Key Points
-
The nuclear pore complex (NPC) mediates transport of all macromolecules between the nucleus and the cytoplasm. The structure of the NPC — a cylindrical ring-like structure lined with nucleoporins capable of binding to transport factors — governs its transport function.
-
Although transport is the primary function of the NPC, recent research has revealed that the NPC plays an important part in cellular functions taking place on either side of the nuclear envelope.
-
The nuclear basket is a distinct structure extending from the NPC into the nucleus. It is thought to have a role in many different functions, such as transcriptional control, small ubiquitin-related modifier (SUMO) homeostasis, cell cycle progression, chromatin organization and RNA biogenesis.
-
The basket seems to recruit and retain actively transcribed genes to the pore while excluding silenced heterochromatin from the transport channel. This mechanism would ensure efficient transport of messenger ribonucleoproteins (mRNPs) into the cytoplasm, in a manner similar to what was proposed in the 'gene gating hypothesis'.
-
Multiple components involved in the recruitment of active genes to the NPC also have a role in the proper processing, surveillance and export of mRNPs.
-
The cytoplasmic filaments of the NPC interact with the protein synthesis machinery and the cytoskeleton. They are thought to be involved in mediating the release of shuttling proteins from mRNPs, terminating transport and readying the cargo for further engagement in the cytoplasm.
-
Most nuclear and cytoplasmic functions of the NPC seem to increase the efficiency and integration of transport into the broader milieu of the cell.
Abstract
Although the nuclear pore complex (NPC) is best known for its primary function as the key regulator of molecular traffic between the cytoplasm and the nucleus, a growing body of experimental evidence suggests that this structure participates in a considerably broader range of cellular activities on both sides of the nuclear envelope. Indeed, the NPC is emerging as an important regulator of gene expression through its influence on the internal architectural organization of the nucleus and its apparently extensive involvement in coordinating the seamless delivery of genetic information to the cytoplasmic protein synthesis machinery.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Molecular basis of C9orf72 poly-PR interference with the β-karyopherin family of nuclear transport receptors
Scientific Reports Open Access 09 December 2022
-
Cryo-EM structure of the inner ring from the Xenopus laevis nuclear pore complex
Cell Research Open Access 18 March 2022
-
Cryo-EM structure of the nuclear ring from Xenopus laevis nuclear pore complex
Cell Research Open Access 17 February 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Field, M. C. & Dacks, J. B. First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr. Opin. Cell Biol. 21, 4–13 (2009).
Brickner, J. H. Transcriptional memory at the nuclear periphery. Curr. Opin. Cell Biol. 21, 127–133 (2009).
Towbin, B. D., Meister, P. & Gasser, S. M. The nuclear envelope — a scaffold for silencing? Curr. Opin. Genet. Dev. 19, 180–186 (2009).
Degrasse, J. A. et al. Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol. Cell. Proteomics 8, 2119–2130 (2009). Proteomic analyses of NPC-containing fractions from a divergent eukaryote ( Trypanosoma brucei ) provide conclusive evidence that the general blueprint of NPC architecture was already established in the last common eukaryotic ancestor.
Suntharalingam, M. & Wente, S. R. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell 4, 775–789 (2003).
Elad, N., Maimon, T., Frenkiel-Krispin, D., Lim, R. Y. & Medalia, O. Structural analysis of the nuclear pore complex by integrated approaches. Curr. Opin. Struct. Biol. 19, 226–232 (2009).
Alber, F. et al. Determining the architectures of macromolecular assemblies. Nature 450, 683–694 (2007).
Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007). Together with reference 7, this work describes the development of a computational method that combines a diverse set of biophysical and proteomic data to construct a comprehensive medium resolution three-dimensional map describing the relative arrangement of all components of the S. cerevisiae NPC.
Brohawn, S. G., Partridge, J. R., Whittle, J. R. & Schwartz, T. U. The nuclear pore complex has entered the atomic age. Structure 17, 1156–1168 (2009).
Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. & Hurt, E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 21, 387–397 (2002).
D'Angelo, M. A., Anderson, D., Richard, E. & Hetzer, M. Nuclear pores form de novo from both sides of the nuclear envelope. Science 312, 440–443 (2006).
Makio, T. et al. The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly. J. Cell Biol. 185, 459–473 (2009).
Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380 (2004).
Devos, D. et al. Simple fold composition and modular architecture of the nuclear pore complex. Proc. Natl Acad. Sci. USA 103, 2172–2177 (2006).
Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).
Köhler, A. & Hurt, E. C. Exporting RNA from the nucleus to the cytoplasm. Nature Rev. Mol. Cell Biol. 8, 761–773 (2007).
Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nature Rev. Mol. Cell Biol. 8, 195–208 (2007).
Akey, C. W. & Goldfarb, D. S. Protein import through the nuclear pore complex is a multistep process. J. Cell Biol. 109, 971–982 (1989).
Nachury, M. V. & Weis, K. The direction of transport through the nuclear pore can be inverted. Proc. Natl Acad. Sci. USA 96, 9622–9627 (1999).
Kuersten, S., Ohno, M. & Mattaj, I. W. Nucleocytoplasmic transport: Ran, beta and beyond. Trends Cell Biol. 11, 497–503 (2001).
Terry, L. J. & Wente, S. R. Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Eukaryot. Cell 8, 1814–1827 (2009).
Radu, A., Moore, M. S. & Blobel, G. The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81, 215–222 (1995).
Bayliss, R., Littlewood, T. & Stewart, M. Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell 102, 99–108 (2000).
Denning, D. P. & Rexach, M. F. Rapid evolution exposes the boundaries of domain structure and function in natively unfolded FG nucleoporins. Mol. Cell. Proteomics 6, 272–282 (2007).
Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).
Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927 (2002). Mass spectrometry analysis defines the proteome of the mammalian NPC for the first time and paves the way for a more detailed characterization of NPC structure and function.
Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA 100, 2450–2455 (2003).
Lim, R. Y. et al. Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA 103, 9512–9517 (2006).
Patel, S. S., Belmont, B. J., Sante, J. M. & Rexach, M. F. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129, 83–96 (2007).
Jovanovic-Talisman, T. et al. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature 457, 1023–1027 (2009).
Akey, C. W. Visualization of transport-related configurations of the nuclear pore transporter. Biophys. J. 58, 341–355 (1990).
Rexach, M. & Blobel, G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83, 683–692 (1995).
Ben-Efraim, I. & Gerace, L. Gradient of increasing affinity of importin β for nucleoporins along the pathway of nuclear import. J. Cell Biol. 152, 411–417 (2001).
Strawn, L. A., Shen, T., Shulga, N., Goldfarb, D. S. & Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Naure. Cell Biol. 6, 197–206 (2004).
Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628 (2003).
Peters, R. Translocation through the nuclear pore: Kaps pave the way. Bioessays 31, 466–477 (2009). Excellent introductory review describing current nuclear transport models in the light of the latest data obtained by single transporter recording, optical super-resolution microscopy and transport assays on artificial nanopores.
Lim, R. Y. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science 318, 640–643 (2007).
Ribbeck, K. & Gorlich, D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 21, 2664–2671 (2002).
Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006).
Frey, S. & Görlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130, 512–523 (2007).
Mohr, D., Frey, S., Fischer, T., Guttler, T. & Gorlich, D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J. 28, 2541–2553 (2009).
Ader, C. et al. Amyloid-like interactions within nucleoporin FG hydrogels. Proc. Natl Acad. Sci. USA 107, 6281–6285 (2010).
Macara, I. G. Transport into and out of the nucleus. Microbiol Mol. Biol. Rev. 65, 570–594 (2001).
Krishnan, V. V. et al. Intramolecular cohesion of coils mediated by phenylalanine–glycine motifs in the natively unfolded domain of a nucleoporin. PLoS Comput. Biol. 4, e1000145 (2008).
Miao, L. & Schulten, K. Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. Structure 17, 449–459 (2009).
Timney, B. et al. Simple kinetic relationships and nonspecific competition govern nuclear import rates in vivo. J. Cell Biol. 175, 579–593 (2006).
Zilman, A., Di Talia, S., Chait, B. T., Rout, M. P. & Magnasco, M. O. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. PLoS Comput. Biol. 3, e125 (2007).
Engelhardt, P. & Pusa, K. Nuclear pore complexes: “press-stud” elements of chromosomes in pairing and control. Nature New Biol. 240, 163–166 (1972).
Blobel, G. Gene gating: a hypothesis. Proc. Natl Acad. Sci. USA 82, 8527–8529 (1985). The first formulation of the hypothesis that NPCs serve as gene-gating organelles that are capable of interacting specifically with transcriptionally active portions of the genome.
Kehlenbach, R. H., Dickmanns, A., Kehlenbach, A., Guan, T. & Gerace, L. A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. J. Cell Biol. 145, 645–657 (1999).
Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 18, 4332–4347 (1999).
Stelter, P. et al. Molecular basis for the functional interaction of dynein light chain with the nuclear-pore complex. Nature Cell Biol. 9, 788–796 (2007).
Carmody, S. R. & Wente, S. R. mRNA nuclear export at a glance. J. Cell Sci. 122, 1933–1937 (2009).
Minakhina, S., Myers, R., Druzhinina, M. & Steward, R. Crosstalk between the actin cytoskeleton and Ran-mediated nuclear transport. BMC Cell Biol. 6, 32 (2005).
Hutten, S., Walde, S., Spillner, C., Hauber, J. & Kehlenbach, R. H. The nuclear pore component Nup358 promotes transportin-dependent nuclear import. J. Cell Sci. 122, 1100–1110 (2009).
Stewart, M. Ratcheting mRNA out of the nucleus. Mol. Cell 25, 327–330 (2007).
Wu, J., Matunis, M. J., Kraemer, D., Blobel, G. & Coutavas, E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J. Biol. Chem. 270, 14209–14213 (1995).
Matunis, M. J., Wu, J. & Blobel, G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol. 140, 499–509 (1998).
Saitoh, N. et al. In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies. Exp. Cell Res. 312, 1418–1430 (2006).
Reverter, D. & Lima, C. D. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435, 687–692 (2005).
Radtke, K., Döhner, K. & Sodeik, B. Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cell. Microbiol 8, 387–400 (2006).
Roth, D. M., Moseley, G. W., Glover, D., Pouton, C. W. & Jans, D. A. A microtubule-facilitated nuclear import pathway for cancer regulatory proteins. Traffic 8, 673–686 (2007).
Singer, R. H. Highways for mRNA transport. Cell 134, 722–723 (2008).
Joseph, J. & Dasso, M. The nucleoporin Nup358 associates with and regulates interphase microtubules. FEBS Lett. 582, 190–196 (2008).
Cho, K. I. et al. RANBP2 is an allosteric activator of the conventional kinesin-1 motor protein, KIF5B, in a minimal cell-free system. EMBO Rep. 10, 480–486 (2009).
Ris, H. Three-dimensional imaging of cell ultrastructure with high resolution, low voltage SEM. Int. Phys. Conf. Ser. 98, 657–662 (1989).
Jarnik, M. & Aebi, U. Toward a more complete 3-D structure of the nuclear pore complex. J. Struct. Biol. 107, 291–308 (1991).
Ris, H. & Malecki, M. High-resolution field emission scanning electron microscope imaging of internal cell structures after Epon extraction from sections: a new approach to correlative ultrastructural and immunocytochemical studies. J. Struct. Biol. 111, 148–157 (1993).
Goldberg, M. W. & Allen, T. D. High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J. Cell Biol. 119, 1429–1440 (1992). References 68 and 69 were among the first to provide clear structural evidence for the presence of a basket structure anchored to the nucleoplasmic face of the NPC and the existence of interconnecting fibrils spanning the distance between neighbouring nuclear pores, stretching both perpendicularly and in parallel to the nuclear envelope.
Stoffler, D., Goldie, K. N., Feja, B. & Aebi, U. Calcium-mediated structural changes of native nuclear pore complexes monitored by time-lapse atomic force microscopy. J. Mol. Biol. 287, 741–752 (1999).
Beck, M., Lucicc´, V., Förster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449, 611–615 (2007).
Kiseleva, E. et al. Yeast nuclear pore complexes have a cytoplasmic ring and internal filaments. J. Struct. Biol. 145, 272–288 (2004).
Daneholt, B. A look at messenger RNP moving through the nuclear pore. Cell 88, 585–588 (1997).
Kiseleva, E., Goldberg, M. W., Allen, T. D. & Akey, C. W. Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. J. Cell Sci. 111, 223–236 (1998).
Soop, T. et al. Nup153 affects entry of messenger and ribosomal ribonucleoproteins into the nuclear basket during export. Mol. Biol. Cell 16, 5610–5620 (2005).
Kylberg, K. et al. Exclusion of mRNPs and ribosomal particles from a thin zone beneath the nuclear envelope revealed upon inhibition of transport. Exp. Cell Res. 316, 1028–1038 (2009). The nucleocytoplasmic transport of RNPs was examined by EM, revealing the presence of a basket-dependent 'exclusion-zone' lining the entire extent of the nuclear face of the nuclear envelope, which prevents unwanted macromolecules from encroaching on the nuclear transport channel.
Krull, S. et al. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J. 29, 1659–1673 (2010). RNA interference experiments were combined with EM analyses to show that the basket component TPR is involved in forming NPC-associated heterochromatin exclusion zones along the nuclear surface of the nuclear envelope, thus preventing macromolecular structures from interfering with nuclear transport.
Byrd, D. A. et al. Tpr, a large coiled coil protein whose amino terminus is involved in activation of oncogenic kinases, is localized to the cytoplasmic surface of the nuclear pore complex. J. Cell Biol. 127, 1515–1526 (1994).
Kuznetsov, N. V. et al. The evolutionarily conserved single-copy gene for murine Tpr encodes one prevalent isoform in somatic cells and lacks paralogs in higher eukaryotes. Chromosoma 111, 236–255 (2002).
Zimowska, G., Aris, J. P. & Paddy, M. R. A Drosophila Tpr protein homolog is localized both in the extrachromosomal channel network and to nuclear pore complexes. J. Cell Sci. 110, 927–944 (1997).
Qi, H. et al. Megator, an essential coiled-coil protein that localizes to the putative spindle matrix during mitosis in Drosophila. Mol. Biol. Cell 15, 4854–4865 (2004).
Strambio-de-Castillia, C., Blobel, G. & Rout, M. P. Proteins connecting the nuclear pore complex with the nuclear interior. J. Cell Biol. 144, 839–855 (1999).
Frosst, P., Guan, T., Subauste, C., Hahn, K. & Gerace, L. Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J. Cell Biol. 156, 617–630 (2002).
Krull, S., Thyberg, J., Björkroth, B., Rackwitz, H. R. & Cordes, V. C. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol. Biol. Cell 15, 4261–4277 (2004).
Cordes, V. C., Reidenbach, S., Rackwitz, H. R. & Franke, W. W. Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. J. Cell Biol. 136, 515–529 (1997).
Hase, M. E., Kuznetsov, N. V. & Cordes, V. C. Amino acid substitutions of coiled-coil protein Tpr abrogate anchorage to the nuclear pore complex but not parallel, in-register homodimerization. Mol. Biol. Cell 12, 2433–2452 (2001).
Galy, V. et al. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116, 63–73 (2004).
Zhao, X., Wu, C. Y. & Blobel, G. Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality. J. Cell Biol. 167, 605–611 (2004).
Casolari, J. M., Brown, C. R., Drubin, D. A., Rando, O. J. & Silver, P. A. Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev. 19, 1188–1198 (2005). Changes in nuclear organization that follow stimulation of S. cerevisiae cells by mating pheromone were studied to show that the yeast TPR homologue, Mlp1, has a role in determining nuclear organization in response to a developmental cue.
Niepel, M., Strambio-de-Castillia, C., Fasolo, J., Chait, B. T. & Rout, M. P. The nuclear pore complex-associated protein, Mlp2p, binds to the yeast spindle pole body and promotes its efficient assembly. J. Cell Biol. 170, 225–235 (2005).
Vinciguerra, P., Iglesias, N., Camblong, J., Zenklusen, D. & Stutz, F. Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J. 24, 813–823 (2005). Chromatin immunoprecipitation, FISH and pulse-chase experiments were used to show that yeast TPR-like proteins help recruit nascent transcripts to the NPC and have a role in coupling mRNA biogenesis with export through the NPC.
Lewis, A., Felberbaum, R. & Hochstrasser, M. A nuclear envelope protein linking nuclear pore basket assembly, SUMO protease regulation, and mRNA surveillance. J. Cell Biol. 178, 813–827 (2007).
Palancade, B. et al. Nucleoporins prevent DNA damage accumulation by modulating Ulp1-dependent sumoylation processes. Mol. Biol. Cell 18, 2912–2923 (2007).
Xu, X. M. et al. NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlp1/Mlp2/megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Plant Cell 19, 1537–1548 (2007).
Lee, S. H., Sterling, H., Burlingame, A. & McCormick, F. Tpr directly binds to Mad1 and Mad2 and is important for the Mad1-Mad2-mediated mitotic spindle checkpoint. Genes Dev. 22, 2926–2931 (2008).
De Souza, C. P., Hashmi, S. B., Nayak, T., Oakley, B. & Osmani, S. A. Mlp1 acts as a mitotic scaffold to spatially regulate spindle assembly checkpoint proteins in Aspergillus nidulans. Mol. Biol. Cell 20, 2146–2159 (2009).
Lince-Faria, M. et al. Spatiotemporal control of mitosis by the conserved spindle matrix protein Megator. J. Cell Biol. 184, 647–657 (2009). Megator, the D. melanogaster homologue of human TPR, is shown here to specifically interact with SAC proteins, thus mediating normal mitotic duration and checkpoint response.
Skruzný, M. et al. An endoribonuclease functionally linked to perinuclear mRNP quality control associates with the nuclear pore complexes. PLoS Biol. 7, e8 (2009).
Tan-Wong, S. M., Wijayatilake, H. D. & Proudfoot, N. J. Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev. 23, 2610–2624 (2009).
Ahmed, S. et al. DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nature Cell Biol. 12, 111–118 (2010). Identification of specific gene-recuitment sequences, which function as DNA zip codes to recruit inducible S. cerevisiae genes from the nucleoplasm to the NPC and are required for full transcriptional activation of a subset of genes involved in adaptation to varying environmental conditions.
Vaquerizas, J. M. et al. Nuclear pore proteins Nup153 and Megator define transcriptionally active regions in the Drosophila genome. PLoS Genet. 6, e1000846 (2010). Using chromatin immunoprecipitation combined with microarray hybridization, it was shown that the NPC acts as a global gene regulator in D. melanogaster by interacting with Nup-associated regions of the genome and thereby promoting chromosomal organization and transcriptional control.
Vinciguerra, P. & Stutz, F. mRNA export: an assembly line from genes to nuclear pores. Curr. Opin. Cell Biol. 16, 285–292 (2004).
Skaggs, H. S. et al. HSF1-TPR interaction facilitates export of stress-induced HSP70 mRNA. J. Biol. Chem. 282, 33902–33907 (2007).
Fasken, M. B. & Corbett, A. H. Mechanisms of nuclear mRNA quality control. RNA Biol. 6, 237–241 (2009).
Akhtar, A. & Gasser, S. M. The nuclear envelope and transcriptional control. Nature Rev. Genet. 8, 507–517 (2007).
Chekanova, J. A., Abruzzi, K. C., Rosbash, M. & Belostotsky, D. A. Sus1, Sac3, and Thp1 mediate post-transcriptional tethering of active genes to the nuclear rim as well as to non-nascent mRNP. RNA 14, 66–77 (2008).
Schmid, M. & Jensen, T. H. Quality control of mRNP in the nucleus. Chromosoma 117, 419–429 (2008).
Schmid, M. & Jensen, T. H. The exosome: a multipurpose RNA-decay machine. Trends Biochem. Sci. 33, 501–510 (2008).
Dziembowski, A. et al. Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. EMBO J. 23, 4, 847–856 (2004).
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
Andrulis, E. D., Neiman, A. M., Zappulla, D. C. & Sternglanz, R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394, 592–595 (1998).
Kosak, S. T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).
Sexton, T., Schober, H., Fraser, P. & Gasser, S. M. Gene regulation through nuclear organization. Nature Struct. Mol. Biol. 14, 1049–1055 (2007).
Dilworth, D. J. et al. The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control. J. Cell Biol. 171, 955–965 (2005). Results obtained from proteomics, genomics and functional assays of boundary activity and epigenetic variegation suggest that the NPC plays an active part in chromatin organization by facilitating the transition of chromatin between activity states.
Dieppois, G., Iglesias, N. & Stutz, F. Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol. Cell. Biol. 26, 7, 858–870 (2006).
Schmid, M. et al. Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol. Cell 21, 379–391 (2006).
Taddei, A. et al. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441, 774–778 (2006).
Brickner, D. G. et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 5, e81 (2007).
Ishii, K., Arib, G., Lin, C., Van Houwe, G. & Laemmli, U. K. Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109, 551–562 (2002). Genetic studies, immunolocalization, live imaging and chromatin immunoprecipitation experiments conducted on chromatin boundary activities identified in S. cerevisiae provided the initial evidence that tethering of genomic loci to the NPC can dramatically alter their epigenetic activity.
Brickner, J. H. & Walter, P. Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol. 2, e342 (2004).
Kundu, S., Horn, P. J. & Peterson, C. L. SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev. 21, 997–1004 (2007).
Kundu, S. & Peterson, C. L. Dominant role for signal transduction in transcriptional memory of yeast GAL genes. Mol. Cell. Biol. 30, 2330–2340 (2010).
Taddei, A. et al. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441, 774–778 (2006).
Cabal, G. et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441, 770–773 (2006).
Kurshakova, M. M. et al. SAGA and a novel Drosophila export complex anchor efficient transcription and mRNA export to NPC. EMBO J. 26, 4, 956–965 (2007).
Luthra, R. et al. Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J. Biol. Chem. 282, 3042–3049 (2007).
Köhler, A., Schneider, M., Cabal, G. G., Nehrbass, U. & Hurt, E. Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nature Cell Biol. 10, 707–715 (2008).
Rouge-maille, M. et al. THO/Sub2p functions to coordinate 3′-end processing with gene-nuclear pore association. Cell 135, 308–321 (2008).
Jani, D. et al. Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export. Mol. Cell 33, 727–737 (2009).
Klockner, C. et al. Mutational uncoupling of the role of Sus1 in nuclear pore complex targeting of an mRNA export complex and histone H2B deubiquitination. J. Biol. Chem. 284, 12049–12056 (2009).
Ellisdon, A. M., Jani, D., Kohler, A., Hurt, E. & Stewart, M. Structural basis for the interaction between yeast Spt-Ada-Gcn5 acetyltransferase (SAGA) complex components Sgf11 and Sus1. J. Biol. Chem. 285, 3850–3856 (2010).
Hutchison, N. & Weintraub, H. Localization of DNAase I-sensitive sequences to specific regions of interphase nuclei. Cell 43, 471–482 (1985).
Ragoczy, T., Bender, M. A., Telling, A., Byron, R. & Groudine, M. The locus control region is required for association of the murine β-globin locus with engaged transcription factories during erythroid maturation. Genes Dev. 20, 1447–1457 (2006).
Donze, D. & Kamakaka, R. T. Braking the silence: how heterochromatic gene repression is stopped in its tracks. Bioessays 24, 344–349 (2002).
Capelson, M. et al. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140, 372–383 (2010).
Kalverda, B., Pickersgill, H., Shloma, V. V. & Fornerod, M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140, 360–371 (2010).
Therizols, P. et al. Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. J. Cell Biol. 172, 189–199 (2006).
Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA 102, 4777–4782 (2005).
Nagai, S. et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322, 597–602 (2008).
Ii, T., Mullen, J. R., Slagle, C. E. & Brill, S. J. Stimulation of in vitro sumoylation by Slx5-Slx8: evidence for a functional interaction with the SUMO pathway. DNA Repair 6, 1679–1691 (2007).
Oza, P. & Peterson, C. L. Opening the DNA repair toolbox: localization of DNA double strand breaks to the nuclear periphery. Cell Cycle 9, 43–49 (2010).
Khadaroo, B. et al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nature Cell Biol. 11, 980–987 (2009). Single-cell analysis was used to show that double-stranded DNA breaks get recruited to the vicinity of the NPC where they can undergo specialized repair in an environment designed to favour chromatin stability.
Hanawalt, P. C. Controlling the efficiency of excision repair. Mutat. Res. 485, 3–13 (2001).
Gaillard, H. et al. Genome-wide analysis of factors affecting transcription elongation and DNA repair: a new role for PAF and Ccr4-Not in transcription-coupled repair. PLoS Genet. 5, e1000364 (2009).
Zhang, L., Jones, K. & Gong, F. The molecular basis of chromatin dynamics during nucleotide excision repair. Biochem. Cell Biol. 87, 265–272 (2009).
Faza, M. B. et al. Sem1 is a functional component of the nuclear pore complex-associated messenger RNA export machinery. J. Cell Biol. 184, 833–846 (2009).
Fernandez-Martinez, J. & Rout, M. P. Nuclear pore complex biogenesis. Curr. Opin. Cell Biol., 21, 603–612 (2009).
Guttinger, S., Laurell, E. & Kutay, U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nature Rev. Mol. Cell Biol. 10, 178–191 (2009).
Iouk, T., Kerscher, O., Scott, R. J., Basrai, M. A. & Wozniak, R. W. The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint. J. Cell Biol. 159, 807–819 (2002).
Gillett, E. S., Espelin, C. W. & Sorger, P. K. Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. J. Cell Biol. 164, 535–546 (2004).
Scott, R. J., Lusk, C. P., Dilworth, D. J., Aitchison, J. D. & Wozniak, R. W. Interactions between Mad1p and the nuclear transport machinery in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 16, 4362–4374 (2005).
Scott, R. J., Cairo, L. V., Van de Vosse, D. W. & Wozniak, R. W. The nuclear export factor Xpo1p targets Mad1p to kinetochores in yeast. J. Cell Biol. 184, 21–29 (2009).
Katsani, K. R., Karess, R. E., Dostatni, N. & Doye, V. In vivo dynamics of Drosophila nuclear envelope components. Mol. Biol. Cell 19, 3652–3666 (2008).
Nakano, H., Funasaka, T., Hashizume, C. & Wong, R. W. Nucleoporin Tpr associates with dynein complex preventing chromosome lagging formation during mitosis. J. Biol. Chem. 285, 10841–10849 (2010).
Rao, C. V., Yamada, H. Y., Yao, Y. & Dai, W. Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis 30, 1469–1474 (2009).
Pemberton, L. F. & Paschal, B. M. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6, 187–198 (2005).
Tran, E. J., Bolger, T. A. & Wente, S. R. SnapShot: nuclear transport. Cell 131, 420 (2007).
Cullen, B. R. Viral RNAs: lessons from the enemy. Cell 136, 592–597 (2009).
Oza, P., Jaspersen, S. L., Miele, A., Dekker, J. & Peterson, C. L. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev. 23, 912–927 (2009).
Schober, H., Ferreira, H., Kalck, V., Gehlen, L. R. & Gasser, S. M. Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev. 23, 928–938 (2009).
Jaspersen, S. L., Giddings, T. H. & Winey, M. Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. J. Cell Biol. 159, 945–956 (2002).
Ding, X. et al. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev. Cell 12, 863–872 (2007).
Gartenberg, M. R. Life on the edge: telomeres and persistent DNA breaks converge at the nuclear periphery. Genes Dev. 23, 1027–1031 (2009).
Liu, Q. et al. Functional association of Sun1 with nuclear pore complexes. J. Cell Biol. 178, 785–798 (2007).
Mekhail, K., Seebacher, J., Gygi, S. P. & Moazed, D. Role for perinuclear chromosome tethering in maintenance of genome stability. Nature 456, 667–670 (2008).
Mans, B. J., Anantharaman, V., Aravind, L. & Koonin, E. V. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3, 1612–1637 (2004).
Grund, S. E. et al. The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression. J. Cell Biol. 182, 897–910 (2008).
Gonzalez-Barrera, S., Garcia-Rubio, M. & Aguilera, A. Transcription and double-strand breaks induce similar mitotic recombination events in Saccharomyces cerevisiae. Genetics 162, 603–614 (2002).
Jimeno, S., Rondon, A. G., Luna, R. & Aguilera, A. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J. 21, 3526–3535 (2002).
Gaillard, H., Wellinger, R. E. & Aguilera, A. A new connection of mRNP biogenesis and export with transcription-coupled repair. Nucleic Acids Res. 35, 3893–3906 (2007).
García-Rubio, M. et al. Different physiological relevance of yeast THO/TREX subunits in gene expression and genome integrity. Mol. Genet. Genomics 279, 123–132 (2008).
Schneider, M., Noegel, A. A. & Karakesisoglou, I. KASH-domain proteins and the cytoskeletal landscapes of the nuclear envelope. Biochem. Soc. Trans. 36, 1368–1372 (2008).
Kelly, S. M. & Corbett, A. H. Messenger RNA export from the nucleus: a series of molecular wardrobe changes. Traffic 10, 1199–1208 (2009).
Luna, R., Gaillard, H., Gonzalez-Aguilera, C. & Aguilera, A. Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 117, 319–331 (2008).
Hacker, S. & Krebber, H. Differential export requirements for shuttling serine/arginine-type mRNA-binding proteins. J. Biol. Chem. 279, 5049–5052 (2004).
Iglesias, N. & Stutz, F. Regulation of mRNP dynamics along the export pathway. FEBS Lett. 582, 1987–1996 (2008).
Acknowledgements
We are indebted to J. Luban (University of Geneva, Switzerland) for unwavering support to the first author throughout the course of this work. We wish to thank O. Petrini and M. Tonolla (Istituto Cantonale di Microbiologia, Bellinzona, Switzerland) for active hospitality and encouragement. We are grateful to J. Luban, K. Mullin and M. Eisenstein for critical reviewing of the manuscript. We apologize to those colleagues whose primary reference we have not been able to cite owing to space limitations. M.P.R. and C. S.-D.-C. gratefully acknowledge funding they received from the European Commission 7th Framework Programme for Scientific Research (Project number: HEALTH-2007-2.3.2, GA number: HEALTH-F3-2008-201,032 to C. S.-D.-C.) from the National Institutes of Health (R01 GM062427 and R01 GM071329 to M. P. R.) and the American Cancer Society (RSG0404251 to M. P. R. and C. S.-D.-C.).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Glossary
- Nuclear periphery
-
The region of the nucleus comprised of the nuclear envelope and its associated structures, including the NPC and the nuclear components found in the neighbourhood.
- β-Propeller
-
A compact structural protein domain of similarly sized β-sheets, which are stacked into a cylinder to resemble the blades of a propeller.
- α-Solenoid
-
A structural protein domain composed of numerous pairs of antiparallel α-helices that are stacked to form a solenoid.
- LEM domain
-
(LAP2, emerin and MAN1 domain). A domain that is present in a family of evolutionarily conserved integral membrane proteins of the INM, which participate in chromatin organization, gene expression regulation and nuclear envelope biogenesis.
- SUN domain
-
(Sad1 and UNC84 domain). A conserved C-terminal amino acid sequence found in integral membrane proteins of the INM. These proteins act with members of the KASH domain-containing protein family to form a molecular 'velcro', which is thought to mediate several processes requiring nuclear repositioning, such as fertilization, establishment of polarity, division and differentiation.
- Brownian motion
-
The seemingly random movement of particles suspended in a liquid or gas, which is driven by the kinetic energy of the particles in the system.
- Heterochromatin
-
A highly condensed form of chromatin that is either genetically inactive or transcriptionally repressed. It is predominantly located near the nuclear envelope and includes centromeres, telomeres and silenced genes.
- SUMO homeostasis
-
The overall level of proteins modified by the covalent attachment of SUMO. It is balanced through the regulated activities of sumoylating ligases and desumoylating proteases.
- TRAMP complex
-
(Trf4 or Trf5, Air1 or Air2 and Mtr4 polyadenylation complex). A protein complex that functions in RNA processing, degradation and surveillance. It polyadenylates various aberrant nuclear RNAs and thus labels them for processing or degradation by the exosome complex.
- Exosome complex
-
A complex of several exonucleases arranged in a ring structure that, assisted by RNA helicases, degrade RNAs in the nucleus and cytoplasm.
- SAGA histone acetyltransferase complex
-
(Spt, Ada, Gcn5 and acetyltransferase histone acetyltransferase complex). A large and highly conserved multiprotein complex required for the normal transcription of many genes.
- TREX2 complex
-
(Transcription–export complex 2). TREX2 comprises Thp1, Sac3, Cdc31 and the Sus1 subunit of the SAGA complex involved in chromatin remodelling and transcriptional activation. TREX2 interacts with the NPC and is thought to have an important role in coupling SAGA-dependent gene expression to mRNA export.
- THO complex
-
A multiprotein complex conserved among yeast and metazoans that is involved in mRNP biogenesis and export. In S. cerevisiae it consists of Hpr1, Mft1, Tho2 and Thp2. The human counterpart consists of the THO complex proteins THOC1–THOC7.
- TREX complex
-
(Transcription–export complex). A complex that consists of components of the THO complex together with Yra1 (homologous to human THOC4) and Sub2 (homologous to human BAT1). The TREX complex interacts with the NPC through the non-Kap NTFs Mex67 and Mtr2, helping to anchor active genes to the nuclear periphery.
- Gene gating hypothesis
-
The hypothesis in which “the nuclear pore complexes are envisioned to serve as gene-gating organelles capable on interacting specifically with expanded (transcribable) portions of the genome”49.
- Spindle pole body (SPB)
-
The only microtubule organizing centre found in S. cerevisiae. SPBs are embedded in the nuclear envelope throughout the yeast life cycle and their functions include chromosome segregation during mitosis and meiosis, and intracellular trafficking.
- Spindle assembly checkpoint (SAC)
-
The SAC monitors the correct attachment of kinetochores to spindle microtubules before anaphase. Unattached kinetochores activate this checkpoint and cause cell-cycle arrest through the inhibition of the anaphase-promoting complex.
Rights and permissions
About this article
Cite this article
Strambio-De-Castillia, C., Niepel, M. & Rout, M. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11, 490–501 (2010). https://doi.org/10.1038/nrm2928
Issue Date:
DOI: https://doi.org/10.1038/nrm2928
This article is cited by
-
Modeling HIV-1 nuclear entry with nucleoporin-gated DNA-origami channels
Nature Structural & Molecular Biology (2023)
-
Super-resolved 3D tracking of cargo transport through nuclear pore complexes
Nature Cell Biology (2022)
-
Molecular basis of C9orf72 poly-PR interference with the β-karyopherin family of nuclear transport receptors
Scientific Reports (2022)
-
Cryo-EM structure of the nuclear ring from Xenopus laevis nuclear pore complex
Cell Research (2022)
-
Nuclear pore complexes — a doorway to neural injury in neurodegeneration
Nature Reviews Neurology (2022)