Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-vesicular lipid transport by lipid-transfer proteins and beyond

Key Points

  • Non-vesicular lipid transport plays a crucial part in intracellular lipid trafficking and can be mediated by spontaneous lipid transport or by lipid-transfer proteins (LTPs).

  • LTPs markedly facilitate (by several orders of magnitude) the transport of lipids between membranes in vitro.

  • Non-vesicular lipid transport is thought to be greatly enhanced at membrane contact sites; small cytosolic gaps between the endoplasmic reticulum membrane and virtually all other cellular organelles.

  • LTPs do not mediate a simple vectorial lipid transport from one membrane to another. Rather, they facilitate lipid transport between membranes according to their membrane environment.

  • LTPs use their lipid-transfer activity to regulate various cellular processes, including vesicular trafficking, signal transduction and lipid metabolism.


The movement of lipids within and between intracellular membranes is mediated by different lipid transport mechanisms and is crucial for maintaining the identities of different cellular organelles. Non-vesicular lipid transport has a crucial role in intracellular lipid trafficking and distribution, but its underlying mechanisms remain unclear. Lipid-transfer proteins (LTPs), which regulate diverse lipid-mediated cellular processes and accelerate vectorial transport of lipid monomers between membranes in vitro, could potentially mediate non-vesicular intracellular lipid trafficking. Understanding the mechanisms by which lipids are transported and distributed between cellular membranes, and elucidating the role of LTPs in intracellular lipid transport and homeostasis, are currently subjects of intensive study.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Modes of non-vesicular lipid transport.
Figure 2: Spontaneous lipid exchange between membranes.
Figure 3: Domain organization and three-dimensional structure of LTPs.
Figure 4: Lipid transport at ER-mitochondrion MCSs.
Figure 5: Networking of coordinated functions of LTPs in the Golgi complex of mammalian cells.


  1. 1

    Holthuis, J. C., van Meer, G. & Huitema, K. Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review). Mol. Membr. Biol. 20, 231–241 (2003).

    CAS  PubMed  Google Scholar 

  2. 2

    Sprong, H., van der Sluijs, P. & van Meer, G. How proteins move lipids and lipids move proteins. Nature Rev. Mol. Cell Biol. 2, 504–513 (2001).

    CAS  Google Scholar 

  3. 3

    Voelker, D. R. Organelle biogenesis and intracellular lipid transport in eukaryotes. Microbiol. Rev. 55, 543–560 (1991).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. 4

    van Meer, G. Lipid traffic in animal cells. Annu. Rev. Cell Biol. 5, 247–275 (1989).

    CAS  PubMed  Google Scholar 

  5. 5

    Pomorski, T., Hrafnsdottir, S., Devaux, P. F. & van Meer, G. Lipid distribution and transport across cellular membranes. Semin. Cell Dev. Biol. 12, 139–148 (2001).

    CAS  PubMed  Google Scholar 

  6. 6

    Sleight, R. G. Intracellular lipid transport in eukaryotes. Annu. Rev. Physiol. 49, 193–208 (1987).

    CAS  PubMed  Google Scholar 

  7. 7

    Voelker, D. R. Lipid transport pathways in mammalian cells. Experientia 46, 569–579 (1990).

    CAS  PubMed  Google Scholar 

  8. 8

    Kaplan, M. R. & Simoni, R. D. Intracellular transport of phosphatidylcholine to the plasma membrane. J. Cell Biol. 101, 441–445 (1985).

    CAS  PubMed  Google Scholar 

  9. 9

    Vance, J. E., Aasman, E. J. & Szarka, R. Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface. J. Biol. Chem. 266, 8241–8247 (1991).

    CAS  PubMed  Google Scholar 

  10. 10

    Holthuis, J. C. & Levine, T. P. Lipid traffic: floppy drives and a superhighway. Nature Rev. Mol. Cell Biol. 6, 209–220 (2005).

    CAS  Google Scholar 

  11. 11

    Levine, T. Short-range intracellular trafficking of small molecules across endoplasmic reticulum junctions. Trends Cell Biol. 14, 483–490 (2004).

    CAS  PubMed  Google Scholar 

  12. 12

    Kawano, M., Kumagai, K., Nishijima, M. & Hanada, K. Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. J. Biol. Chem. 281, 30279–30288 (2006). This paper provides molecular insight into CERT-mediated ceramide transport at ER–Golgi MCSs.

    CAS  PubMed  Google Scholar 

  13. 13

    Funato, K. & Riezman, H. Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. J. Cell Biol. 155, 949–959 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  14. 14

    Hanada, K. Discovery of the molecular machinery CERT for endoplasmic reticulum-to-Golgi trafficking of ceramide. Mol. Cell Biochem. 286, 23–31 (2006).

    CAS  PubMed  Google Scholar 

  15. 15

    Lebiedzinska, M., Szabadkai, G., Jones, A. W., Duszynski, J. & Wieckowski, M. R. Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles. Int. J. Biochem. Cell Biol. 41, 1805–1816 (2009).

    CAS  PubMed  Google Scholar 

  16. 16

    Jones, J. D. & Thompson, T. E. Spontaneous phosphatidylcholine transfer by collision between vesicles at high lipid concentration. Biochemistry 28, 129–134 (1989).

    CAS  PubMed  Google Scholar 

  17. 17

    Mesmin, B. & Maxfield, F. R. Intracellular sterol dynamics. Biochim. Biophys. Acta 1791, 636–645 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  18. 18

    Zilversmit, D. B. Lipid transfer proteins: overview and applications. Methods Enzymol. 98, 565–573 (1983).

    CAS  PubMed  Google Scholar 

  19. 19

    Helmkamp, G. M. Jr. Phospholipid transfer proteins: mechanism of action. J. Bioenerg. Biomembr. 18, 71–91 (1986).

    CAS  PubMed  Google Scholar 

  20. 20

    Wirtz, K. W. & Zilversmit, D. B. Exchange of phospholipids between liver mitochondria and microsomes in vitro. J. Biol. Chem. 243, 3596–3602 (1968).

    CAS  PubMed  Google Scholar 

  21. 21

    D'Angelo, G., Vicinanza, M. & De Matteis, M. A. Lipid-transfer proteins in biosynthetic pathways. Curr. Opin. Cell Biol. 20, 360–370 (2008).

    CAS  PubMed  Google Scholar 

  22. 22

    Fairn, G. D. & McMaster, C. R. Emerging roles of the oxysterol-binding protein family in metabolism, transport, and signaling. Cell. Mol. Life Sci. 65, 228–236 (2008).

    CAS  PubMed  Google Scholar 

  23. 23

    De Matteis, M. A., Di Campli, A. & D'Angelo, G. Lipid-transfer proteins in membrane trafficking at the Golgi complex. Biochim. Biophys. Acta 1771, 761–768 (2007).

    CAS  PubMed  Google Scholar 

  24. 24

    Cockcroft, S. Mammalian phosphatidylinositol transfer proteins: emerging roles in signal transduction and vesicular traffic. Chem. Phys. Lipids 98, 23–33 (1999).

    CAS  PubMed  Google Scholar 

  25. 25

    Perkins, G. et al. Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J. Struct. Biol. 119, 260–272 (1997).

    CAS  PubMed  Google Scholar 

  26. 26

    Lev, S. Lipid homoeostasis and Golgi secretory function. Biochem. Soc. Trans. 34, 363–366 (2006).

    CAS  PubMed  Google Scholar 

  27. 27

    Nichols, J. W. & Pagano, R. E. Kinetics of soluble lipid monomer diffusion between vesicles. Biochemistry 20, 2783–2789 (1981).

    CAS  PubMed  Google Scholar 

  28. 28

    McLean, L. R. & Phillips, M. C. Mechanism of cholesterol and phosphatidylcholine exchange or transfer between unilamellar vesicles. Biochemistry 20, 2893–2900 (1981).

    CAS  PubMed  Google Scholar 

  29. 29

    McLean, L. R. & Phillips, M. C. Kinetics of phosphatidylcholine and lysophosphatidylcholine exchange between unilamellar vesicles. Biochemistry 23, 4624–4630 (1984).

    CAS  PubMed  Google Scholar 

  30. 30

    Phillips, M. C., Johnson, W. J. & Rothblat, G. H. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim. Biophys. Acta 906, 223–276 (1987).

    CAS  PubMed  Google Scholar 

  31. 31

    Massey, J. B. et al. Measurement and prediction of the rates of spontaneous transfer of phospholipids between plasma lipoproteins. Biochim. Biophys. Acta 794, 274–280 (1984).

    CAS  PubMed  Google Scholar 

  32. 32

    Bai, J. & Pagano, R. E. Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry 36, 8840–8848 (1997).

    CAS  PubMed  Google Scholar 

  33. 33

    McLean, L. R. & Phillips, M. C. Cholesterol transfer from small and large unilamellar vesicles. Biochim. Biophys. Acta 776, 21–26 (1984).

    CAS  PubMed  Google Scholar 

  34. 34

    Radhakrishnan, A. & McConnell, H. M. Chemical activity of cholesterol in membranes. Biochemistry 39, 8119–8124 (2000).

    CAS  PubMed  Google Scholar 

  35. 35

    Roseman, M. A. & Thompson, T. E. Mechanism of the spontaneous transfer of phospholipids between bilayers. Biochemistry 19, 439–444 (1980).

    CAS  PubMed  Google Scholar 

  36. 36

    Martin, F. J. & MacDonald, R. C. Phospholipid exchange between bilayer membrane vesicles. Biochemistry 15, 321–327 (1976).

    CAS  PubMed  Google Scholar 

  37. 37

    Steck, T. L., Kezdy, F. J. & Lange, Y. An activation-collision mechanism for cholesterol transfer between membranes. J. Biol. Chem. 263, 13023–13031 (1988).

    CAS  PubMed  Google Scholar 

  38. 38

    Gadella, T. W. Jr & Wirtz, K. W. Phospholipid binding and transfer by the nonspecific lipid-transfer protein (sterol carrier protein 2). A kinetic model. Eur. J. Biochem. 220, 1019–1028 (1994).

    CAS  PubMed  Google Scholar 

  39. 39

    Lalanne, F. & Ponsin, G. Mechanism of the phospholipid transfer protein-mediated transfer of phospholipids from model lipid vesicles to high density lipoproteins. Biochim. Biophys. Acta 1487, 82–91 (2000).

    CAS  PubMed  Google Scholar 

  40. 40

    Gadella, T. W. Jr & Wirtz, K. W. The low-affinity lipid binding site of the non-specific lipid transfer protein. Implications for its mode of action. Biochim. Biophys. Acta 1070, 237–245 (1991).

    CAS  PubMed  Google Scholar 

  41. 41

    Nichols, J. W. Kinetics of fluorescent-labeled phosphatidylcholine transfer between nonspecific lipid transfer protein and phospholipid vesicles. Biochemistry 27, 1889–1896 (1988).

    CAS  PubMed  Google Scholar 

  42. 42

    Kumagai, K. et al. CERT mediates intermembrane transfer of various molecular species of ceramides. J. Biol. Chem. 280, 6488–6495 (2005).

    CAS  PubMed  Google Scholar 

  43. 43

    Alpy, F. & Tomasetto, C. Give lipids a START: the StAR-related lipid transfer (START) domain in mammals. J. Cell Sci. 118, 2791–2801 (2005).

    CAS  PubMed  Google Scholar 

  44. 44

    Yamaji, T., Kumagai, K., Tomishige, N. & Hanada, K. Two sphingolipid transfer proteins, CERT and FAPP2: their roles in sphingolipid metabolism. IUBMB Life 60, 511–518 (2008).

    CAS  PubMed  Google Scholar 

  45. 45

    Wirtz, K. W., Schouten, A. & Gros, P. Phosphatidylinositol transfer proteins: from closed for transport to open for exchange. Adv. Enzyme Regul. 46, 301–311 (2006).

    CAS  PubMed  Google Scholar 

  46. 46

    Im, Y. J., Raychaudhuri, S., Prinz, W. A. & Hurley, J. H. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature 437, 154–158 (2005). The crystal structure of Osh4 was resolved in this study, and the mechanisms by which Osh4 mediates sterol transport and interacts with membranes were proposed.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. 47

    Feng, L., Chan, W. W., Roderick, S. L. & Cohen, D. E. High-level expression and mutagenesis of recombinant human phosphatidylcholine transfer protein using a synthetic gene: evidence for a C-terminal membrane binding domain. Biochemistry 39, 15399–15409 (2000).

    CAS  PubMed  Google Scholar 

  48. 48

    Arakane, F. et al. Steroidogenic acute regulatory protein (StAR) retains activity in the absence of its mitochondrial import sequence: implications for the mechanism of StAR action. Proc. Natl Acad. Sci. USA 93, 13731–13736 (1996).

    CAS  PubMed  Google Scholar 

  49. 49

    Wirtz, K. W. Phospholipid transfer proteins. Annu. Rev. Biochem. 60, 73–99 (1991).

    CAS  PubMed  Google Scholar 

  50. 50

    Wirtz, K. W., Vriend, G. & Westerman, J. Kinetic analysis of the interaction of the phosphatidylcholine exchange protein with unilamellar vesicels and multilamellar liposomes. Eur. J. Biochem. 94, 215–221 (1979).

    CAS  PubMed  Google Scholar 

  51. 51

    Rueckert, D. G. & Schmidt, K. Lipid transfer proteins. Chem. Phys. Lipids 56, 1–20 (1990).

    CAS  PubMed  Google Scholar 

  52. 52

    Kasper, A. M. & Helmkamp, G. M. Jr. Intermembrane phospholipid fluxes catalyzed by bovine brain phospholipid exchange protein. Biochim. Biophys. Acta 664, 22–32 (1981).

    CAS  PubMed  Google Scholar 

  53. 53

    Wirtz, K. W., Devaux, P. F. & Bienvenue, A. Phosphatidylcholine exchange protein catalyzes the net transfer of phosphatidylcholine to model membranes. Biochemistry 19, 3395–3399 (1980).

    CAS  PubMed  Google Scholar 

  54. 54

    Zilversmit, D. B. Lipid transfer proteins. J. Lipid Res. 25, 1563–1569 (1984).

    CAS  PubMed  Google Scholar 

  55. 55

    Li, H., Tremblay, J. M., Yarbrough, L. R. & Helmkamp, G. M. Jr. Both isoforms of mammalian phosphatidylinositol transfer protein are capable of binding and transporting sphingomyelin. Biochim. Biophys. Acta 1580, 67–76 (2002).

    CAS  PubMed  Google Scholar 

  56. 56

    Mattjus, P. Glycolipid transfer proteins and membrane interaction. Biochim. Biophys. Acta 1788, 267–272 (2009).

    CAS  PubMed  Google Scholar 

  57. 57

    Tilley, S. J. et al. Structure-function analysis of phosphatidylinositol transfer protein a bound to human phosphatidylinositol. Structure 12, 317–326 (2004).

    CAS  PubMed  Google Scholar 

  58. 58

    Shadan, S. et al. Dynamics of lipid transfer by phosphatidylinositol transfer proteins in cells. Traffic 9, 1743–1756 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  59. 59

    Kudo, N. et al. Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proc. Natl Acad. Sci. USA 105, 488–493 (2008).

    CAS  PubMed  Google Scholar 

  60. 60

    Phillips, S. E., Ile, K. E., Boukhelifa, M., Huijbregts, R. P. & Bankaitis, V. A. Specific and nonspecific membrane-binding determinants cooperate in targeting phosphatidylinositol transfer protein b-isoform to the mammalian trans-Golgi network. Mol. Biol. Cell 17, 2498–2512 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  61. 61

    Schulz, T. A. et al. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues. J. Cell Biol. 187, 889–903 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  62. 62

    Levine, T. P. & Munro, S. The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Curr. Biol. 8, 729–739 (1998).

    CAS  PubMed  Google Scholar 

  63. 63

    Ngo, M. & Ridgway, N. D. Oxysterol binding protein-related protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function. Mol. Biol. Cell 20, 1388–1399 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  64. 64

    Levine, T. & Loewen, C. Inter-organelle membrane contact sites: through a glass, darkly. Curr. Opin. Cell Biol. 18, 371–378 (2006).

    CAS  PubMed  Google Scholar 

  65. 65

    Voelker, D. R. Bridging gaps in phospholipid transport. Trends Biochem. Sci. 30, 396–404 (2005).

    CAS  PubMed  Google Scholar 

  66. 66

    Giorgi, C., De Stefani, D., Bononi, A., Rizzuto, R. & Pinton, P. Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int. J. Biochem. Cell Biol. 41, 1817–1827 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  67. 67

    Kornmann, B. et al. An ER–mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481 (2009). This study used an elegant synthetic biology screen in yeast and identified an ER–mitochondrion tethering complex, the ERMES, which is essential for inter-organelle phospholipid transport.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. 68

    de Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    PubMed Central  PubMed  Google Scholar 

  69. 69

    Szabadkai, G. et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901–911 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  70. 70

    Kvam, E. & Goldfarb, D. S. Nvj1p is the outer-nuclear-membrane receptor for oxysterol-binding protein homolog Osh1p in Saccharomyces cerevisiae. J. Cell Sci. 117, 4959–4968 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  71. 71

    Anderie, I., Schulz, I. & Schmid, A. Direct interaction between ER membrane-bound PTP1B and its plasma membrane-anchored targets. Cell Signal. 19, 582–592 (2007).

    CAS  PubMed  Google Scholar 

  72. 72

    Wu, M. M., Buchanan, J., Luik, R. M. & Lewis, R. S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  73. 73

    Yuan, J. P. et al. Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114, 777–789 (2003).

    CAS  PubMed  Google Scholar 

  74. 74

    Lehto, M. et al. Targeting of OSBP-related protein 3 (ORP3) to endoplasmic reticulum and plasma membrane is controlled by multiple determinants. Exp. Cell Res. 310, 445–462 (2005).

    CAS  PubMed  Google Scholar 

  75. 75

    Rocha, N. et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150Glued and late endosome positioning. J. Cell Biol. 185, 1209–1225 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  76. 76

    Stone, S. J. & Vance, J. E. Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J. Biol. Chem. 275, 34534–34540 (2000).

    CAS  PubMed  Google Scholar 

  77. 77

    Daum, G. & Vance, J. E. Import of lipids into mitochondria. Prog. Lipid Res. 36, 103–130 (1997).

    CAS  PubMed  Google Scholar 

  78. 78

    Hanada, K., Kumagai, K., Tomishige, N. & Kawano, M. CERT and intracellular trafficking of ceramide. Biochim. Biophys. Acta 1771, 644–653 (2007).

    CAS  PubMed  Google Scholar 

  79. 79

    Loewen, C. J., Roy, A. & Levine, T. P. A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J. 22, 2025–2035 (2003). This study identified a new motif, FFAT, in various LTPs that mediates the interaction with the ER through binding of the integral ER membrane proteins of the VAP family.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. 80

    Lev, S., Ben Halevy, D., Peretti, D. & Dahan, N. The VAP protein family: from cellular functions to motor neuron disease. Trends Cell Biol. 18, 282–290 (2008).

    CAS  PubMed  Google Scholar 

  81. 81

    Hanada, K. et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809 (2003). CERT, which was cloned in this study, was shown to have a major role in intracellular ceramide transport and, therefore, sphingomyelin production.

    CAS  PubMed  Google Scholar 

  82. 82

    Perry, R. J. & Ridgway, N. D. Oxysterol-binding protein and vesicle-associated membrane protein-associated protein are required for sterol-dependent activation of the ceramide transport protein. Mol. Biol. Cell 17, 2604–2616 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  83. 83

    Amarilio, R., Ramachandran, S., Sabanay, H. & Lev, S. Differential regulation of endoplasmic reticulum structure through VAP–Nir protein interaction. J. Biol. Chem. 280, 5934–5944 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  84. 84

    Peretti, D., Dahan, N., Shimoni, E., Hischberg, K. & Lev, S. Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport. Mol. Biol. Cell 19, 3871–3884 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  85. 85

    Maxfield, F. R. & Mondal, M. Sterol and lipid trafficking in mammalian cells. Biochem. Soc. Trans. 34, 335–339 (2006). An insightful review on sterol transport in cells that provides interesting quantitative data and calculations.

    CAS  PubMed  Google Scholar 

  86. 86

    Hynynen, R. et al. Overexpression of OSBP-related protein 2 (ORP2) induces changes in cellular cholesterol metabolism and enhances endocytosis. Biochem. J. 390, 273–283 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  87. 87

    Ikonen, E. & Jansen, M. Cellular sterol trafficking and metabolism: spotlight on structure. Curr. Opin. Cell Biol. 20, 371–377 (2008).

    CAS  PubMed  Google Scholar 

  88. 88

    Raychaudhuri, S., Im, Y. J., Hurley, J. H. & Prinz, W. A. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. J. Cell Biol. 173, 107–119 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  89. 89

    Pagano, R. E. What is the fate of diacylglycerol produced at the Golgi apparatus? Trends Biochem. Sci. 13, 202–205 (1988).

    CAS  PubMed  Google Scholar 

  90. 90

    Baron, C. L. & Malhotra, V. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295, 325–328 (2002).

    CAS  PubMed  Google Scholar 

  91. 91

    Hausser, A. et al. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIβ at the Golgi complex. Nature Cell Biol. 7, 880–886 (2005).

    CAS  PubMed  Google Scholar 

  92. 92

    Wang, Y. J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310 (2003).

    CAS  PubMed  Google Scholar 

  93. 93

    Fugmann, T. et al. Regulation of secretory transport by protein kinase D-mediated phosphorylation of the ceramide transfer protein. J. Cell Biol. 178, 15–22 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  94. 94

    Harris, W. A. & Stark, W. S. Hereditary retinal degeneration in Drosophila melanogaster. A mutant defect associated with the phototransduction process. J. Gen. Physiol. 69, 261–291 (1977).

    CAS  PubMed  Google Scholar 

  95. 95

    Hotta, Y., Benzer, S. Abnormal electroretinogram in visual mutants in Drosophila. Nature 222, 354–356 (1969).

    CAS  PubMed  Google Scholar 

  96. 96

    Hardie, R. C. et al. Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 30, 149–159 (2001).

    CAS  PubMed  Google Scholar 

  97. 97

    Milligan, S. C., Alb, J. G. Jr, Elagina, R. B., Bankaitis, V. A. & Hyde, D. R. The phosphatidylinositol transfer protein domain of Drosophila retinal degeneration B protein is essential for photoreceptor cell survival and recovery from light stimulation. J. Cell Biol. 139, 351–363 (1997).

    CAS  PubMed Central  PubMed  Google Scholar 

  98. 98

    Vihtelic, T. S., Goebl, M., Milligan, S., O'Tousa, J. E. & Hyde, D. R. Localization of Drosophila retinal degeneration B, a membrane-associated phosphatidylinositol transfer protein. J. Cell Biol. 122, 1013–1022 (1993).

    CAS  PubMed  Google Scholar 

  99. 99

    Bankaitis, V. A., Aitken, J. R., Cleves, A. E. & Dowhan, W. An essential role for a phospholipid transfer protein in yeast Golgi function. Nature 347, 561–562 (1990).

    CAS  PubMed  Google Scholar 

  100. 100

    Bankaitis, V. A., Malehorn, D. E., Emr, S. D. & Greene, R. The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex. J. Cell Biol. 108, 1271–1281 (1989).

    CAS  PubMed  Google Scholar 

  101. 101

    Cleves, A. E. et al. Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell 64, 789–800 (1991). A functional link between Sec14 and the CDP-choline pathway was shown here by a genetic approach that led to the isolation of 'bypass-Sec14' mutants.

    CAS  PubMed  Google Scholar 

  102. 102

    Kearns, B. G. et al. Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387, 101–105 (1997).

    CAS  PubMed  Google Scholar 

  103. 103

    Skinner, H. B. et al. The Saccharomyces cerevisiae phosphatidylinositol-transfer protein effects a ligand-dependent inhibition of choline-phosphate cytidylyltransferase activity. Proc. Natl Acad. Sci. USA 92, 112–116 (1995).

    CAS  PubMed  Google Scholar 

  104. 104

    McGee, T. P., Skinner, H. B., Whitters, E. A., Henry, S. A. & Bankaitis, V. A. A phosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes. J. Cell Biol. 124, 273–287 (1994).

    CAS  PubMed  Google Scholar 

  105. 105

    Litvak, V., Dahan, N., Ramachandran, S., Sabanay, H. & Lev, S. Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function. Nature Cell Biol. 7, 225–234 (2005).

    CAS  PubMed  Google Scholar 

  106. 106

    Schaaf, G. et al. Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the Sec14 superfamily. Mol. Cell 29, 191–206 (2008). This study provides mechanistic insights into PtdIns–PtdCho exchange by Sec14 and its dual role in sensing PtdCho and presenting PtdIns to control phosphoinositide homeostasis.

    CAS  PubMed  Google Scholar 

  107. 107

    Wang, P. Y., Weng, J. & Anderson, R. G. OSBP is a cholesterol-regulated scaffolding protein in control of ERK 1/2 activation. Science 307, 1472–1476 (2005).

    CAS  PubMed  Google Scholar 

  108. 108

    Fairn, G. D., Curwin, A. J., Stefan, C. J. & McMaster, C. R. The oxysterol binding protein Kes1p regulates Golgi apparatus phosphatidylinositol-4- phosphate function. Proc. Natl Acad. Sci. USA 104, 15352–15357 (2007).

    CAS  PubMed  Google Scholar 

  109. 109

    Li, X. et al. Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex. J. Cell Biol. 157, 63–77 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  110. 110

    Ferrell, J. E. Jr, Lee, K. J. & Huestis, W. H. Lipid transfer between phosphatidylcholine vesicles and human erythrocytes: exponential decrease in rate with increasing acyl chain length. Biochemistry 24, 2857–2864 (1985).

    CAS  PubMed  Google Scholar 

  111. 111

    Schouten, A. et al. Structure of apo-phosphatidylinositol transfer protein a provides insight into membrane association. EMBO J. 21, 2117–2121 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  112. 112

    Yoder, M. D. et al. Structure of a multifunctional protein. Mammalian phosphatidylinositol transfer protein complexed with phosphatidylcholine. J. Biol. Chem. 276, 9246–9252 (2001).

    CAS  PubMed  Google Scholar 

  113. 113

    D'Angelo, G. et al. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449, 62–67 (2007).

    CAS  PubMed  Google Scholar 

  114. 114

    Halter, D. et al. Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J. Cell Biol. 179, 101–115 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

Download references


Sima Lev is the incumbent of the Joyce and Ben B. Eisenberg Chair of Molecular Biology and Cancer Research. This work was supported by the Israel Science Foundation, Grant number 548/08. The author thanks R. Sertchook from the Weizmann Institute of Science for assistance in collecting the three-dimensional images, A. Menon and O. Laufman for productive discussion, and especially W. Prinz for the critical reading of this manuscript and his intellectual contribution.

Author information



Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information S1 (Table)

Apparent half-time (h) for [3H]POPC (1-palmitoyl-2-oleoyl PC) transfer at 37 °C as a function of donor concentration for the indicated acceptor concentrations. (PDF 148 kb)

Supplementary Information S2 (Box)

Measurement of Lipid Transfer Activity in vitro (PDF 234 kb)

Supplementary Information S3 (Figure)

Structure of selected sterols and PtdCho species (PDF 97 kb)

Related links

Related links


Sima Lev's homepage


Vesicular transport

An active process in which materials move into or out of the cell enclosed in vesicles. This process is mediated by a sequence of events involving the budding of the vesicles from a donor membrane and their subsequent fusion with an acceptor membrane.


An organelle present in most eukaryotic cells that is involved in the oxidation of fatty acids and the production and destruction of hydrogen peroxide.

Lipid desorption

The release of a lipid molecule from a lipid bilayer to the surrounding aqueous phase. This process involves both the disruption of lipid–lipid interactions in the bilayer and the formation of a cavity in the aqueous phase that accommodates the diffusing lipid molecule.

Vectorial lipid transport

A directional transport of lipids that is driven by a concentration gradient.

Lipid droplet

An organelle that stores neutral lipids and has a crucial role in lipid metabolism.


A membrane protein that catalyses the transport of lipids across the membrane bilayer in an ATP-dependent manner. Flippases commonly transport lipids towards the cytoplasm, whereas floppases transport lipids from the cytofacial surface to the opposite side of the membrane.

Membrane curvature

The bending of the membrane, which can be influenced by the relative distribution of cone-like and inverted cone-like lipids (for example, diacylglcerol and phosphatidic acid, and lysophospholipids, respectively) between the inner or outer leaflets of the bilayer.

Vesicle fission

The pinching-off of a vesicle from a membrane bilayer.

Vesicle fusion

The merging of a vesicle with a membrane bilayer.

Condensed complex

A complex formed between cholesterol and saturated phospholipids with long fatty acid chains or with sphingomyelin.

First-order process

A reaction with a rate that is proportional to the concentration of only one reactant. Other reactants can be present but have no influence on the reaction rate.

Second-order process

A reaction with a rate that is proportional to the square concentration of a single reactant or to the concentration of two reactants.

Thermal motion

The random motion of lipid molecules in the bilayer that is due to temperature.

Hydration force

The repulsive force acting between apposing lipid bilayers in aqueous solution.


An artificial microscopic vesicle consisting of an aqueous core surrounded by a lipid bilayer.

Membrane fluidity

The viscosity of the lipid bilayer, which is determined by the length and saturation of the fatty-acid side chains of phospholipids and the content of cholesterol and sphingolipids..


The phosphorylated form of PtdIns. The inositol ring of PtdIns can be phosphorylated in three different positions (3, 4 and 5), yielding seven distinct phosphoinositides. Phosphoinositides play a key part in signal transduction and membrane trafficking.

PH domain

A protein domain of 100 amino acids that is present in numerous proteins and in many cases binds phosphoinositides with high affinity and specificity.

FFAT motif

A short sequence motif, containing the EFFDAxE consensus sequence, that has been identified in 17 eukaryotic proteins, most of which are involved in lipid transfer, sensing or binding.

PtdIns-transfer domain

A protein domain that is present in PITPs and mediates the exchange of PtdIns for PtdCho, and vice versa. PITPs have a 16-fold higher binding affinity for PtdIns than PtdCho.


The biosynthesis of steroid hormones.

AP1 complex

A heterotetrameric complex with a role in protein sorting at the trans-Golgi network and endosomes. AP1 mediates the recruitment of clathrin to membranes and the recognition of sorting signals in the cytosolic tails of transmembrane cargo proteins.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lev, S. Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat Rev Mol Cell Biol 11, 739–750 (2010).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing