Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mitochondrial fusion and fission in cell life and death

Key Points

  • Live cell imaging studies showed that mitochondria are highly dynamic organelles that frequently fuse and divide.

  • Two evolutionarily conserved large GTPases constitute the core machinery of fusion: mitofusins are found in the outer membrane, and Mgm1 and optic atrophy protein 1 (OPA1) are found in the inner membrane of yeast and mammals, respectively.

  • Mitochondrial fission is mediated by dynamin-related proteins (DRPs) and cofactors that are required for assembly of DRP rings and spirals on the mitochondrial surface. Only little is known about division of the inner membrane.

  • The machineries of mitochondrial fusion and fission are regulated by many cellular pathways, including proteolytic processing, ubiquitylation, sumoylation, phosphorylation and dephosphorylation.

  • Mitochondrial fusion and fission are required for faithful inheritance and proper intracellular distribution of the organelle.

  • Mitochondrial dynamics counteracts cellular ageing by allowing complementation of gene products after fusion of impaired mitochondria, and it constitutes an important part of organellar quality control as it facilitates the elimination of damaged mitochondria by autophagy. Furthermore, mitochondrial division is an important step in apoptosis.

  • Dysfunctions of mitochondrial dynamics contribute to several inherited and age-associated neurodegenerative diseases.

Abstract

Mitochondria are dynamic organelles that constantly fuse and divide. These processes (collectively termed mitochondrial dynamics) are important for mitochondrial inheritance and for the maintenance of mitochondrial functions. The core components of the evolutionarily conserved fusion and fission machineries have now been identified, and mechanistic studies have revealed the first secrets of the complex processes that govern fusion and fission of a double membrane-bound organelle. Mitochondrial dynamics was recently recognized as an important constituent of cellular quality control. Defects have detrimental consequences on bioenergetic supply and contribute to the pathogenesis of neurodegenerative diseases. These findings open exciting new directions to explore mitochondrial biology.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mitochondrial morphology.
Figure 2: Domain structures of mitochondrial fusion and fission components.
Figure 3: Assembly and post-translational modifications of mitochondrial fusion and fission machineries.
Figure 4: Biological functions of mitochondrial dynamics.

References

  1. 1

    Palade, G. E. An electron microscope study of the mitochondrial structure. J. Histochem. Cytochem. 1, 188–211 (1953).

    CAS  PubMed  Google Scholar 

  2. 2

    Bereiter-Hahn, J. Behavior of mitochondria in the living cell. Int. Rev. Cytol. 122, 1–63 (1990).

    CAS  PubMed  Google Scholar 

  3. 3

    Skulachev, V. P. Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci. 26, 23–29 (2001).

    CAS  PubMed  Google Scholar 

  4. 4

    Collins, T. J., Berridge, M. J., Lipp, P. & Bootman, M. D. Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J. 21, 1616–1627 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  5. 5

    Detmer, S. A. & Chan, D. C. Functions and dysfunctions of mitochondrial dynamics. Nature Rev. Mol. Cell Biol. 8, 870–879 (2007).

    CAS  Google Scholar 

  6. 6

    Hoppins, S., Lackner, L. & Nunnari, J. The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 76, 751–780 (2007).

    CAS  PubMed  Google Scholar 

  7. 7

    Okamoto, K. & Shaw, J. M. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 39, 503–536 (2005).

    CAS  PubMed  Google Scholar 

  8. 8

    Martens, S. & McMahon, H. T. Mechanisms of membrane fusion: disparate players and common principles. Nature Rev. Mol. Cell Biol. 9, 543–556 (2008).

    CAS  Google Scholar 

  9. 9

    Hales, K. G. & Fuller, M. T. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121–129 (1997). Reports the identification of the first known mediator of mitochondrial fusion and, at the same time, describes the role of fusion in remodelling of mitochondria during spermatogenesis.

    CAS  PubMed  Google Scholar 

  10. 10

    Rapaport, D., Brunner, M., Neupert, W. & Westermann, B. Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J. Biol. Chem. 273, 20150–20155 (1998).

    CAS  PubMed  Google Scholar 

  11. 11

    Hermann, G. J. et al. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol. 143, 359–373 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  12. 12

    Kanazawa, T. et al. The C. elegans Opa1 homologue EAT-3 is essential for resistance to free radicals. PLoS Genet. 4, e1000022 (2008).

    PubMed Central  PubMed  Google Scholar 

  13. 13

    Santel, A. & Fuller, M. T. Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114, 867–874 (2001).

    CAS  PubMed  Google Scholar 

  14. 14

    Fritz, S., Rapaport, D., Klanner, E., Neupert, W. & Westermann, B. Connection of the mitochondrial outer and inner membranes by Fzo1 is critical for organellar fusion. J. Cell Biol. 152, 683–692 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  15. 15

    Rojo, M., Legros, F., Chateau, D. & Lombes, A. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci. 115, 1663–1674 (2002).

    CAS  PubMed  Google Scholar 

  16. 16

    Meeusen, S. et al. Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127, 383–395 (2006).

    CAS  PubMed  Google Scholar 

  17. 17

    Herlan, M., Vogel, F., Bornhövd, C., Neupert, W. & Reichert, A. S. Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J. Biol. Chem. 278, 27781–27788 (2003).

    CAS  PubMed  Google Scholar 

  18. 18

    McQuibban, G. A., Saurya, S. & Freeman, M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537–541 (2003).

    CAS  PubMed  Google Scholar 

  19. 19

    Cipolat, S., Martins de Brito, O., Dal Zilio, B. & Scorrano, L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl Acad. Sci. USA 101, 15927–15932 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  20. 20

    Yarosh, W. et al. The molecular mechanisms of OPA1-mediated optic atrophy in Drosophila model and prospects for antioxidant treatment. PLoS Genet. 4, e6 (2008).

    PubMed Central  PubMed  Google Scholar 

  21. 21

    Cipolat, S. et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126, 163–175 (2006).

    CAS  Google Scholar 

  22. 22

    Griparic, L., Kanazawa, T. & van der Bliek, A. M. Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J. Cell Biol. 178, 757–764 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  23. 23

    Ishihara, N., Fujita, Y., Oka, T. & Mihara, K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25, 2966–2977 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  24. 24

    Ehses, S. et al. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J. Cell Biol. 187, 1023–1036 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  25. 25

    Song, Z., Chen, H., Fiket, M., Alexander, C. & Chan, D. C. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol. 178, 749–755 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  26. 26

    Head, B., Griparic, L., Amiri, M., Gandre-Babbe, S. & van der Bliek, A. M. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J. Cell Biol. 187, 959–966 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. 27

    Wong, E. D. et al. The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J. Cell Biol. 151, 341–352 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  28. 28

    Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200 (2003). Demonstrates that both mammalian mitofusin isoforms are required to promote mitochondrial fusion and play essential parts in development.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. 29

    Olichon, A. et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278, 7743–7746 (2003).

    CAS  PubMed  Google Scholar 

  30. 30

    Meeusen, S., McCaffery, J. M. & Nunnari, J. Mitochondrial fusion intermediates revealed in vitro. Science 305, 1747–1752 (2004). Describes an in vitro assay that was used to dissect distinct steps of mitochondrial double-membrane fusion.

    CAS  PubMed  Google Scholar 

  31. 31

    Koshiba, T. et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858–862 (2004).

    CAS  PubMed  Google Scholar 

  32. 32

    DeVay, R. M. et al. Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J. Cell Biol. 186, 793–803 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  33. 33

    Malka, F. et al. Separate fusion of outer and inner mitochondrial membranes. EMBO Rep. 6, 853–859 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  34. 34

    Sesaki, H. & Jensen, R. E. UGO1 encodes an outer membrane protein required for mitochondrial fusion. J. Cell Biol. 152, 1123–1134 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  35. 35

    Hoppins, S., Horner, J., Song, C., McCaffery, J. M. & Nunnari, J. Mitochondrial outer and inner membrane fusion requires a modified carrier protein. J. Cell Biol. 184, 569–581 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  36. 36

    Sesaki, H. & Jensen, R. E. Ugo1p links the Fzo1p and Mgm1p GTPases for mitochondrial fusion. J. Biol. Chem. 279, 28298–28303 (2004).

    CAS  PubMed  Google Scholar 

  37. 37

    Praefcke, G. J. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol. 5, 133–147 (2004).

    CAS  Google Scholar 

  38. 38

    Smirnowa, E., Shurland, D. L., Ryazantsev, S. N. & van der Bliek, A. M. A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol. 143, 351–358 (1998).

    Google Scholar 

  39. 39

    Otsuga, D. et al. The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J. Cell Biol. 143, 333–349 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  40. 40

    Mozdy, A., McCaffery, J. M. & Shaw, J. M. Dnm1p GTPase-mediated mitochondrial fusion is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol. 151, 367–379 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. 41

    Tieu, Q. & Nunnari, J. Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J. Cell Biol. 151, 353–365 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  42. 42

    Zhang, Y. & Chan, D. C. Structural basis for recruitment of mitochondrial fission complexes by Fis1. Proc. Natl Acad. Sci. USA 104, 18526–18530 (2007).

    CAS  PubMed  Google Scholar 

  43. 43

    Tieu, Q., Okreglak, V., Naylor, K. & Nunnari, J. The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J. Cell Biol. 158, 445–452 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  44. 44

    Lackner, L. L., Horner, J. S. & Nunnari, J. Mechanistic analysis of a dynamin effector. Science 325, 874–877 (2009).

    CAS  PubMed  Google Scholar 

  45. 45

    Ingerman, E. et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. 170, 1021–1027 (2005). References 44 and 45 report in vitro studies providing mechanistic insights into the self-assembly of Dnm1 into helical structures that are thought to drive membrane scission.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. 46

    Griffin, E. E., Graumann, J. & Chan, D. C. The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria. J. Cell Biol. 170, 237–248 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  47. 47

    Schauss, A. C., Bewersdorf, J. & Jakobs, S. Fis1p and Caf4p, but not Mdv1p, determine the polar localization of Dnm1p clusters on the mitochondrial surface. J. Cell Sci. 119, 3098–3106 (2006).

    CAS  PubMed  Google Scholar 

  48. 48

    Dimmer, K. S. et al. Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 847–853 (2002). Describes a systematic, genome-wide screen in yeast that led to the discovery of several genes affecting mitochondrial dynamics, including MDM30, MDM33, MDM36, NUM1 and PCP1.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. 49

    Cerveny, K. L., Studer, S. L., Jensen, R. E. & Sesaki, H. Yeast mitochondrial division and distribution require the cortical Num1 protein. Dev. Cell 12, 363–375 (2007).

    CAS  PubMed  Google Scholar 

  50. 50

    Hammermeister, M., Schödel, K. & Westermann, B. Mdm36 is a mitochondrial fission-promoting protein in Saccharomyces cerevisiae. Mol. Biol. Cell 21, 2443–2452 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  51. 51

    Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006).

    CAS  Google Scholar 

  52. 52

    Yoon, Y., Krueger, E. W., Oswald, B. J. & McNiven, M. A. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol. Cell. Biol. 23, 5409–5420 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  53. 53

    James, D. I., Parone, P. A., Mattenberger, Y. & Martinou, J. C. hFis1, a novel component of the mammalian mitochondrial fission machinery. J. Biol. Chem. 278, 36373–36379 (2003).

    CAS  PubMed  Google Scholar 

  54. 54

    Lee, Y. J., Jeong, S. Y., Karbowski, M., Smith, C. L. & Youle, R. J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 15, 5001–5011 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  55. 55

    Breckenridge, D. G. et al. Caenorhabditis elegans drp-1 and fis-2 regulate distinct cell-death execution pathways downstream of ced-3 and independent of ced-9. Mol. Cell 31, 586–597 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  56. 56

    Gandre-Babbe, S. & van der Bliek, A. M. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 19, 2402–2412 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  57. 57

    Labrousse, A. M., Zappaterra, M. D., Rube, D. A. & van der Bliek, A. M. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4, 815–826 (1999).

    CAS  PubMed  Google Scholar 

  58. 58

    Legesse-Miller, A., Massol, R. H. & Kirchhausen, T. Constriction and Dnm1p recruitment are distinct processes in mitochondrial fission. Mol. Biol. Cell 14, 1953–1963 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  59. 59

    Jakobs, S. et al. Spatial and temporal dynamics of budding yeast mitochondria lacking the division component Fis1p. J. Cell Sci. 116, 2005–2014 (2003).

    CAS  PubMed  Google Scholar 

  60. 60

    Messerschmitt, M. et al. The inner membrane protein Mdm33 controls mitochondrial morphology in yeast. J. Cell Biol. 160, 553–564 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  61. 61

    Tondera, D. et al. The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J. Cell Sci. 118, 3049–3059 (2005).

    CAS  PubMed  Google Scholar 

  62. 62

    Sesaki, H. & Jensen, R. E. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J. Cell Biol. 147, 699–706 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  63. 63

    Bleazard, W. et al. The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nature Cell Biol. 1, 298–304 (1999). References 62 and 63 show in yeast that fusion and fission are antagonistic and balanced activities that are both required for the maintenance of mitochondrial morphology.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. 64

    Fritz, S., Weinbach, N. & Westermann, B. Mdm30 is an F-box protein required for maintenance of fusion-competent mitochondria in yeast. Mol. Biol. Cell 14, 2303–2313 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  65. 65

    Cohen, M. M., Leboucher, G. P., Livnat-Levanon, N., Glickman, M. H. & Weissman, A. M. Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion. Mol. Biol. Cell 19, 2457–2464 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  66. 66

    Amiott, E. A., Cohen, M. M., Saint-Georges, Y., Weissman, A. M. & Shaw, J. M. A mutation associated with CMT2A neuropathy causes defects in Fzo1 GTP hydrolysis, ubiquitylation, and protein turnover. Mol. Biol. Cell 20, 5026–5035 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  67. 67

    Herlan, M., Bornhövd, C., Hell, K., Neupert, W. & Reichert, A. S. Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor. J. Cell Biol. 165, 167–173 (2004). Formulation of an attractive hypothesis that suggests that alternative processing of Mgm1 could adapt mitochondrial fusion rates to matrix ATP levels.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. 68

    Baricault, L. et al. OPA1 cleavage depends on decreased mitochondrial ATP level and bivalent metals. Exp. Cell Res. 313, 3800–3808 (2007).

    CAS  PubMed  Google Scholar 

  69. 69

    Nakamura, N., Kimura, Y., Tokuda, M., Honda, S. & Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 7, 1019–1022 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  70. 70

    Karbowski, M., Neutzner, A. & Youle, R. J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 178, 71–84 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  71. 71

    Yonashiro, R. et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 25, 3618–3626 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  72. 72

    Park, Y. Y. et al. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 123, 619–626 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  73. 73

    Braschi, E., Zunino, R. & McBride, H. M. MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep. 10, 748–754 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  74. 74

    Zunino, R., Schauss, A., Rippstein, P., Andrade-Navarro, M. & McBride, H. M. The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J. Cell Sci. 120, 1178–1188 (2007).

    CAS  PubMed  Google Scholar 

  75. 75

    Taguchi, N., Ishihara, N., Jofuku, A., Oka, T. & Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521–11529 (2007).

    CAS  PubMed  Google Scholar 

  76. 76

    Cribbs, J. T. & Strack, S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8, 939–944 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  77. 77

    Han, X. J. et al. CaM kinase I α-induced phosphorylation of Drp1 regulates mitochondrial morphology. J. Cell Biol. 182, 573–585 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  78. 78

    Cereghetti, G. M. et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl Acad. Sci. USA 105, 15803–15808 (2008).

    CAS  PubMed  Google Scholar 

  79. 79

    Eura, Y., Ishihara, N., Oka, T. & Mihara, K. Identification of a novel protein that regulates mitochondrial fusion by modulating mitofusin (Mfn) protein function. J. Cell Sci. 119, 4913–4925 (2006).

    CAS  PubMed  Google Scholar 

  80. 80

    Liesa, M. et al. Mitochondrial fusion is increased by the nuclear coactivator PGC-1β. PLoS One 3, e3613 (2008).

    PubMed Central  PubMed  Google Scholar 

  81. 81

    Karbowski, M., Norris, K. L., Cleland, M. M., Jeong, S. Y. & Youle, R. J. Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658–662 (2006).

    CAS  PubMed  Google Scholar 

  82. 82

    Chen, X. J. & Butow, R. A. The organization and inheritance of the mitochondrial genome. Nature Rev. Genet. 6, 815–825 (2005).

    CAS  PubMed  Google Scholar 

  83. 83

    Pfanner, N. & Geissler, A. Versatility of the mitochondrial protein import machinery. Nature Rev. Mol. Cell. Biol. 2, 339–349 (2001).

    CAS  Google Scholar 

  84. 84

    Neupert, W. & Herrmann, J. M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76, 723–749 (2007).

    CAS  PubMed  Google Scholar 

  85. 85

    Ishihara, N. et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nature Cell Biol. 11, 958–966 (2009).

    CAS  Google Scholar 

  86. 86

    Altmann, K., Frank, M., Neumann, D., Jakobs, S. & Westermann, B. The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae. J. Cell Biol. 181, 119–130 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  87. 87

    Wakabayashi, J. et al. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J. Cell Biol. 186, 805–816 (2009). References 85 and 87 show that DRP1-dependent fission and distribution of mitochondria is essential in embryonic and brain development in mice.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. 88

    Merz, S. & Westermann, B. Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae. Genome Biol. 10, R95 (2009).

    PubMed Central  PubMed  Google Scholar 

  89. 89

    Chen, H., Chomyn, A. & Chan, D. C. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280, 26185–26192 (2005).

    CAS  PubMed  Google Scholar 

  90. 90

    Chen, H., McCaffery, J. M. & Chan, D. C. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130, 548–562 (2007).

    CAS  PubMed  Google Scholar 

  91. 91

    Li, Z., Okamoto, K., Hayashi, Y. & Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873–887 (2004). References 90 and 91 show that mitochondrial dynamics is crucial for neuronal development and function.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. 92

    Amchenkova, A. A., Bakeeva, L. E., Chentsov, Y. S., Skulachev, V. P. & Zorov, D. B. Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. J. Cell Biol. 107, 481–495 (1988).

    CAS  PubMed  Google Scholar 

  93. 93

    Tondera, D. et al. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28, 1589–1600 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  94. 94

    Mitra, K., Wunder, C., Roysam, B., Lin, G. & Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl Acad. Sci. USA 106, 11960–11965 (2009).

    CAS  PubMed  Google Scholar 

  95. 95

    Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).

    CAS  PubMed  Google Scholar 

  96. 96

    Ono, T., Isobe, K., Nakada, K. & Hayashi, J. I. Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nature Genet. 28, 272–275 (2001). Shows that complementation of gene products in fused mitochondria restores respiratory activity in heteroplasmic cells.

    CAS  PubMed  Google Scholar 

  97. 97

    Nakada, K. et al. Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nature Med. 7, 934–940 (2001).

    CAS  PubMed  Google Scholar 

  98. 98

    Chen, H. et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141, 280–289 (2010). Shows that mitochondrial fusion is required for the maintenance of functional mitochondria in muscle cells.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. 99

    He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  100. 100

    Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008). Suggests a functional connection between mitochondrial dynamics and the removal of impaired mitochondria by mitophagy.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. 101

    Youle, R. J. & Karbowski, M. Mitochondrial fission in apoptosis. Nature Rev. Mol. Cell Biol. 6, 657–663 (2005).

    CAS  Google Scholar 

  102. 102

    Suen, D. F., Norris, K. L. & Youle, R. J. Mitochondrial dynamics and apoptosis. Genes Dev. 22, 1577–1590 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  103. 103

    Fannjiang, Y. et al. Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev. 18, 2785–2797 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  104. 104

    Jagasia, R., Grote, P., Westermann, B. & Conradt, B. DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature 433, 754–760 (2005).

    CAS  PubMed  Google Scholar 

  105. 105

    Goyal, G., Fell, B., Sarin, A., Youle, R. J. & Sriram, V. Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster. Dev. Cell 12, 807–816 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  106. 106

    Frank, S. et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515–525 (2001). First report demonstrating a role for DRP1 in apoptosis.

    CAS  PubMed  Google Scholar 

  107. 107

    Brooks, C. et al. Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc. Natl Acad. Sci. USA 104, 11649–11654 (2007).

    CAS  PubMed  Google Scholar 

  108. 108

    Karbowski, M. et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 159, 931–938 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  109. 109

    Wasiak, S., Zunino, R. & McBride, H. M. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J. Cell Biol. 177, 439–450 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  110. 110

    Knott, A. B., Perkins, G., Schwarzenbacher, R. & Bossy-Wetzel, E. Mitochondrial fragmentation in neurodegeneration. Nature Rev. Neurosci. 9, 505–518 (2008).

    CAS  Google Scholar 

  111. 111

    Alexander, C. et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant atrophy linked to chromosome 3q28. Nature Genet. 26, 211–215 (2000).

    CAS  PubMed  Google Scholar 

  112. 112

    Delettre, C. et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nature Genet. 26, 207–210 (2000).

    CAS  PubMed  Google Scholar 

  113. 113

    Züchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature Genet. 36, 449–451 (2004).

    PubMed  Google Scholar 

  114. 114

    Waterham, H. R. et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356, 1736–1741 (2007).

    CAS  PubMed  Google Scholar 

  115. 115

    Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).

    PubMed Central  PubMed  Google Scholar 

  116. 116

    Matsuda, N. et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211–221 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  117. 117

    Deng, H., Dodson, M. W., Huang, H. & Guo, M. The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl Acad. Sci. USA 105, 14503–14508 (2008).

    CAS  PubMed  Google Scholar 

  118. 118

    Yang, Y. et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc. Natl Acad. Sci. USA 105, 7070–7075 (2008).

    CAS  PubMed  Google Scholar 

  119. 119

    Ziviani, E., Tao, R. N. & Whitworth, A. J. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl Acad. Sci. USA 107, 5018–5023 (2010).

    CAS  PubMed  Google Scholar 

  120. 120

    Lutz, A. K. et al. Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J. Biol. Chem. 284, 22938–22951 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  121. 121

    Kuravi, K. et al. Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae. J. Cell Sci. 119, 3994–4001 (2006).

    CAS  PubMed  Google Scholar 

  122. 122

    Koch, A. et al. Dynamin-like protein 1 is involved in peroxisomal fission. J. Biol. Chem. 278, 8597–8605 (2003).

    CAS  PubMed  Google Scholar 

  123. 123

    Koch, A., Yoon, Y., Bonekamp, N. A., McNiven, M. A. & Schrader, M. A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 16, 5077–5086 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  124. 124

    Neuspiel, M. et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr. Biol. 18, 102–108 (2008).

    CAS  PubMed  Google Scholar 

  125. 125

    Martins de Brito, O. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    CAS  Google Scholar 

  126. 126

    Hailey, D. W. et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656–667 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  127. 127

    Altmann, K. & Westermann, B. Role of essential genes in mitochondrial morphogenesis in Saccharomyces cerevisiae. Mol. Biol. Cell 16, 5410–5417 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  128. 128

    Arimura, S., Yamamoto, J., Aida, G. P., Nakazono, M. & Tsutsumi, N. Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc. Natl Acad. Sci. USA 101, 7805–7808 (2004).

    CAS  PubMed  Google Scholar 

  129. 129

    Arimura, S. & Tsutsumi, N. A dynamin-like protein (ADL2b), rather than FtsZ, is involved in Arabidopsis mitochondrial division. Proc. Natl Acad. Sci. USA 99, 5727–5731 (2002).

    CAS  PubMed  Google Scholar 

  130. 130

    Logan, D. C., Scott, I. & Tobin, A. K. ADL2a, like ADL2b, is involved in the control of higher plant mitochondrial morphology. J. Exp. Bot. 55, 783–785 (2004).

    CAS  PubMed  Google Scholar 

  131. 131

    Scott, I., Tobin, A. K. & Logan, D. C. BIGYIN, an orthologue of human and yeast FIS1 genes functions in the control of mitochondrial size and number in Arabidopsis thaliana. J. Exp. Bot. 57, 1275–1280 (2006).

    CAS  PubMed  Google Scholar 

  132. 132

    Arimura, S. et al. Arabidopsis elongated mitochondria1 is required for localization of dynamin-related protein 3a to mitochondrial fission sites. Plant Cell 20, 1555–1566 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  133. 133

    Beech, P. L. et al. Mitochondrial FtsZ in a chromophyte alga. Science 287, 1276–1279 (2000).

    CAS  PubMed  Google Scholar 

  134. 134

    Takahara, M. et al. A putative mitochondrial ftsZ gene is present in the unicellular primitive red alga Cyanidioschyzon merolae. Mol. Gen. Genet. 264, 452–460 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks S. Arimura, J. Förtsch, S. Geimer and S. Jakobs for the contribution of images, and J. Förtsch, J. Herrmann, T. Klecker and S. Geimer for comments on the manuscript. Research in the author's laboratory is supported by grants from the Deutsche Forschungsgemeinschaft.

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Benedikt Westermann's homepage

Glossary

β-oxidation

Biochemical pathway of fatty acid catabolism in mitochondria and peroxisomes.

SNARE

A protein belonging to a family of membrane proteins that mediate fusion of vesicles and organelles in the secretory pathway of eukaryotic cells.

Haemagglutinin

A glycoprotein of enveloped viruses, such as influenza virus. Haemagglutinins mediate fusion of the viral envelope with endosomal membranes to release the viral particle into the host cytosol.

Heptad repeat

A structural protein motif that is commonly found in coiled coils that contain two or more α-helices coiled together forming a rope-like structure.

Dynamin

A large GTPase involved in membrane scission events.

Rhomboid

The founding member of a conserved family of intramembrane Ser proteases that have their active sites buried in the plane of the membrane.

AAA proteases

Large multisubunit proteases that belong to the superfamily of ATPases that are associated with diverse cellular activities.

Liposome

Artificial lipid bilayer vesicle composed of membrane lipids.

Mitochondrial carrier family signature

A protein sequence motif that is commonly found in mitochondrial carrier proteins that function in the transport of metabolites and other biomolecules across the mitochondrial inner membrane.

Tetratricopeptide repeat motif

A motif that consists of a degenerate 34 amino acid sequence and functions as a protein–protein interaction module in various functionally different proteins.

WD40 repeat

A protein-binding motif that typically contains several regions of about 40 amino acids with conserved Trp-Asp dipeptides that form characteristic β-propeller structures.

F-box protein

A protein that contains an F-box as a protein interaction domain. Most F-box proteins are substrate recognition subunits of SCF ubiquitin ligases and have roles in ubiquitin-dependent protein degradation.

Ubiquitin ligase

An enzyme that mediates the covalent attachment of ubiquitin to substrate proteins to label them for degradation by the proteasome or other regulatory pathways. This process is termed ubiquitylation.

Small ubiquitin-like modifier

A small protein that is covalently attached to and removed from other proteins to modify their activity.

Nucleoid

A compact structure that contains DNA and proteins. Mitochondrial nucleoids contain several copies of the mitochondrial genome and are attached to the inner membrane.

Purkinje neuron

A large neuron in the cerebellar cortex with a single long axon and many branched dendritic extensions.

Reactive oxygen species

Reactive oxygen species (ROS) are chemically reactive molecules containing oxygen, such as superoxide anions, peroxides and hydroxyl radicals. Mitochondrial ROS are generated by incomplete reduction of molecular oxygen in the respiratory chain.

Cytochrome c

A small protein in the mitochondrial intermembrane space that transports electrons in the respiratory chain. It activates cell death pathways when released into the cytosol.

Caspase

An enzyme belonging to a family of proteases that execute cell death events late in the apoptotic pathway.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11, 872–884 (2010). https://doi.org/10.1038/nrm3013

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing