Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Revitalizing membrane rafts: new tools and insights

Key Points

  • Ten years ago, the lipid raft field was suffering from ambiguous methodology and imprecise nomenclature.

  • New high-resolution imaging methods are now giving insights into raft dynamics. Together with other studies, this has led to changes in our concept of rafts.

  • Rafts in plasma membranes can be characterized by three different states: dynamic nanoscale assemblies, raft platforms stabilized by oligomerization and micrometre-scale phase separation.

  • Lipidomics is beginning to give comprehensive views of the lipid composition of raft domains.

  • Three examples of roles that rafts have in cellular function are: T cell signalling, HIV assembly and membrane trafficking.

  • A key open issue for the field is how lipids interact with integral raft proteins.

Abstract

Ten years ago, we wrote a Review on lipid rafts and signalling in the launch issue of Nature Reviews Molecular Cell Biology. At the time, this field was suffering from ambiguous methodology and imprecise nomenclature. Now, new techniques are deepening our insight into the dynamics of membrane organization. Here, we discuss how the field has matured and present an evolving model in which membranes are occupied by fluctuating nanoscale assemblies of sphingolipids, cholesterol and proteins that can be stabilized into platforms that are important in signalling, viral infection and membrane trafficking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Raft-based heterogeneity in cell membranes.
Figure 2: Novel methodology for the study of rafts.
Figure 3: T cell receptor activation.
Figure 4: HIV assembly and release.
Figure 5: Rafts in membrane trafficking.

Similar content being viewed by others

References

  1. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nature Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  CAS  Google Scholar 

  2. Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).

    Article  CAS  PubMed  Google Scholar 

  3. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  Google Scholar 

  5. Parton, R. G. & Simons, K. The multiple faces of caveolae. Nature Rev. Mol. Cell Biol. 8, 185–194 (2007).

    Article  CAS  Google Scholar 

  6. Munro, S. Lipid rafts: elusive or illusive? Cell 115, 377–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Shaw, A. S. Lipid rafts: now you see them, now you don't. Nature Immunol. 7, 1139–1142 (2006).

    Article  CAS  Google Scholar 

  8. Lichtenberg, D., Goñi, F. M. & Heerklotz, H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30, 430–436 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Lingwood, D. & Simons, K. Detergent resistance as a tool in membrane research. Nature Protoc. 2, 2159–2165 (2007).

    Article  CAS  Google Scholar 

  10. Kenworthy, A. K. Have we become overly reliant on lipid rafts? Talking point on the involvement of lipid rafts in T-cell activation. EMBO Rep. 9, 531–535 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kalvodova, L. et al. The lipidomes of vesicular stomatitis virus, semliki forest virus, and the host plasma membrane analyzed by quantitative shotgun mass spectrometry. J. Virol. 83, 7996–8003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zidovetzki, R. & Levitan, I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim. Biophys. Acta 1768, 1311–1324 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pizzo, P. et al. Lipid rafts and T cell receptor signaling: a critical re-evaluation. Eur. J. Immunol. 32, 3082–3091 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Kenworthy, A. K. et al. Dynamics of putative raft-associated proteins at the cell surface. J. Cell Biol. 165, 735–746 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glebov, O. O. & Nichols, B. J. Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nature Cell Biol. 6, 238–243 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. He, H. & Marguet, D. T-cell antigen receptor triggering and lipid rafts: a matter of space and time scales. Talking point on the involvement of lipid rafts in T-cell activation. EMBO Rep. 9, 525–530 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jacobson, K., Mouritsen, O. G. & Anderson, R. G. W. Lipid rafts: at a crossroad between cell biology and physics. Nature Cell Biol. 9, 7–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Day, C. A. & Kenworthy, A. K. Tracking microdomain dynamics in cell membranes. Biochim. Biophys. Acta 1788, 245–253 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Lagerholm, B. C., Weinreb, G. E., Jacobson, K. & Thompson, N. L. Detecting microdomains in intact cell membranes. Annu. Rev. Phys. Chem. 56, 309–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Meyer, B. H. et al. FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl Acad. Sci. USA 103, 2138–2143 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004). The first demonstration of cholesterol-assisted nanoscale clusters in living cells.

    Article  CAS  PubMed  Google Scholar 

  22. Vyas, N. et al. Nanoscale organization of hedgehog is essential for long-range signaling. Cell 133, 1214–1227 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Kusumi, A., Koyama-Honda, I. & Suzuki, K. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5, 213–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Pinaud, F. et al. Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 10, 691–712 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lenne, P. et al. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J. 25, 3245–3256 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schermelleh, L., Heintzmann, R. & Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175.

  27. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Shroff, H., Galbraith, C. G., Galbraith, J. A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nature Meth. 5, 417–423 (2008).

    Article  CAS  Google Scholar 

  29. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Meth. 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  30. Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009). A super-resolution microscopy study showing that sphingolipids and GPI-anchored proteins are transiently trapped in cholesterol-dependent molecular complexes in live cells.

    Article  CAS  PubMed  Google Scholar 

  31. van Zanten, T. S., Cambi, A. & Garcia-Parajo, M. F. A nanometer scale optical view on the compartmentalization of cell membranes. Biochim. Biophys. Acta 1798, 777–787 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Zhong, L. et al. NSOM/QD-based direct visualization of CD3-induced and CD28-enhanced nanospatial coclustering of TCR and coreceptor in nanodomains in T cell activation. PLoS ONE 4, e5945 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lasserre, R. et al. Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nature Chem. Biol. 4, 538–547 (2008).

    Article  CAS  Google Scholar 

  34. Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P. F. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89, 4029–4042 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wenger, J. et al. Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys. J. 92, 913–919 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Sahl, S. J., Leutenegger, M., Hilbert, M., Hell, S. W. & Eggeling, C. Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids. Proc. Natl Acad. Sci. USA 107, 6829–6834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shevchenko, A. & Simons, K. Lipidomics: coming to grips with lipid diversity. Nature Rev. Mol. Cell Biol. 11, 593–598 (2010).

    Article  CAS  Google Scholar 

  38. Dennis, E. A. Lipidomics joins the omics evolution. Proc. Natl Acad. Sci. USA 106, 2089–2090 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zech, T. et al. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J. 28, 466–476 (2009). The first lipidomic analysis of raft clusters in activated TCR domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klemm, R. W. et al. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J. Cell Biol. 185, 601–612 (2009). The first direct experimental support for a post-Golgi raft pathway that transports proteins towards the plasma membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brugger, B. et al. The HIV lipidome: a raft with an unusual composition. Proc. Natl Acad. Sci. USA 103, 2641–2646 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Feigenson, G. W. Phase behavior of lipid mixtures. Nature Chem. Biol. 2, 560–563 (2006).

    Article  CAS  Google Scholar 

  43. Jorgensen, K. & Mouritsen, O. G. Phase separation dynamics and lateral organization of two-component lipid membranes. Biophys. J. 69, 942–954 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kahya, N. & Schwille, P. Fluorescence correlation studies of lipid domains in model membranes. Mol. Membr. Biol. 23, 29–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Johnston, L. J. Nanoscale imaging of domains in supported lipid membranes. Langmuir 23, 5886–5895 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Elson, E. L., Fried, E., Dolbow, J. E. & Genin, G. M. Phase separation in biological membranes: integration of theory and experiment. Annu. Rev. Biophys. 39, 207–226 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dietrich, C. et al. Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hammond, A. T. et al. Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc. Natl Acad. Sci. USA 102, 6320–6325 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Collins, M. D. & Keller, S. L. Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers. Proc. Natl Acad. Sci. USA 105, 124–128 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Simons, K. & Vaz, W. L. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Baumgart, T. et al. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl Acad. Sci. USA 104, 3165–3170 (2007). Shows the presence of liquid-ordered-like and liquid-disordered-like phases in plasma membrane vesicles containing native lipids and proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Levental, I. et al. Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. Biochem. J. 424, 163–167 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Lingwood, D., Ries, J., Schwille, P. & Simons, K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc. Natl Acad. Sci. USA 105, 10005–10010 (2008). Shows that inflated plasma membranes can separate into large-scale domains at 37°C following cholera toxin cross-linking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaiser, H. J. et al. Order of lipid phases in model and plasma membranes. Proc. Natl Acad. Sci. USA 106, 16645–16650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Kholodenko, B. N., Hancock, J. F. & Kolch, W. Signalling ballet in space and time. Nature Rev. Mol. Cell Biol. 11, 414–426 (2010).

    Article  CAS  Google Scholar 

  57. Hancock, J. F. Lipid rafts: contentious only from simplistic standpoints. Nature Rev. Mol. Cell Biol. 7, 456–462 (2006).

    Article  CAS  Google Scholar 

  58. Stefanová, I., Horejsí, V., Ansotegui, I. J., Knapp, W. & Stockinger, H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254, 1016–1019 (1991).

    Article  PubMed  Google Scholar 

  59. Seminario, M. C. & Bunnell, S. C. Signal initiation in T-cell receptor microclusters. Immunol. Rev. 221, 90–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Campi, G., Varma, R. & Dustin, M. L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202, 1031–1036 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kaizuka, Y., Douglass, A. D., Varma, R., Dustin, M. L. & Vale, R. D. Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc. Natl Acad. Sci. USA 104, 20296–20301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kaizuka, Y., Douglass, A. D., Vardhana, S., Dustin, M. L. & Vale, R. D. The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells. J. Cell Biol. 185, 521–534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Davis, M. et al. T cells as a self-referential, sensory organ. Annu. Rev. Immunol. 25, 681–695 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Huang, J. et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464, 932–936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huppa, J. et al. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463, 963–967 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dunne, P. D. et al. DySCo: quantitating associations of membrane proteins using two-color single-molecule tracking. Biophys. J. 97, L5–L7 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. James, J. R. et al. Single-molecule level analysis of the subunit composition of the T cell receptor on live T cells. Proc. Natl Acad. Sci. USA 104, 17662–17667 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lillemeier, B., Pfeiffer, J. R., Surviladze, Z., Wilson, B. S. & Davis, M. Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc. Natl Acad. Sci. USA 103, 18992–18997 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lillemeier, B. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nature Immunol. 11, 90–96 (2010).

    Article  CAS  Google Scholar 

  71. van der Merwe, P. A., Dunne, P. D., Klenerman, D. & Davis, S. J. Taking T cells beyond the diffraction limit. Nature Immunol. 11, 51–52 (2010).

    Article  CAS  Google Scholar 

  72. Pralle, A., Keller, P., Florin, E. L., Simons, K. & Horber, J. K. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1008 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nika, K. et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity 32, 766–777 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Anderson, R. G. & Jacobson, K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Suzuki, K. G. et al. GPI-anchored receptor clusters transiently recruit Lyn and G α for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol. 177, 717–730 (2007). This paper introduced the STALL concept of GPI-anchored protein signalling, which shows that clusters undergoing STALL generate short-lived, digital-like signalling bursts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Waheed, A. A. & Freed, E. O. Lipids and membrane microdomains in HIV-1 replication. Virus Res. 143, 162–176 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Scheiffele, P., Rietveld, A., Wilk, T. & Simons, K. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 274, 2038–2044 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Grassme, H., Riethmuller, J. & Gulbins, E. Biological aspects of ceramide-enriched membrane domains. Prog. Lipid Res. 46, 161–170 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Chan, R. et al. Retroviruses human immunodeficiency virus and murine leukemia virus are enriched in phosphoinositides. J. Virol. 82, 11228–11238 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lorizate, M. et al. Probing HIV-1 membrane liquid order by Laurdan staining reveals producer cell-dependent differences. J. Biol. Chem. 284, 22238–22247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP2 and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Tong, J. et al. Role of GAP-43 in sequestering phosphatidylinositol 4,5-bisphosphate to raft bilayers. Biophys. J. 94, 125–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Saad, J. S. et al. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc. Natl Acad. Sci. USA 103, 11364–11369 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wassall, S. R. & Stillwell, W. Polyunsaturated fatty acid-cholesterol interactions: domain formation in membranes. Biochim. Biophys. Acta 1788, 24–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Castillon, G. A., Watanabe, R., Taylor, M., Schwabe, T. M. & Riezman, H. Concentration of GPI-anchored proteins upon ER exit in yeast. Traffic 10, 186–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Fujita, M., Umemura, M., Yoko, O. T. & Jigami, Y. PER1 Is required for GPI-phospholipase A2 activity and involved in lipid remodeling of GPI-anchored proteins. Mol. Biol. Cell 17, 5253–5264 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fujita, M., Yoko, O. T. & Jigami, Y. Inositol deacylation by Bst1p is required for the quality control of glycosylphosphatidylinositol-anchored proteins. Mol. Biol. Cell 17, 834–850 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kajiwara, K. et al. Yeast ARV1 is required for efficient delivery of an early GPI intermediate to the first mannosyltransferase during GPI assembly and controls lipid flow from the endoplasmic reticulum. Mol. Biol. Cell 19, 2069–2082 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Barz, W. P. & Walter, P. Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins. Mol. Biol. Cell 10, 1043–1059 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Watanabe, R., Funato, K., Venkataraman, K., Futerman, A. H. & Riezman, H. Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast. J. Biol. Chem. 277, 49538–49544 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Simons, K. & van Meer, G. Lipid sorting in epithelial cells. Biochemistry 27, 6197–6202 (1988).

    Article  CAS  PubMed  Google Scholar 

  92. Harsay, E. & Bretscher, A. Parallel secretory pathways to the cell surface in yeast. J. Cell Biol. 131, 297–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Proszynski, T. J. et al. A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proc. Natl Acad. Sci. USA 102, 17981–17986 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ejsing, C. et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl Acad. Sci. USA 106, 2136–2141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schuck, S. & Simons, K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J. Cell Sci. 117, 5955–5964 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Klose, C. et al. Yeast lipids can phase separate into micrometer-scale membrane domains. J. Biol. Chem. 20 Jul 2010 (doi: 10.1074/jbc.M110.123554).

    Article  CAS  Google Scholar 

  97. Mercer, J., Schelhaas, M. & Helenius, A. Virus entry by endocytosis. Ann. Rev. Biochem. 79, 803–833 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Sandvig, K. et al. Pathways followed by protein toxins into cells. Int. J. Med. Microbiol. 293, 483–490 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Ling, H. et al. Structure of the shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37, 1777–1788 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Romer, W. et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450, 670–675 (2007). Shows that Shiga toxin can induce a lipid reorganization in plasma membranes that forms energy-independent endocytic tubules in cells.

    Article  PubMed  CAS  Google Scholar 

  101. Reynwar, B. J. et al. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447, 461–464 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Windschiegl, B. et al. Lipid reorganization induced by Shiga toxin clustering on planar membranes. PLoS ONE 4, e6238 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Romer, W. et al. Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell 140, 540–553 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Ewers, H. et al. GM1 structure determines SV40-induced membrane invagination and infection. Nature Cell Biol. 12, 11–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Bhagatji, P., Leventis, R., Comeau, J., Refaei, M. & Silvius, J. R. Steric and not structure-specific factors dictate the endocytic mechanism of glycosylphosphatidylinositol-anchored proteins. J. Cell Biol. 186, 615–628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sharpe, H. J., Stevens, T. J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169.

  107. Dupuy, A. D. & Engelman, D. M. Protein area occupancy at the center of the red blood cell membrane. Proc. Natl Acad. Sci. USA 105, 2848–2852 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Niemelä, P. S. et al. Membrane proteins diffuse as dynamic complexes with lipids. J. Am. Chem. Soc. 132, 7574–7575 (2010).

    Article  PubMed  CAS  Google Scholar 

  109. Devaux, P. F. & Morris, R. Transmembrane asymmetry and lateral domains in biological membranes. Traffic 5, 241–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Chen, Y., Veracini, L., Benistant, C. & Jacobson, K. The transmembrane protein CBP plays a role in transiently anchoring small clusters of Thy-1, a GPI-anchored protein, to the cytoskeleton. J. Cell Sci. 122, 3966–3972 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Suzuki, K. G., Fujiwara, T. K., Edidin, M. & Kusumi, A. Dynamic recruitment of phospholipase C γ at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J. Cell Biol. 177, 731–742 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Goswami, D. et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135, 1085–1097 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Andrews, N. L. et al. Actin restricts FcɛRI diffusion and facilitates antigen-induced receptor immobilization. Nature Cell Biol. 10, 955–963 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Viola, A. & Gupta, N. Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins. Nature Rev. Immunol. 7, 889–896 (2007).

    Article  CAS  Google Scholar 

  115. Gupta, N. et al. Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nature Immunol. 7, 625–633 (2006).

    Article  CAS  Google Scholar 

  116. Meder, D., Moreno, M. J., Verkade, P., Vaz, W. L. & Simons, K. Phase coexistence and connectivity in the apical membrane of polarized epithelial cells. Proc. Natl Acad. Sci. USA 103, 329–334 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Danielsen, E. M. & Hansen, G. H. Lipid rafts in epithelial brush borders: atypical membrane microdomains with specialized functions. Biochim. Biophys. Acta 1617, 1–9 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Simons, M. & Trotter, J. Wrapping it up: the cell biology of myelination. Curr. Opin. Neurobiol. 17, 533–540 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Veatch, S. L., Soubias, O., Keller, S. L. & Gawrisch, K. Critical fluctuations in domain-forming lipid mixtures. Proc. Natl Acad. Sci. USA 104, 17650–17655 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Honerkamp-Smith, A. R., Veatch, S. L. & Keller, S. L. An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Biochim. Biophys. Acta 1788, 53–63 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Veatch, S. L. et al. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3, 287–293 (2008). The first observation of critical behaviour in plasma membranes, suggesting that nanoscale domains form under physiological conditions.

    Article  CAS  PubMed  Google Scholar 

  122. Johnson, S. A. et al. Temperature-dependent phase behavior and protein partitioning in giant plasma membrane vesicles. Biochim. Biophys. Acta 1798, 1427–1435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ejsing, C. S. et al. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal. Chem. 78, 6202–6214 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Ivanchenko, S. et al. Dynamics of HIV-1 assembly and release. PLoS Pathog. 5, e1000652 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Nguyen, D. H. & Hildreth, J. E. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J. Virol. 74, 3264–3272 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. He for critically reading the manuscript and the members of the K.S. laboratory for input, especially D. Lingwood and I. Levental. Work in the K.S. laboratory was supported by the EUFP6 PRISM grant LSHB-CT2007–037,740, DFG Schwerpunktprogramm1175, the BMBF BioChance Plus grant 0313,827 and the BMBF ForMaT grant 03FO1212.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Kai Simons is a co-founder of the biotechnology company JADO Technologies, which specializes in membrane invention technologies, including lipid raft modulation.

Related links

Related links

FURTHER INFORMATION

Kai Simons's homepage

Glossary

Caveola

A 50–80-nm, flask-shaped pit that forms in the plasma membrane and is enriched in caveolins, cavins, sphingolipids and cholesterol.

Förster resonance energy transfer

A fluorescence-based method for detecting interactions between fluorophores that are <10 nm apart. It is dependent on the spectral overlap between donor and acceptor chromophores and uses non-radiative energy transfer from an excited donor molecule to excite an acceptor molecule.

Fluorescence polarization anisotropy

A technique to measure rotational diffusion using changes in fluorescence polarization that are due to fluorophore rotation.

GPI-anchored protein

(Glycosyl phosphatidylinositol-anchored protein). One of a class of proteins that become post-translationally linked to GPI in the lumen of the ER.

Total internal reflection fluorescence (TIRF) microscopy

An optical technique based on evanescent wave illumination (150 nm into the sample) that is created by a totally internally reflected beam at the glass–water interface.

Quantum dot

A nanoscale semiconductor crystal used as a label in fluorescence microscopy owing to its high emission and photostability.

Fluorescence correlation spectroscopy

A technique that measures diffusion by correlating the fluorescence signal of a diffusing fluorophore with time.

Stimulated emission depletion

A nanoscopic technique that uses a red-shifted beam to deplete the emission of the periphery of the excitation spot and create a smaller excitation region, thus overcoming the diffraction limit.

PALM and STORM

(Photoactivated localization microscopy and stochastic optical reconstruction microscopy). Super-resolution microscopy techniques that use stochastically photoactivated fluorescent probes to reconstitute the full image from individual point spread functions.

Near-field scanning optical microscopy

A super-resolution technique that exploits the evanescent wave near the surface of the sample by placing the detector close to the sample.

Glycosphingolipid

A lipid that contains at least one sugar residue and a ceramide (N-acylated sphingoid).

Palmitoylation

The reversible covalent attachment of fatty acids to Cys residues of membrane proteins, which promotes their membrane association.

Major histocompatibility complex

A complex of genetic loci in higher vertebrates that encodes a family of cellular antigens that allow the immune system to recognize self from non-self.

Lipid shell

A model proposing that specific membrane proteins bind to complexes of cholesterol and sphingolipids or laterally organize specific contacting lipids.

STALL

(Stimulation-induced temporary arrest of lateral diffusion). The cholesterol-assisted, sub-second trapping of GPI-anchored signalling proteins with downstream signalling proteins.

Myristate

A group that is attached to a protein through an amide bond by the irreversible, co-translational process of myristoylation. This is an important modification for membrane targeting.

Shiga toxin

One of a family of protein toxins produced by bacteria that can cause dysentery.

Line energy

The energy arising from the unfavourable interaction or 'tension' of two phase- segregating membrane domains. It is the product of line tension and interaction length.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simons, K., Gerl, M. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11, 688–699 (2010). https://doi.org/10.1038/nrm2977

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2977

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing