Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spatial organization and signal transduction at intercellular junctions

Key Points

  • In juxtacrine signalling, surfaces of interacting cells come into direct contact and receptor–ligand recognition at this interface triggers intracellular signalling. Interactions involve multiple adhesion and signalling molecules, the collective behaviour of which regulates signal transduction.

  • The coordinated organization of cell membrane receptors into micrometre-scale patterns is emerging as a broadly significant theme of intercellular signalling, as exemplified by immunological synapses. Recent evidence suggests that this dynamic spatial organization has an active role in regulating the signalling state of individual molecular components and thus can alter long-term cell activation.

  • The physical mechanisms that establish and regulate the spatial organization of signalling molecules are equally as important as the chemical reactions themselves and both the cell membrane and the actin cytoskeleton have key roles.

  • The role of spatial organization is best appreciated by experiments that physically alter the organization of cell surface molecules at the interface between two cells. As a result, new experimental strategies have emerged to manipulate the spatial organization of molecules inside living cells.

Abstract

The coordinated organization of cell membrane receptors into diverse micrometre-scale spatial patterns is emerging as an important theme of intercellular signalling, as exemplified by immunological synapses. Key characteristics of these patterns are that they transcend direct protein–protein interactions, emerge transiently and modulate signal transduction. Such cooperativity over multiple length scales presents new and intriguing challenges for the study and ultimate understanding of cellular signalling. As a result, new experimental strategies have emerged to manipulate the spatial organization of molecules inside living cells. The resulting spatial mutations yield insights into the interweaving of the spatial, mechanical and chemical aspects of intercellular signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Micrometre-scale protein patterns in the immunological synapse.
Figure 2: Signalling states are location-dependent in the immunological synapse.
Figure 3: Spatial organization influences cell signalling in the immunological synapse.
Figure 4: Cellular mechanisms controlling spatial organization in intercellular junctions.
Figure 5: Experimental manipulation of spatial organization in intercellular junctions.
Figure 6: Immunological synapse spatial mutations.

Similar content being viewed by others

References

  1. Groves, J. T. Molecular organization and signal transduction at intermembrane junctions. Angew. Chem. Int. Ed. Engl. 44, 3524–3538 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Reich, Z. et al. Ligand-specific oligomerization of T-cell receptor molecules. Nature 387, 617–620 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Bray, D., Levin, M. D. & Morton-Firth, C. J. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393, 85–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Maheshwari, G., Brown, G., Lauffenburger, D. A., Wells, A. & Griffith, L. G. Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 113, 1677–1686 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Delon, J. & Germain, R. N. Information transfer at the immunological synapse. Curr. Biol. 10, R923–R933 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Davis, M. M. et al. Dynamics of cell surface molecules during T cell recognition. Annu. Rev. Biochem. 72, 717–742 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Davis, D. M. & Dustin, M. L. What is the importance of the immunological synapse? Trends Immunol. 25, 323–327 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Singleton, K. L. et al. Spatiotemporal patterning during T cell activation is highly diverse. Sci. Signal. 2, ra15 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. van Der Merwe, P. A. & Davis, S. J. Immunology. The immunological synapse — a multitasking system. Science 295, 1479–1480 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Huppa, J. B. & Davis, M. M. T-cell-antigen recognition and the immunological synapse. Nature Rev. Immunol. 3, 973–983 (2003).

    Article  CAS  Google Scholar 

  12. Dustin, M. L. & Colman, D. R. Neural and immunological synaptic relations. Science 298, 785–789 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Friedl, P., den Boer, A. T. & Gunzer, M. Tuning immune responses: diversity and adaptation of the immunological synapse. Nature Rev. Immunol. 5, 532–545 (2005).

    Article  CAS  Google Scholar 

  14. Kao, H., Lin, J., Littman, D. R., Shaw, A. S. & Allen, P. M. Regulated movement of CD4 in and out of the immunological synapse. J. Immunol. 181, 8248–8257 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Cemerski, S. et al. The stimulatory potency of T cell antigens is influenced by the formation of the immunological synapse. Immunity 26, 345–355 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cemerski, S. et al. The balance between T cell receptor signaling and degradation at the center of the immunological synapse is determined by antigen quality. Immunity 29, 414–422 (2008). Reports that the centre of the immunological synapse can be a site of sustained signalling for low doses of, or weak, antigens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mossman, K. D., Campi, G., Groves, J. T. & Dustin, M. L. Altered TCR signaling from geometrically repatterned immunological synapses. Science 310, 1191–1193 (2005). TCRs were physically restricted in the periphery of the synapse and their radial localization was shown to regulate their signalling.

    Article  CAS  PubMed  Google Scholar 

  18. Sims, T. N. et al. Opposing effects of PKCτ and WASp on symmetry breaking and relocation of the immunological synapse. Cell 129, 773–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Dustin, M. L. Cell adhesion molecules and actin cytoskeleton at immune synapses and kinapses. Curr. Opin. Cell Biol. 19, 529–533 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paul, W. E. & Seder, R. A. Lymphocyte-responses and cytokines. Cell 76, 241–251 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M. L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, K. H. et al. The immunological synapse balances T cell receptor signaling and degradation. Science 302, 1218–1222 (2003). Combines experiments and computer modelling to reveal the dual capacity of the immunological synapse to act as an enhancer and a downregulator of TCR signalling.

    Article  CAS  PubMed  Google Scholar 

  24. Dustin, M. L. T-cell activation through immunological synapses and kinapses. Immunol. Rev. 221, 77–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Gomez, T. S. & Billadeau, D. D. T cell activation and the cytoskeleton: you can't have one without the other. Adv. Immunol. 97, 1–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Orange, J. S. Formation and function of the lytic NK-cell immunological synapse. Nature Rev. Immunol. 8, 713–725 (2008).

    Article  CAS  Google Scholar 

  27. Yokosuka, T. & Saito, T. Dynamic regulation of T-cell costimulation through TCR-CD28 microclusters. Immunol. Rev. 229, 27–40 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Hallman, E., Burack, W. R., Shaw, A. S., Dustin, M. L. & Allen, P. M. Immature CD4+CD8+ thymocytes form a multifocal immunological synapse with sustained tyrosine phosphorylation. Immunity 16, 839–848 (2002).

    Article  Google Scholar 

  29. Davis, D. M. et al. The human natural killer cell immune synapse. Proc. Natl Acad. Sci. USA 96, 15062–15067 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Almeida, C. R. & Davis, D. M. Segregation of HLA-C from ICAM-1 at NK cell immune synapses is controlled by its cell surface density. J. Immunol. 177, 6904–6910 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Culley, F. J. et al. Natural killer cell signal integration balances synapse symmetry and migration. PLoS Biol. 7, e1000159 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Masilamani, M., Nguyen, C., Kabat, J., Borrego, F. & Coligan, J. E. CD94/NKG2A inhibits NK cell activation by disrupting the actin network at the immunological synapse. J. Immunol. 177, 3590–3596 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Doh, J. & Irvine, D. J. Immunological synapse arrays: patterned protein surfaces that modulate immunological synapse structure formation in T cells. Proc. Natl Acad. Sci. USA 103, 5700–5705 (2006). Developed a surface recreating canonical, multifocal and inverted synapses, and showed that some downstream T cell signalling pathways are altered by the new geometries.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen, K., Thomas, V. K., Dustin, M. L. & Kam, L. C. Micropatterning of costimulatory ligands enhances CD4+ T cell function. Proc. Natl Acad. Sci. USA 105, 7791–7796 (2008). Reveals that segregation, colocalization and relative radial juxtaposition alter how CD28 co-stimulates TCR signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yokosuka, T. et al. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase Cτ translocation. Immunity 29, 589–601 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huppa, J. B. et al. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature. 463, 963–967 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weikl, T. R. & Lipowsky, R. Pattern formation during T-cell adhesion. Biophys. J. 87, 3665–3678 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Altan-Bonnet, G. & Germain, R. N. Modeling T cell antigen discrimination based on feedback control of digital ERK responses. Plos Biol. 3, 1925–1938 (2005).

    Article  CAS  Google Scholar 

  39. Wylie, D. C., Das, J. & Chakraborty, A. K. Sensitivity of T cells to antigen and antagonism emerges from differential regulation of the same molecular signaling module. Proc. Natl Acad. Sci. USA 104, 5533–5538 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Feinerman, O., Germain, R. N. & Altan-Bonnet, G. Quantitative challenges in understanding ligand discrimination by αβ T cells. Mol. Immunol. 45, 619–631 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Chakraborty, A. K. & Das, J. Pairing computation with experimentation: a powerful coupling for understanding T cell signalling. Nature Rev. Immunol. 10, 59–71 (2010).

    Article  CAS  Google Scholar 

  42. Kastrup, C. J., Runyon, M. K., Shen, F. & Ismagilov, R. F. Modular chemical mechanism predicts spatiotemporal dynamics of initiation in the complex network of hemostasis. Proc. Natl Acad. Sci. USA 103, 15747–15752 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kastrup, C. J., Shen, F., Runyon, M. K. & Ismagilov, R. F. Characterization of the threshold response of initiation of blood clotting to stimulus patch size. Biophys. J. 93, 2969–2977 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Veatch, S. L. et al. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3, 287–293 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Dustin, M. L., Ferguson, L. M., Chan, P. Y., Springer, T. A. & Golan, D. E. Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J. Cell Biol. 132, 465–474 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Groves, J. T. Bending mechanics and molecular organization in biological membranes. Annu. Rev. Phys. Chem. 58, 697–717 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Dustin, M. L. Adhesive bond dynamics in contacts between T lymphocytes and glass-supported planar bilayers reconstituted with the immunoglobulin-related adhesion molecule CD58. J. Biol. Chem. 272, 15782–15788 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Qi, S. Y., Groves, J. T. & Chakraborty, A. K. Synaptic pattern formation during cellular recognition. Proc. Natl Acad. Sci. USA 98, 6548–6553 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weikl, T. R., Asfaw, M., Krobath, H., Rozycki, B. & Lipowsky, R. Adhesion of membranes via receptor-ligand complexes: domain formation, binding cooperativity, and active processes. Soft Matter 5, 3213–3224 (2009).

    Article  CAS  Google Scholar 

  51. Burroughs, N. J., Lazic, Z. & van der Merwe, P. A. Ligand detection and discrimination by spatial relocalization: a kinase-phosphatase segregation model of TCR activation. Biophys. J. 91, 1619–1629 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Milstein, O. et al. Nanoscale increases in CD2-CD48-mediated intermembrane spacing decrease adhesion and reorganize the immunological synapse. J. Biol. Chem. 283, 34414–34422 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaizuka, Y., Douglass, A. D., Vardhana, S., Dustin, M. L. & Vale, R. D. The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells. J. Cell Biol. 185, 521–534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Choudhuri, K., Wiseman, D., Brown, M. H., Gould, K. & van der Merwe, P. A. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436, 578–582 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Billadeau, D. D., Nolz, J. C. & Gomez, T. S. Regulation of T-cell activation by the cytoskeleton. Nature Rev. Immunol. 7, 131–143 (2007).

    Article  CAS  Google Scholar 

  56. Kaizuka, Y., Douglass, A. D., Varma, R., Dustin, M. L. & Vale, R. D. Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc. Natl Acad. Sci. USA 104, 20296–20301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. DeMond, A. L., Mossman, K. D., Starr, T., Dustin, M. L. & Groves, J. T. T cell receptor microcluster transport through molecular mazes reveals mechanism of translocation. Biophys. J. 94, 3286–3292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Burkhardt, J. K., Carrizosa, E. & Shaffer, M. H. The actin cytoskeleton in T cell activation. Annu. Rev. Immunol. 26, 233–259 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Chhabra, E. S. & Higgs, H. N. The many faces of actin: matching assembly factors with cellular structures. Nature Cell Biol. 9, 1110–1121 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Koretzky, G. A. & Myung, P. S. Positive and negative regulation of T-cell activation by adaptor proteins. Nature Rev. Immunol. 1, 95–107 (2001).

    Article  CAS  Google Scholar 

  62. Smith, A. et al. A talin-dependent LFA-1 focal zone is formed by rapidly migrating T lymphocytes. J. Cell Biol. 170, 141–151 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hartman, N. C., Nye, J. A. & Groves, J. T. Cluster size regulates protein sorting in the immunological synapse. Proc. Natl Acad. Sci. USA 106, 12729–12734 (2009). Proposes that frictional coupling to the actin cytoskeleton is a mechanism that controls the spatial patterning of membrane proteins.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bunnell, S. C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 158, 1263–1275 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nguyen, K., Sylvain, N. R. & Bunnell, S. C. T cell costimulation via the integrin VLA-4 inhibits the actin-dependent centralization of signaling microclusters containing the adaptor SLP-76. Immunity 28, 810–821 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Warren, C. M. & Landgraf, R. Signaling through ERBB receptors: multiple layers of diversity and control. Cell. Signal. 18, 923–933 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Tian, T. et al. Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nature Cell Biol. 9, 905–914 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Salaita, K. et al. Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science 327, 1380–1385 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Greenfield, D. et al. Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. Plos Biol. 7, e1000137 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Gestwicki, J. E. & Kiessling, L. L. Inter-receptor communication through arrays of bacterial chemoreceptors. Nature 415, 81–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Sourjik, V. & Berg, H. C. Functional interactions between receptors in bacterial chemotaxis. Nature 428, 437–441 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Lillemeier, B. F. et al. TCR and LAT are expressed on separate protein islands on T cell membranes and concatenate during activation. Nature Immunol. 11, 90–96 (2010).

    Article  CAS  Google Scholar 

  73. Pautot, S., Lee, H., Isacoff, E. Y. & Groves, J. T. Neuronal synapse interaction reconstituted between live cells and supported lipid bilayers. Nature Chem. Biol. 1, 283–289 (2005).

    Article  CAS  Google Scholar 

  74. Sackmann, E. Supported membranes: scientific and practical applications. Science 271, 43–48 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Groves, J. T. & Dustin, M. L. Supported planar bilayers in studies on immune cell adhesion and communication. J. Immunol. Methods 278, 19–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Groves, J. T. Spatial mutation of the T cell immunological synapse. Curr. Opin. Chem. Biol. 10, 544–550 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Nye, J. A. & Groves, J. T. Kinetic control of histidine-tagged protein surface density on supported lipid bilayers. Langmuir 24, 4145–4149 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Groves, J. T., Ulman, N. & Boxer, S. G. Micropatterning fluid lipid bilayers on solid supports. Science 275, 651–653 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Falconnet, D., Csucs, G., Grandin, H. M. & Textor, M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27, 3044–3063 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. & Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Mossman, K. & Groves, J. Micropatterned supported membranes as tools for quantitative studies of the immunological synapse. Chem. Soc. Rev. 36, 46–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Nie, Z. & Kumacheva, E. Patterning surfaces with functional polymers. Nature Mater. 7, 277–290 (2008).

    Article  CAS  Google Scholar 

  83. Sia, S. K. & Whitesides, G. M. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Delamarche, E., Juncker, D. & Schmid, H. Microfluidics for processing surfaces and miniaturizing biological assays. Adv Mater. 17, 2911–2933 (2005).

    Article  CAS  Google Scholar 

  85. Irvine, D. J., Doh, J. & Huang, B. Patterned surfaces as tools to study ligand recognition and synapse formation by T cells. Curr. Op. Immunol. 19, 463–469 (2007).

    Article  CAS  Google Scholar 

  86. Ruiz, S. A. & Chen, C. S. Microcontact printing: a tool to pattern. Soft Matter 3, 168–177 (2007).

    Article  CAS  Google Scholar 

  87. Salaita, K., Wang, Y. & Mirkin, C. A. Applications of dip-pen nanolithography. Nature Nanotechnol. 2, 145–155 (2007).

    Article  CAS  Google Scholar 

  88. Girard, P. P., Cavalcanti-Adam, E. A., Kemkemer, R. & Spatz, J. P. Cellular chemomechanics at interfaces: sensing, integration and response. Soft Matter 3, 307–326 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Sackmann, E. & Tanaka, M. Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol. 18, 58–64 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Tanaka, M. & Sackmann, E. Polymer-supported membranes as models of the cell surface. Nature 437, 656–663 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Wu, M., Holowka, D., Craighead, H. G. & Baird, B. Visualization of plasma membrane compartmentalization with patterned lipid bilayers. Proc. Natl Acad. Sci. USA 101, 13798–13803 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Arnold, M. et al. Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem. 5, 383–388 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nature Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article  CAS  Google Scholar 

  95. Torres, A. J., Wu, M., Holowka, D. & Baird, B. Nanobiotechnology and cell biology: micro- and nanofabricated surfaces to investigate receptor-mediated signaling. Annu. Rev. Biophys. 37, 265–288 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Schwarzenbacher, M. et al. Micropatterning for quantitative analysis of protein-protein interactions in living cells. Nature Methods 5, 1053–1060 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Levskaya, A., Weiner, O. D., Lim, W. A. & Voigt, C. A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gorostiza, P. & Isacoff, E. Y. Optical switches for remote and noninvasive control of cell signaling. Science 322, 395–399 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron. 54, 535–545 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. DeMond, A. L., Starr, T., Dustin, M. L. & Groves, J. T. Control of antigen presentation with a photoreleasable agonist peptide. J. Am. Chem. Soc. 128, 15354–15355 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Huse, M. et al. Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 27, 76–88 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Guo, Y. M. et al. Imaging dynamic cell-cell junctional coupling in vivo using Trojan-LAMP. Nature Methods 5, 835–841 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Meyer, T. & Teruel, M. N. Fluorescence imaging of signaling networks. Trends Cell Biol. 13, 101–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Sabouri-Ghomi, M., Wu, Y., Hahn, K. & Danuser, G. Visualizing and quantifying adhesive signals. Curr. Opin. Cell Biol. 20, 541–550 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Takayama, S. et al. Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc. Natl Acad. Sci. USA 96, 5545–5548 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The hybrid live cell–supported membrane component of this work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the U.S. Department of Energy under contract number DE-AC02-05CH11231. General support for this project was also provided by a National Science Foundation CAREER award MCB-0448614 to J.T.G.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Jay T. Groves homepage

Glossary

Cytokine

A member of a large family of immunomodulating secreted proteins that interact with cellular receptors. Cytokine production results in the activation of an intracellular signalling cascade that commonly regulates processes such as inflammation.

Miscibility phase separation

The partitioning of lipid components (in the context of membranes) into domains that have different chemical compositions and physical properties.

LAT

(Linker for activation of T cells). A transmembrane protein that on TCR activation becomes rapidly phosphorylated and binds multiple adaptor molecules and indirectly recruits others.

hsPALM

(High speed photoactivated localization microscopy). A fluorescence imaging technique in which sequential activation, localization and bleaching of fluorescent reporter proteins yields an image with a resolution of a few tens of nanometers, well below the diffraction limit.

dcFFCS

(Dual colour fluorescence cross-correlation spectroscopy). A technique that analyses the dynamics and association of two different diffusing fluorescent proteins.

Chemotaxis

Directed cell movement according to chemical stimuli.

Liposome or proteoliposome

A vesicle made of lipid bilayer in an aqueous environment. Membrane proteins can be incorporated in the bilayer.

Photo-switchable molecule

A molecule with a functionality (ligand binding, conformational change or absorption spectrum) that is controlled by light and in some cases can be toggled on and off.

Uncaging

The light-controlled release of a functional group that hides (cages) another functional group.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manz, B., Groves, J. Spatial organization and signal transduction at intercellular junctions. Nat Rev Mol Cell Biol 11, 342–352 (2010). https://doi.org/10.1038/nrm2883

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2883

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing