Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Repeat instability as the basis for human diseases and as a potential target for therapy

Abstract

Expansions of repetitive DNA sequences cause numerous human neurological and neuromuscular diseases. Ongoing repeat expansions in patients can exacerbate disease progression and severity. As pathogenesis is connected to repeat length, a potential therapeutic avenue is to modulate disease by manipulating repeat expansion size — targeting DNA, the root-cause of symptoms. How repeat instability is mediated by DNA replication, repair, recombination, transcription and epigenetics may explain its contribution to pathogenesis and give insights into therapeutic strategies to block expansions or induce contractions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contributors to trinucleotide repeat instability.
Figure 2: Repair and somatic repeat instability.

Similar content being viewed by others

References

  1. Pearson, C. E., Nichol Edamura, K. & Cleary, J. D. Repeat instability: mechanisms of dynamic mutations. Nature Rev. Genet. 6, 729–742 (2005).

    Article  CAS  Google Scholar 

  2. Swami, M. et al. Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum. Mol. Genet. 18, 3039–3047 (2009).

    Article  CAS  Google Scholar 

  3. Cleary, J. D. & Pearson, C. E. The contribution of cis-elements to disease-associated repeat instability: Clinical and experimental evidence. Cytogenet. Genome Res. 100, 25–55 (2003).

    Article  CAS  Google Scholar 

  4. Gonitel, R. et al. DNA instability in postmitotic neurons. Proc. Natl Acad. Sci. USA 105, 3467–3472 (2008).

    Article  CAS  Google Scholar 

  5. Entezam, A. et al. Regional FMRP deficits and large repeat expansions into the full mutation range in a new Fragile X premutation mouse model. Gene 395, 125–134 (2007).

    Article  CAS  Google Scholar 

  6. Gomes-Pereira, M. et al. CTG trinucleotide repeat “big jumps”: large expansions, small mice. PLoS Genet. 3, e52 (2007).

    Article  Google Scholar 

  7. Dion, V., Lin, Y., Hubert, L., Jr., Waterland, R. A. & Wilson, J. H. Dnmt1 deficiency promotes CAG repeat expansion in the mouse germline. Hum. Mol. Genet. 17, 1306–1317 (2008).

    Article  CAS  Google Scholar 

  8. Entezam, A. & Usdin, K. ATM and ATR protect the genome against two different types of tandem repeat instability in Fragile X premutation mice. Nucleic Acids Res. 37, 6371–6377 (2009).

    Article  CAS  Google Scholar 

  9. De Temmerman, N. et al. CTG repeat instability in a human embryonic stem cell line carrying the myotonic dystrophy type 1 mutation. Mol. Hum. Reprod. 14, 405–412 (2008).

    Article  CAS  Google Scholar 

  10. Eiges, R. et al. Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1, 568–577 (2007).

    Article  CAS  Google Scholar 

  11. Niclis, J. C. et al. Human embryonic stem cell models of Huntington disease. Reprod. Biomed. Online 19, 106–113 (2009).

    Article  CAS  Google Scholar 

  12. Pearson, C. E. Slipping while sleeping? Trinucleotide repeat expansions in germ cells. Trends Mol. Med. 9, 490–495 (2003).

    Article  CAS  Google Scholar 

  13. Voineagu, I., Freudenreich, C. H. & Mirkin, S. M. Checkpoint responses to unusual structures formed by DNA repeats. Mol. Carcinog. 48, 309–318 (2009).

    Article  CAS  Google Scholar 

  14. Moe, S. E., Sorbo, J. G. & Holen, T. Huntingtin triplet-repeat locus is stable under long-term Fen1 knockdown in human cells. J. Neurosci. Methods 171, 233–238 (2008).

    Article  CAS  Google Scholar 

  15. Lopez Castel, A., Tomkinson, A. E. & Pearson, C. E. CTG/CAG repeat instability is modulated by the levels of human DNA ligase I and its interaction with proliferating cell nuclear antigen: a distinction between replication and slipped-DNA repair. J. Biol. Chem. 284, 26631–26645 (2009).

    Article  CAS  Google Scholar 

  16. Razidlo, D. F. & Lahue, R. S. Mrc1, Tof1 and Csm3 inhibit CAG•CTG repeat instability by at least two mechanisms. DNA Repair (Amst) 7, 633–640 (2008).

    Article  CAS  Google Scholar 

  17. Shishkin, A. A. et al. Large-scale expansions of Friedreich's ataxia GAA repeats in yeast. Mol. Cell 35, 82–92 (2009).

    Article  CAS  Google Scholar 

  18. Dhar, A. & Lahue, R. S. Rapid unwinding of triplet repeat hairpins by Srs2 helicase of Saccharomyces cerevisiae. Nucleic Acids Res. 36, 3366–3373 (2008).

    Article  CAS  Google Scholar 

  19. Foiry, L. et al. Msh3 is a limiting factor in the formation of intergenerational CTG expansions in DM1 transgenic mice. Hum. Genet. 119, 520–526 (2006).

    Article  CAS  Google Scholar 

  20. Owen, B. A. et al. (CAG)n-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition. Nature Struct. Mol. Biol. 12, 663–670 (2005).

    Article  CAS  Google Scholar 

  21. Tome, S. et al. MSH2 ATPase domain mutation affects CTG•CAG repeat instability in transgenic mice. PLoS Genet. 5, e1000482 (2009).

    Article  Google Scholar 

  22. Slean, M. M., Panigrahi, G. B., Ranum, L. P. & Pearson, C. E. Mutagenic roles of DNA “repair” proteins in antibody diversity and disease-associated trinucleotide repeat instability. DNA Repair (Amst) 7, 1135–1154 (2008).

    Article  CAS  Google Scholar 

  23. Hou, C., Chan, N. L., Gu, L. & Li, G. M. Incision-dependent and error-free repair of (CAG)n/(CTG)n hairpins in human cell extracts. Nature Struct. Mol. Biol. 16, 869–875 (2009).

    Article  CAS  Google Scholar 

  24. Panigrahi, G. B., Lau, R., Montgomery, S. E., Leonard, M. R. & Pearson, C. E. Slipped (CTG)•(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair. Nature Struct. Mol. Biol. 12, 654–662 (2005).

    Article  CAS  Google Scholar 

  25. Tian, L. et al. Mismatch recognition protein MutSβ does not hijack (CAG)n hairpin repair in vitro. J. Biol. Chem. 284, 20452–20456 (2009).

    Article  CAS  Google Scholar 

  26. Liu, Y. et al. Coordination between polymerase β and FEN1 can modulate CAG repeat expansion. J. Biol. Chem. 284, 28352–28366 (2009).

    Article  CAS  Google Scholar 

  27. Goula, A. V. et al. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice. PLoS Genet. 5, e1000749 (2009).

    Article  Google Scholar 

  28. Jarem, D. A., Wilson, N. R. & Delaney, S. Structure-dependent DNA damage and repair in a trinucleotide repeat sequence. Biochemistry 48, 6655–6663 (2009).

    Article  CAS  Google Scholar 

  29. Jung, J. & Bonini, N. CREB-binding protein modulates repeat instability in a Drosophila model for polyQ disease. Science 315, 1857–1859 (2007).

    Article  CAS  Google Scholar 

  30. Lin, Y., Dion, V. & Wilson, J. H. Transcription promotes contraction of CAG repeat tracts in human cells. Nature Struct. Mol. Biol. 13, 179–180 (2006).

    Article  CAS  Google Scholar 

  31. Lin, Y., Dent, S. Y., Wilson, J. H., Wells, R. D. & Napierala, M. R loops stimulate genetic instability of CTG•CAG repeats. Proc. Natl Acad. Sci. USA 107, 692–697 (2010).

    Article  CAS  Google Scholar 

  32. Merienne, K. & Trottier, Y. SCA8 CAG/CTG expansions, a tale of two TOXICities: a unique or common case? PLoS Genet. 5, e1000593 (2009).

    Article  Google Scholar 

  33. Ladd, P. D. et al. An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. Hum. Mol. Genet. 16, 3174–3187 (2007).

    Article  CAS  Google Scholar 

  34. Kerrest, A. et al. SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nature Struct. Mol. Biol. 16, 159–167 (2009).

    Article  CAS  Google Scholar 

  35. Libby, R. T. et al. CTCF cis-regulates trinucleotide repeat instability in an epigenetic manner: a novel basis for mutational hot spot determination. PLoS Genet. 4, e1000257 (2008).

    Article  Google Scholar 

  36. Al-Mahdawi, S. et al. The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum. Mol. Genet. 17, 735–746 (2008).

    Article  CAS  Google Scholar 

  37. Castaldo, I. et al. DNA methylation in intron 1 of the frataxin gene is related to GAA repeat length and age of onset in Friedreich's ataxia patients. J. Med. Genet. 45, 808–812 (2008).

    Article  CAS  Google Scholar 

  38. Edwards, S. F., Sirito, M., Krahe, R. & Sinden, R. R. A Z-DNA sequence reduces slipped-strand structure formation in the myotonic dystrophy type 2 (CCTG)•(CAGG) repeat. Proc. Natl Acad. Sci. USA 106, 3270–3275 (2009).

    Article  CAS  Google Scholar 

  39. Kumari, D. & Usdin, K. Chromatin remodeling in the noncoding repeat expansion diseases. J. Biol. Chem. 284, 7413–7417 (2009).

    Article  CAS  Google Scholar 

  40. Musova, Z. et al. Highly unstable sequence interruptions of the CTG repeat in the myotonic dystrophy gene. Am. J. Med. Genet. A 149A, 1365–1374 (2009).

    Article  CAS  Google Scholar 

  41. Braida, C. et al. Variant CCG and GGC repeats within the CTG expansion dramatically modify mutational dynamics and likely contribute toward unusual symptoms in some myotonic dystrophy type 1 patients. Hum. Mol. Genet. 15 Jan 2010 (doi:10.1093/hmg/ddq015).

  42. Sureshkumar, S. et al. A genetic defect caused by a triplet repeat expansion in Arabidopsis thaliana. Science 323, 1060–1063 (2009).

    Article  CAS  Google Scholar 

  43. Lohi, H. et al. Expanded repeat in canine epilepsy. Science 307, 81 (2005).

    Article  CAS  Google Scholar 

  44. Vinces, M. D., Legendre, M., Caldara, M., Hagihara, M. & Verstrepen, K. J. Unstable tandem repeats in promoters confer transcriptional evolvability. Science 324, 1213–1216 (2009).

    Article  CAS  Google Scholar 

  45. Yang, Z., Lau, R., Marcadier, J. L., Chitayat, D. & Pearson, C. E. Replication inhibitors modulate instability of an expanded trinucleotide repeat at the myotonic dystrophy type 1 disease locus in human cells. Am. J. Hum. Genet. 73, 1092–1105 (2003).

    Article  CAS  Google Scholar 

  46. Hashem, V. I. et al. Chemotherapeutic deletion of CTG repeats in lymphoblast cells from DM1 patients. Nucleic Acids Res. 32, 6334–6346 (2004).

    Article  CAS  Google Scholar 

  47. Gomes-Pereira, M. & Monckton, D. G. Chemically induced increases and decreases in the rate of expansion of a CAG•CTG triplet repeat. Nucleic Acids Res. 32, 2865–2872 (2004).

    Article  CAS  Google Scholar 

  48. Mittelman, D. et al. Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proc. Natl Acad. Sci. USA 106, 9607–9612 (2009).

    Article  CAS  Google Scholar 

  49. Mirkin, S. M. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007).

    Article  CAS  Google Scholar 

  50. Grabczyk, E., Mancuso, M. & Sammarco, M. C. A persistent RNA•DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res. 35, 5351–5359 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work could not be cited owing to size limitations. Many citations are included in Supplementary information S1 and S2. Work in the Pearson laboratory is supported by the Muscular Dystrophy Association, USA, the Canadian Institutes of Health Research (CIHR) and the University of Rochester Paul Wellstone Muscular Dystrophy Cooperative Research Center, with support from the National Institutes of Health (U54NS48843), a CIHR fellowship (JDC) and the Hospital for Sick Children Research Training Centre (ALC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher E. Pearson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

OMIM

DM1

FRAXA

FRAXE

FRDA

HD

SBMA

SCA7

SCA8

SCA10

SCA31

FURTHER INFORMATION

Christopher E. Pearson's homepage

Unstable microsatellites and human disease

Human DNA repair genes

Rights and permissions

Reprints and permissions

About this article

Cite this article

López Castel, A., Cleary, J. & Pearson, C. Repeat instability as the basis for human diseases and as a potential target for therapy. Nat Rev Mol Cell Biol 11, 165–170 (2010). https://doi.org/10.1038/nrm2854

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2854

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing