Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A membranous spindle matrix orchestrates cell division

Abstract

Eukaryotic cell division uses morphologically different forms of mitosis, referred to as open, partially open and closed mitosis, for accurate chromosome segregation and proper partitioning of other cellular components such as endomembranes and cell fate determinants. Recent studies suggest that the spindle matrix provides a conserved strategy to coordinate the segregation of genetic material and the partitioning of the rest of the cellular contents in all three forms of mitosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metaphase spindles in three forms of mitosis.
Figure 2: Two types of spindle matrices in open mitosis, as revealed by physical perturbations.
Figure 3: Localization of spindle matrix components.
Figure 4: A unified model of the spindle matrix in patterning cell division.

Similar content being viewed by others

References

  1. Persico, A., Cervigni, R. I., Barretta, M. L. & Colanzi, A. Mitotic inheritance of the Golgi complex. FEBS Lett. 583, 3857–3862 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. De Souza, C. P. & Osmani, S. A. Double duty for nuclear proteins — the role of more open forms of mitosis. Trends Genet. 25, 545–554 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goldman, R. D. & Rebhun, L. I. The structure and some properties of the isolated mitotic apparatus. J. Cell Sci. 4, 179–209 (1969).

    CAS  PubMed  Google Scholar 

  4. Forer, A. & Goldman, R. D. Comparisons of isolated and in vivo mitotic apparatuses. Nature 222, 689–690 (1969).

    Article  CAS  PubMed  Google Scholar 

  5. Leslie, R. J., Hird, R. B., Wilson, L., McIntosh, J. R. & Scholey, J. M. Kinesin is associated with a nonmicrotubule component of sea urchin mitotic spindle. Proc. Natl Acad. Sci. USA 84, 2771–2775 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wein, H., Bass, H. W. & Cande, W. Z. DSK1, a kinesin-related protein involved in anaphase spindle elongation, is a component of a mitotic spindle matrix. Cell. Motil. Cytoskel. 41, 214–224 (1998).

    Article  CAS  Google Scholar 

  7. Dumont, S. & Mitchison, T. J. Forces and length in the mitotic spindle. Curr. Biol. 19, R749–R761 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pickett-Heaps, J. D., Forer, A. & Spurck, T. Traction fibre: toward a “tensegral” model of the spindle. Cell. Motil. Cytoskel. 37, 1–6 (1997).

    Article  CAS  Google Scholar 

  9. Mitchison, T. J. et al. Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles. Mol. Biol. Cell 16, 3064–3076 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qi, H. et al. East interacts with Megator and localizes to the putative spindle matrix during mitosis in Drosophila. J. Cell Biochem. 95, 1284–1291 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Qi, H. et al. Megator, an essential coiled-coil protein that localizes to the putative spindle matrix during mitosis in Drosophila. Mol. Biol. Cell 15, 4854–4865 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rath, U. et al. Chromator, a novel and essential chromodomain protein interacts directly with the putative spindle matrix protein Skeletor. J. Cell Biochem. 93, 1033–1047 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Walker, D. L. et al. Skeletor, a novel chromosomal protein that redistributes during mitosis provides evidence for the formation of a spindle matrix. J. Cell Biol. 151, 1401–1411 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lince-Faria, M. et al. Spatialtemporal control of mitosis by the conserved spindle matrix protein Megator. J. Cell Biol. 184, 647–657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ding, Y. et al. Chromator is required for proper microtubule spindle formation and mitosis in Drosophila. Dev. Biol. 334, 253–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, S. H., Sterling, H., Burlingame, A. & McCormick, F. Tpr directly binds to Mad1 and Mad2 and is important for the Mad1-Mad2-mediated mitotic spindle checkpoint. Genes Dev. 22, 2926–2931 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abad, P. C. et al. NuMA influences higher order chromatin organization in human mammary epithelium. Mol. Biol. Cell 18, 348–361 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Compton, D. & Cleveland, D. NuMA is required for the proper completion of mitosis. J. Cell Biol. 120, 947–957 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Compton, D. & Cleveland, D. NuMA, a nuclear protein involved in mitosis and nuclear reformation. Curr. Opin. Cell Biol. 6, 343–346 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Merdes, A., Ramyar, K., Vechio, J. & Cleveland, D. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447–458 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Fant, X., Merdes, A. & Haren, L. Cell and molecular biology of spindle poles and NuMA. Int. Rev. Cytol. 238, 1–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Chang, P., Coughlin, M. & Mitchison, T. J. Interaction between Poly(ADP-ribose) and NuMA contributes to mitotic spindle pole assembly. Mol. Biol. Cell 20, 4575–4585 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chang, P., Jacobson, M. K. & Mitchison, T. J. Poly(ADP-ribose) is required for spindle assembly and structure. Nature 432, 645–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Chang, P., Coughlin, M. & Mitchison, T. J. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nature Cell Biol. 7, 1133–1139 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Dechat, T. et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 22, 832–853 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beaudouin, J., Gerlich, D., Daigle, N., Eils, R. & Ellenberg, J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108, 83–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Salina, D. et al. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108, 97–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Ma, L. et al. Requirement for Nudel and dynein for assembly of the lamin B spindle matrix. Nature Cell Biol. 11, 247–256 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Tsai, M.-Y. et al. A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science 311, 1887–1893 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Zheng, Y. & Tsai, M.-Y. The mitotic spindle matrix: a fibro-membranous lamin connection. Cell Cycle 5, 2345–2347 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Tsai, M.-Y. et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nature Cell Biol. 5, 242–248 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Tsai, M.-Y. & Zheng, Y. Aurora A kinase-coated beads function as microtubule-organizing centers and enhance RanGTP-induced spindle assembly. Curr. Biol. 15, 2156–2163 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Orjalo, A. V. et al. The Nup107–160 nucleoporin complex is required for correct bipolar spindle assembly. Mol. Biol. Cell 17, 3806–3816 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Civelekoglu-Scholey, G., Tao, L., Brust-Mascher, I., Wollman, R. & Scholey, J. M. Prometaphase spindle maintenance by an antagonistic motor-dependent force balance made robust by a disassembling lamin-B envelope. J. Cell Biol. 188, 49–68 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cao, K., Nakajima, R., Meyer, H. H. & Zheng, Y. The AAA-ATPase Cdc48/p97 regulates spindle disassembly at the end of mitosis. Cell 115, 355–367 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Cao, K. & Zheng, Y. The Cdc48/p97-Ufd1-Npl4 complex: its potential role in coordinating cellular morphogenesis during M-G1 transition. Cell Cycle 3, 422–424 (2004).

    CAS  PubMed  Google Scholar 

  37. Royle, S. J., Bright, N. A. & Lagnado, L. Clathrin is required for the function of the mitotic spindle. Nature 434, 1152–1157 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sutterlin, C., Polishchuk, R., Pecot, M. & Malhotra, V. The Golgi-associated protein GRASP65 regulates spindle dynamics and is essential for cell division. Mol. Biol. Cell 16, 3211–3222 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vong, Q. P., Cao, K., li, H. Y., Iglesias, P. A. & Zheng, Y. Chromosome alignment and segregation regulated by ubiquitination of Surivin. Science 310, 1499–1504 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Lehtonen, S. et al. The endocytic adaptor protein ARH associates with motor and centrosomal proteins and is involved in centrosome assembly and cytokinesis. Mol. Biol. Cell 19, 2949–2961 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boucrot, E. & Kirchhausen, T. Endosomal recycling controls plasma membrane area during mitosis. Proc. Natl Acad. Sci. USA 104, 7939–7944 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, Y. et al. The Sac1 phosphoinositide phosphatase regulates golgi membrane morphology and mitotic spindle organization in mammals. Mol. Biol. Cell 19, 3080–3096 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, Z. & Zheng, Y. A requirement for epsin in mitotic membrane and spindle organization. J. Cell Biol. 186, 473–480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ducat, D. C., Kawaguchi, S., Liu, H., Yates, J., 3rd & Zheng, Y. Regulation of microtubule assembly and organization in mitosis by the AAA+ ATPase Pontin. Mol. Biol. Cell 19, 3097–3110 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yokoyama, H., Rybina, S., Santarella-Mellwig, R., Mattaj, I. W. & Karsenti, E. ISWI is a RanGTP-dependent MAP required for chromosome segregation. J. Cell Biol. 187, 813–829 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, C. & Clarke, P. R. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 288, 1429–1432 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Hetzer, M., Bilbao-Cortes, D., Walther, T. C., Gruss, O. J. & Mattaj, I. W. GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol. Cell 5, 1013–1024 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Moore, J. K., Stuchell-Brereton, M. D. & Cooper, J. A. Function of dynein in budding yeast: mitotic spindle position in a polarized cell. Cell. Motil. Cytoskel. 66, 546–555 (2009).

    Article  CAS  Google Scholar 

  49. Gonzalez, Y. et al. Nuclear shape, growth and integrity in the closed mitosis of fission yeast depends on the Ran-GTPase system, the spindle pole body and the endoplasmic reticulum. J. Cell Sci. 122, 2464–2472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. De Souza, C. P., Hashmi, S. B., Nayak, T., Oakley, B. & Osmani, S. A. Mlp1 acts as a mitotic scaffold to spatially regulate spindle assembly checkpoint proteins in Aspergillus nidulans. Mol. Biol. Cell 20, 2146–2159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shcheprova, Z., Baldi, S., Frei, S. B., Gonnet, G. & Barrel, Y. A mechanism for asymmetric segregation of age during yeast budding. Nature 454, 728–734 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Siller, K. H. & Doe, C. O. Spindle orientation during assymetric cell division. Nature Cell Biol. 11, 365–374 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Wilde, A. & Zheng, Y. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284, 1359–1362 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Kalab, P., Pu, R. & Dasso, M. The Ran GTPase regulates mitotic spindle assembly. Curr. Biol. 9, 481–484 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Ohba, T., Nakamura, M., Nishitani, H. & Nishimoto, T. Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284, 1356–1358 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Carazo-Salas, R. E. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Li, H., Wirtz, D. & Zheng, Y. A mechanism of coupling RCC1 mobility to RanGTP production on the chromatin in vivo. J. Cell Biol. 160, 635–644 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, H. Y. & Zheng, Y. Phosphorylation of RCC1 in mitosis is essential for producing a high RanGTP concentration on chromosomes and for spindle assembly in mammalian cells. Genes Dev. 18, 512–527 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kalab, P., Pralle, A., Isacoff, E. Y., Heald, R. & Weis, K. Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 440, 697–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Walczak, C. E. & Heald, R. Mechanism of mitotic spindle assembly and function. Int. Rev. Cytol. 265, 111–158 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank B. Goodman for spindle drawings and B. Guo, K. Jung and members of the Zheng laboratory for helpful comments. I apologize to colleagues whose work could not be cited owing to space limitations. The work on mitosis in the Y.Z. laboratory is supported by the National Institute of General Medical Sciences (GM056312). Y.Z. is an investigator of the Howard Hughes Medical Institute. The image in the middle panel of figure 3 part c is courtesy of L. Ma.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Y. Zheng's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y. A membranous spindle matrix orchestrates cell division. Nat Rev Mol Cell Biol 11, 529–535 (2010). https://doi.org/10.1038/nrm2919

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing