 89–103 (2006).

    CAS  PubMed  Google Scholar 

  104. Bashir, T., Dorrello, N. V., Amador, V., Guardavaccaro, D. & Pagano, M. Control of the SCFSkp2–Cks1 ubiquitin ligase by the APC/CCdh1 ubiquitin ligase. Nature 428, 190–193 (2004).

    CAS  PubMed  Google Scholar 

  105. Wei, W. et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428, 194–198 (2004).

    CAS  PubMed  Google Scholar 

  106. Kominami, K., Seth-Smith, H. & Toda, T. Apc10 and Ste9/Srw1, two regulators of the APC-cyclosome, as well as the CDK inhibitor Rum1 are required for G1 cell-cycle arrest in fission yeast. EMBO J. 17, 5388–5399 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kitamura, K., Maekawa, H. & Shimoda, C. Fission yeast Ste9, a homolog of Hct1/Cdh1 and Fizzy-related, is a novel negative regulator of cell cycle progression during G1-phase. Mol. Biol. Cell 9, 1065–1080 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wasch, R. & Cross, F. R. APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit. Nature 418, 556–562 (2002).

    PubMed  Google Scholar 

  109. Jorgensen, P., Nishikawa, J. L., Breitkreutz, B. J. & Tyers, M. Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395–400 (2002).

    CAS  PubMed  Google Scholar 

  110. Sudo, T. et al. Activation of Cdh1-dependent APC is required for G1 cell cycle arrest and DNA damage-induced G2 checkpoint in vertebrate cells. EMBO J. 20, 6499–6508 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Mocciaro, A. et al. Vertebrate cells genetically deficient for Cdc14A or Cdc14B retain DNA damage checkpoint proficiency but are impaired in DNA repair. J. Cell Biol. 189, 631–639 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bassermann, F. et al. The Cdc14B–Cdh1–Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell 134, 256–267 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Matsumoto, T. A fission yeast homolog of cdc20/p55cdc/Fizzy is required for recovery from DNA damage and genetically interacts with p34cdc2. Mol. Cell. Biol. 17, 742–750 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Jaspersen, S. L., Charles, J. F. & Morgan, D. O. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr. Biol. 9, 227–236 (1999).

    CAS  PubMed  Google Scholar 

  115. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 1721–1724 (1998).

    CAS  PubMed  Google Scholar 

  116. Reber, A., Lehner, C. F. & Jacobs, H. W. Terminal mitoses require negative regulation of Fzr/Cdh1 by Cyclin A, preventing premature degradation of mitotic cyclins and String/Cdc25. Development 133, 3201–3211 (2006).

    CAS  PubMed  Google Scholar 

  117. Lukas, C. et al. Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature 401, 815–818 (1999).

    CAS  PubMed  Google Scholar 

  118. Hsu, J. Y., Reimann, J. D., Sorensen, C. S., Lukas, J. & Jackson, P. K. E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APCCdh1. Nature Cell Biol. 4, 358–366 (2002).

    CAS  PubMed  Google Scholar 

  119. Machida, Y. J. & Dutta, A. The APC/C inhibitor, Emi1, is essential for prevention of rereplication. Genes Dev. 21, 184–194 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Martinez, J. S., Jeong, D. E., Choi, E., Billings, B. M. & Hall, M. C. Acm1 is a negative regulator of the CDH1-dependent anaphase-promoting complex/cyclosome in budding yeast. Mol. Cell. Biol. 26, 9162–9176 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Grosskortenhaus, R. & Sprenger, F. Rca1 inhibits APC-Cdh1Fzr and is required to prevent cyclin degradation in G2. Dev. Cell 2, 29–40 (2002).

    CAS  PubMed  Google Scholar 

  122. Ostapenko, D., Burton, J. L., Wang, R. & Solomon, M. J. Pseudosubstrate inhibition of the anaphase-promoting complex by Acm1: regulation by proteolysis and Cdc28 phosphorylation. Mol. Cell. Biol. 28, 4653–4664 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Enquist-Newman, M., Sullivan, M. & Morgan, D. O. Modulation of the mitotic regulatory network by APC-dependent destruction of the Cdh1 inhibitor Acm1. Mol. Cell 30, 437–446 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Miller, J. J. et al. Emi1 stably binds and inhibits the anaphase-promoting complex/cyclosome as a pseudosubstrate inhibitor. Genes Dev. 20, 2410–2420 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Tang, W. et al. Emi2-mediated inhibition of E2-substrate ubiquitin transfer by the APC/C through a D-Box-independent mechanism. Mol. Biol. Cell 21, 2589–2597 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Walker, A., Acquaviva, C., Matsusaka, T., Koop, L. & Pines, J. UbcH10 has a rate-limiting role in G1 phase but might not act in the spindle checkpoint or as part of an autonomous oscillator. J. Cell Sci. 121, 2319–2326 (2008).

    CAS  PubMed  Google Scholar 

  127. Zielke, N., Querings, S., Rottig, C., Lehner, C. & Sprenger, F. The anaphase-promoting complex/cyclosome (APC/C) is required for rereplication control in endoreplication cycles. Genes Dev. 22, 1690–1703 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee, H. et al. Mouse emi1 has an essential function in mitotic progression during early embryogenesis. Mol. Cell. Biol. 26, 5373–5381 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Geng, Y. et al. Cyclin E ablation in the mouse. Cell 114, 431–443 (2003).

    CAS  PubMed  Google Scholar 

  130. Wirth, K. G. et al. Loss of the anaphase-promoting complex in quiescent cells causes unscheduled hepatocyte proliferation. Genes Dev. 18, 88–98 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Konishi, Y., Stegmuller, J., Matsuda, T., Bonni, S. & Bonni, A. Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science 303, 1026–1030 (2004).

    CAS  PubMed  Google Scholar 

  132. van Roessel, P., Elliott, D. A., Robinson, I. M., Prokop, A. & Brand, A. H. Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell 119, 707–718 (2004).

    CAS  PubMed  Google Scholar 

  133. Yang, Y. et al. A Cdc20-APC ubiquitin signaling pathway regulates presynaptic differentiation. Science 326, 575–578 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Malureanu, L. A. et al. BubR1 N terminus acts as a soluble inhibitor of cyclin B degradation by APC/CCdc20 in interphase. Dev. Cell 16, 118–131 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Maciejowski, J. et al. Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. J. Cell Biol. 190, 89–100 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Hwang, L. H. & Murray, A. W. A novel yeast screen for mitotic arrest mutants identifies DOC1, a new gene involved in cyclin proteolysis. Mol. Biol. Cell 8, 1877–1887 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    CAS  PubMed  Google Scholar 

  138. Pines, J. Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol. 16, 55–63 (2006).

    CAS  PubMed  Google Scholar 

  139. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42 (1999).

    CAS  PubMed  Google Scholar 

  140. Hauf, S., Waizenegger, I. C. & Peters, J. M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293, 1320–1323 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to D. Barford, M. Malumbres and R. Wolthuis for communicating unpublished data and to D. Morgan for constructive advice on the manuscript. I am also grateful to my laboratory colleagues for their comments and criticisms. I apologize to all those colleagues in the field whose work I have been unable to cite because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathon Pines.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Protein Data Bank

FURTHER INFORMATION

Jonathon Pines's homepage

Glossary

DNA replication origins

Sites where replication is initiated during S phase. They are bound by the origin of replication complex.

Cullin

A family of proteins present in multisubunit ubiquitin ligases; they recruit RING fingercontaining proteins to the ligase complex.

RING finger E3 ubiquitin ligase

A class of E3 ligases, the RING finger domain of which is responsible for binding, and potentially activating, the E2 enzyme that carries the ubiquitin moiety.

Kinetochores

Multiprotein complexes that assemble on centromeric DNA and mediate the attachment and movement of chromosomes along the microtubules of the mitotic spindle.

EM single particle 3D reconstruction

Structural analysis in which single macromolecules are imaged using an electron microscope and the structure is derived from averaging the images.

Tetratricopeptide repeats

(TPRs). Structural motifs, found in a wide range of proteins, that are composed of 34 amino acids. TPRs are involved in intra- and inter-molecular interactions.

WD40 repeat

A protein motif that is composed of a 40-amino-acid repeat that forms a blade of the characteristic β-propeller structure.

DOC domain family

A family of proteins containing a motif that was originally identified in the destruction of cyclin B 1 (Doc1) protein in budding yeast.

Processivity

A measure of the number of ubiquitin molecules that can be added to a chain in any one round of substrate binding.

Nuclear envelope breakdown

The point at the end of prophase when the nuclear envelope of many eukaryotic cells disassembles.

Distributive substrates

Ubiquitin ligase substrates that require several rounds of binding to the ligase to be polyubiquitylated.

SCFSKP2 ubiquitin ligase

A multisubunit ubiquitin ligase that contains S phase kinase-associated protein 1 (SKP1; a member of the cullin family), SKP2 (an F-box protein) and a RING fingercontaining protein, RING box1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pines, J. Cubism and the cell cycle: the many faces of the APC/C. Nat Rev Mol Cell Biol 12, 427–438 (2011). https://doi.org/10.1038/nrm3132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing