Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PKC and the control of localized signal dynamics

Key Points

  • The protein kinase C (PKC) family of lipid-activated protein kinases lend themselves to compartmentalized action, a property of signalling systems that is increasingly recognized as crucial in determining dynamic cellular behaviour. The Review exemplifies how PKC isoforms can influence such localized signals.

  • The modular nature of PKCs allows PKC activity to be deployed with spatial and temporal specificity. It also allows PKC activity to be directed by multiple inputs, including localized (membrane limited) second messenger production and interaction with membrane-anchored small G proteins, scaffolds and accessory proteins.

  • The relationship between PKC action and associated signalling events in cell–cell interaction are exemplified by the roles of PKCθ in the interaction of T cells with peptide-bound antigen-presenting cells, as well as the role of atypical PKCs (aPKCs) in cell polarity.

  • The localized behaviour of signals under PKC control are illustrated by particular examples of migratory behaviour, including MET-dependent migration involving PKCα and PKCɛ, and aPKC-dependent migration.

  • Our ability to locally interfere with signals to provide evidence of necessity and sufficiency has been limited by a lack of appropriate experimental methodologies. Strategies are necessary that allow the manipulation of spatial and dynamic behaviour in a physiological context.

Abstract

Networks of signal transducers determine the conversion of environmental cues into cellular actions. Among the main players in these networks are protein kinases, which can acutely and reversibly modify protein functions to influence cellular events. One group of kinases, the protein kinase C (PKC) family, have been increasingly implicated in the organization of signal propagation, particularly in the spatial distribution of signals. Examples of where and how various PKC isoforms direct this tier of signal organization are becoming more evident.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The protein kinase C superfamily.
Figure 2: Protein kinase C and polarizing signals.
Figure 3: Protein kinase C isoforms influence MET signals.
Figure 4: Localized signals controlled by PKCζ and PKCι during cell migration.

Similar content being viewed by others

References

  1. Velculescu, V. E. Defining the blueprint of the cancer genome. Carcinogenesis 29, 1087–1091 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nature Rev. Drug Discov. 1, 493–502 (2002).

    Article  CAS  Google Scholar 

  3. DeLange, R. J., Kemp, R. G., Riley, W. D., Cooper, R. A. & Krebs, E. G. . Activation of skeletal muscle phosphorylase kinase by adenosine triphosphate and adenosine 3′, 5′-monophosphate. J. Biol. Chem. 243, 2200–2208 (1968).

    Article  CAS  PubMed  Google Scholar 

  4. Elion, E. A. The Ste5p scaffold. J. Cell Sci. 114, 3967–3978 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Carnegie, G. K., Smith, F. D., McConnachie, G., Langeberg, L. K. & Scott, J. D. AKAP-Lbc nucleates a protein kinase D activation scaffold. Mol. Cell 15, 889–899 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Pawson, T. Regulation and targets of receptor tyrosine kinases. Eur. J. Cancer 38, S3–S10 (2002).

    Article  PubMed  Google Scholar 

  7. Perkins, G. A. et al. PKA, PKC, and AKAP localization in and around the neuromuscular junction. BMC Neurosci. 2, 17 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shieh, B. H., Parker, L. & Popescu, D. Protein kinase C (PKC) isoforms in Drosophila. J. Biochem. 132, 523–527 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Sim, A. T. & Scott, J. D. Targeting of, PKA, PKC and protein phosphatases to cellular microdomains. Cell Calcium 26, 209–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Csukai, M. & Mochly-Rosen, D. Pharmacologic modulation of protein kinase C isozymes: the role of RACKs and subcellular localisation. Pharmacol. Res. 39, 253–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Jaken, S. & Parker, P. J. Protein kinase C binding partners. Bioessays 22, 245–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Poole, A. W., Pula, G., Hers, I., Crosby, D. & Jones, M. L. PKC-interacting proteins: from function to pharmacology. Trends Pharmacol. Sci. 25, 528–535 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Mellor, H. & Parker, P. J. The extended protein kinase C superfamily. Biochem. J. 332, 281–292 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leitges, M. Functional PKC in vivo analysis using deficient mouse models. Biochem. Soc. Trans. 35, 1018–1020 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Pears, C. J., Kour, G., House, C., Kemp, B. E. & Parker, P. J. Mutagenesis of the pseudosubstrate site of protein kinase C leads to activation. Eur. J. Biochem. 194, 89–94 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Nalefski, E. A. & Newton, A. C. Membrane binding kinetics of protein kinase C βII mediated by the C2 domain. Biochemistry 40, 13216–13229 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Oancea, E. & Meyer, T. Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95, 307–318 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki, A. et al. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J. Cell Biol. 152, 1183–1196 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flynn, P., Mellor, H., Palmer, R., Panayotou, G. & Parker, P. J. Multiple interactions of PRK1 with RhoA. Functional assignment of the Hr1 repeat motif. J. Biol. Chem. 273, 2698–2705 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Shibata, H. et al. Characterization of the interaction between RhoA and the amino-terminal region of PKN. Febs Lett. 385, 221–224 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Lim, W. G. et al. The very C-terminus of PRK1/PKN is essential for its activation by RhoA and downstream signaling. Cell Signal. 18, 1473–1481 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Triantafilou, K., Triantafilou, M. & Fernandez, N. Molecular associations and microdomains in antigen-presenting cell-T-cell interactions. Crit. Rev. Immunol. 20, 359–373 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Martin, P. et al. Control of T helper 2 cell function and allergic airway inflammation by PKCζ. Proc. Natl Acad. Sci. USA 102, 9866–9871 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, J. Q., Leitges, M., Duran, A., Diaz-Meco, M. T. & Moscat, J. Loss of PKC λ/ι impairs Th2 establishment and allergic airway inflammation in vivo. Proc. Natl Acad. Sci. USA 106, 1099–1104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baier, G. et al. Molecular-cloning and characterization of pkc-θ, a novel member of protein kinase c (pkc) gene family expressed predominantly in hematopoietic cells. J. Biol. Chem. 268, 4997–5004 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Osada, S. et al. A new member of the protein kinase C family, nPKC theta, predominantly expressed in skeletal muscle. Mol. Cell. Biol. 12, 3930–3938 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Manicassamy, S., Gupta, S. & Sun, Z. Selective function of PKC-θ in T cells. Cell. Mol. Immunol. 3, 263–270 (2006).

    CAS  PubMed  Google Scholar 

  28. Marsland, B. J., Soos, T. J., Spath, G., Littman, D. R. & Kopf, M. Protein kinase C θ is critical for the development of in vivo T helper (Th)2 cell but not Th1 cell responses. J. Exp. Med. 200, 181–189 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marsland, B. J. et al. Innate signals compensate for the absence of PKC-θ during in vivo CD8+ T cell effector and memory responses. Proc. Natl Acad. Sci. USA 102, 14374–14379 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marsland, B. J. & Kopf, M. T-cell fate and function: PKC-θ and beyond. Trends Immunol. 29, 179–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Rao, K. L., Varalakshmi, C., Kumari, A. L. & Khar, A. Interaction between B.7 and CD28 costimulatory molecules is essential for the activation of effector function mediating spontaneous tumour regression. Scand. J. Immunol. 49, 633–640 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Altman, A. & Villalba, M. Protein kinase C-θ (PKCθ): it's all about location, location, location. Immunol. Rev. 192, 53–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Freiberg, B. A. et al. Staging and resetting T cell activation in SMACs. Nature Immunol. 3, 911–917 (2002).

    Article  CAS  Google Scholar 

  35. Schaefer, B. C., Kappler, J. W., Kupfer, A. & Marrack, P. Complex and dynamic redistribution of NF-κB signaling intermediates in response to T cell receptor stimulation. Proc. Natl Acad. Sci. USA 101, 1004–1009 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sommer, K. et al. Phosphorylation of the CARMA1 linker controls NF-κB activation. Immunity 23, 561–574 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, Y. et al. Regulation of protein kinase C θ function during T cell activation by Lck-mediated tyrosine phosphorylation. J. Biol. Chem. 275, 3603–3609 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Thuille, N. et al. Critical role of novel Thr-219 autophosphorylation for the cellular function of PKCθ in T lymphocytes. EMBO J. 24, 3869–3880 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hayashi, K. & Altman, A. Protein kinase C θ (PKC θ): a key player in T cell life and death. Pharmacol. Res. 55, 537–544 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dustin, M. L. T-cell activation through immunological synapses and kinapses. Immunol. Rev. 221, 77–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Tepass, U., Theres, C. & Knust, E. crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61, 787–799 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Hung, T. J. & Kemphues, K. J. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 126, 127–135 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125, 3607–3614 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Watts, J. L. et al. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development 122, 3133–3140 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Horikoshi, Y. et al. Interaction between PAR-3 and the aPKC-PAR-6 complex is indispensable for apical domain development of epithelial cells. J. Cell Sci. 122, 1595–1606 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–106 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311–320 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. Kemphues, K. PARsing embryonic polarity. Cell 101, 345–348 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Ono, Y. et al. Protein kinase C ζ subspecies from rat brain: its structure, expression, and properties. Proc. Natl Acad. Sci. USA 86, 3099–3103 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moscat, J., Diaz-Meco, M. T., Albert, A. & Campuzano, S. Cell signaling and function organized by PB1 domain interactions. Mol. Cell 23, 631–640 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Lin, D. et al. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Yamanaka, T. et al. PAR-6 regulates aPKC activity in a novel way and mediates cell-cell contact-induced formation of the epithelial junctional complex. Genes Cells 6, 721–731 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Bilder, D., Schober, M. & Perrimon, N. Integrated activity of PDZ protein complexes regulates epithelial polarity. Nature Cell Biol. 5, 53–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Hirose, T. et al. Involvement of ASIP/PAR-3 in the promotion of epithelial tight junction formation. J. Cell Sci. 115, 2485–2495 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Takekuni, K. et al. Direct binding of cell polarity protein PAR-3 to cell-cell adhesion molecule nectin at neuroepithelial cells of developing mouse. J. Biol. Chem. 278, 5497–5500 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Ebnet, K. et al. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J. 20, 3738–3748 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mizuno, K. et al. Self-association of PAR-3-mediated by the conserved N-terminal domain contributes to the development of epithelial tight junctions. J. Biol. Chem. 278, 31240–31250 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Yamanaka, T. et al. Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity. Curr. Biol. 13, 734–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Betschinger, J., Mechtler, K. & Knoblich, J. A. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422, 326–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Yamanaka, T. et al. Lgl mediates apical domain disassembly by suppressing the PAR-3-aPKC-PAR-6 complex to orient apical membrane polarity. J. Cell Sci. 119, 2107–2118 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Betschinger, J., Eisenhaber, F. & Knoblich, J. A. Phosphorylation-induced autoinhibition regulates the cytoskeletal protein Lethal (2) giant larvae. Curr. Biol. 15, 276–282 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Hutterer, A., Betschinger, J., Petronczki, M. & Knoblich, J. A. Sequential roles of Cdc42, Par-6, aPKC, and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Dev. Cell 6, 845–854 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Bialucha, C. U., Ferber, E. C., Pichaud, F., Peak-Chew, S. Y. & Fujita, Y. p32 is a novel mammalian Lgl binding protein that enhances the activity of protein kinase Cζ and regulates cell polarity. J. Cell Biol. 178, 575–581 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kallay, L. M., McNickle, A., Brennwald, P. J., Hubbard, A. L. & Braiterman, L. T. Scribble associates with two polarity proteins, Lgl2 and Vangl2, via distinct molecular domains. J. Cell. Biochem. 99, 647–664 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Musch, A. et al. Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin-Darby canine kidney cells. Mol. Biol. Cell 13, 158–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Eder, A. M. et al. Atypical PKCι contributes to poor prognosis through loss of apical-basal polarity and cyclin E overexpression in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 12519–12524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fields, A. P. & Regala, R. P. Protein kinase C ι: human oncogene, prognostic marker and therapeutic target. Pharmacol. Res. 55, 487–497 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kojima, Y. et al. The overexpression and altered localization of the atypical protein kinase C λ/ι in breast cancer correlates with the pathologic type of these tumors. Hum. Pathol. 39, 824–831 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Regala, R. P. et al. Atypical protein kinase Cι plays a critical role in human lung cancer cell growth and tumorigenicity. J. Biol. Chem. 280, 31109–31115 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Nolan, M. E. et al. The polarity protein Par6 induces cell proliferation and is overexpressed in breast cancer. Cancer Res. 68, 8201–8209 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Larsson, C. Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal. 18, 276–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Keum, E. et al. Syndecan-4 regulates localization, activity and stability of protein kinase C-α. Biochem. J. 378, 1007–1014 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ng, T. et al. PKCα regulates β1 integrin-dependent cell motility through association and control of integrin traffic. EMBO J. 18, 3309–3923 (1999).

    Google Scholar 

  76. Ivaska, J., Whelan, R. D., Watson, R. & Parker, P. J. PKCɛ controls the traffic of β1 integrins in motile cells. EMBO J. 21, 3608–3619 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Legg, J. W., Lewis, C. A., Parsons, M., Ng, T. & Isacke, C. M. A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nature Cell Biol. 4, 399–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Kalomiris, E. L. & Bourguignon, L. Y. Lymphoma protein kinase C is associated with the transmembrane glycoprotein, GP85, and may function in GP85-ankyrin binding. J. Biol. Chem. 264, 8113–8119 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. Hood, J. D. & Cheresh, D. A. Role of integrins in cell invasion and migration. Nature Rev. Cancer 2, 91–100 (2002).

    Article  Google Scholar 

  80. Birchmeier, C., Birchmeier, W., Gherardi, E. & Vande Woude, G. F. Met, metastasis, motility and more. Nature Rev. Mol. Cell Biol. 4, 915–925 (2003).

    Article  CAS  Google Scholar 

  81. Lengyel, E., Sawada, K. & Salgia, R. Tyrosine kinase mutations in human cancer. Curr. Mol. Med. 7, 77–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Ma, P. C., Maulik, G., Christensen, J. & Salgia, R. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 22, 309–325 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Trusolino, L. & Comoglio, P. M. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nature Rev. Cancer 2, 289–300 (2002).

    Article  CAS  Google Scholar 

  84. Kermorgant, S., Zicha, D. & Parker, P. J. Protein kinase C controls microtubule-based traffic but not proteasomal degradation of c-Met. J. Biol. Chem. 278, 28921–28929 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Hammond, D. E., Carter, S. & Clague, M. J. Met receptor dynamics and signalling. Curr. Top. Microbiol. Immunol. 286, 21–44 (2004).

    CAS  PubMed  Google Scholar 

  86. Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2089 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Chow, J. C., Condorelli, G. & Smith, R. J. Insulin-like growth factor-I receptor internalization regulates signaling via the Shc/mitogen-activated protein kinase pathway, but not the insulin receptor substrate-1 pathway. J. Biol. Chem. 273, 4672–4680 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, Y., Moheban, D. B., Conway, B. R., Bhattacharyya, A. & Segal, R. A. Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J. Neurosci. 20, 5671–5678 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Howe, C. L., Valletta, J. S., Rusnak, A. S. & Mobley, W. C. NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. Neuron 32, 801–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Hayes, S., Chawla, A. & Corvera, S. TGF β receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J. Cell Biol. 158, 1239–1249 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kermorgant, S., Zicha, D. & Parker, P. J. PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO J. 23, 3721–3734 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hashigasako, A., Machide, M., Nakamura, T., Matsumoto, K. & Nakamura, T. Bi-directional regulation of Ser-985 phosphorylation of c-met via protein kinase C and protein phosphatase 2A involves c-Met activation and cellular responsiveness to hepatocyte growth factor. J. Biol. Chem. 279, 26445–26452 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Roberts, M. S., Woods, A. J., Shaw, P. E. & Norman, J. C. ERK1 associates with αvβ3 integrin and regulates cell spreading on vitronectin. J. Biol. Chem. 278, 1975–1985 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Alvi, F., Idkowiak-Baldys, J., Baldys, A., Raymond, J. R. & Hannun, Y. A. Regulation of membrane trafficking and endocytosis by protein kinase C: emerging role of the pericentrion, a novel protein kinase C-dependent subset of recycling endosomes. Cell. Mol. Life Sci. 64, 263–270 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Kermorgant, S. & Parker, P. J. Receptor trafficking controls weak signal delivery: a strategy used by c-Met for STAT3 nuclear accumulation. J. Cell Biol. 182, 855–863 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Welchman, D. P., Mathies, L. D. & Ahringer, J. Similar requirements for CDC-42 and the PAR-3/PAR-6/PKC-3 complex in diverse cell types. Dev. Biol. 305, 347–357 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hyodo-Miura, J. et al. XGAP, an ArfGAP, is required for polarized localization of PAR proteins and cell polarity in Xenopus gastrulation. Dev. Cell 11, 69–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Pinheiro, E. M. & Montell, D. J. Requirement for Par-6 and Bazooka in Drosophila border cell migration. Development 131, 5243–5251 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Rosse, C., Formstecher, E., Boeckeler, K., Zhao, Y., Kremerskothen, J., White, M., Camonis, J. & Parker, P. J. An aPKC-Exocyst complex controls Paxillin phosphorylation and migration through localised JNK1 activation. PLoS Biol. 7, e1000235 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Rosse, C. et al. RalB mobilizes the exocyst to drive cell migration. Mol. Cell. Biol. 26, 727–734 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cau, J. & Hall, A. Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J. Cell Sci. 118, 2579–2587 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Schlessinger, K., McManus, E. J. & Hall, A. Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J. Cell Biol. 178, 355–361 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell 106, 489–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Etienne-Manneville, S., Manneville, J. B., Nicholls, S., Ferenczi, M. A. & Hall, A. Cdc42 and Par6-PKCζ regulate the spatially localized association of Dlg1 and APC to control cell polarization. J. Cell Biol. 170, 895–901 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Meyer, T. & Teruel, M. N. Fluorescence imaging of signaling networks. Trends Cell Biol. 13, 101–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Ng, T. et al. Imaging protein kinase Cα activation in cells. Science 283, 2085–2089 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Gallegos, L. L., Kunkel, M. T. & Newton, A. C. Targeting protein kinase C activity reporter to discrete intracellular regions reveals spatiotemporal differences in agonist-dependent signaling. J. Biol. Chem. 281, 30947–30956 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Ho, S. N., Biggar, S. R., Spencer, D. M., Schreiber, S. L. & Crabtree, G. R. Dimeric ligands define a role for transcriptional activation domains in reinitiation. Nature 382, 822–826 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Fili, N., Calleja, V., Woscholski, R., Parker, P. J. & Larijani, B. Compartmental signal modulation: endosomal phosphatidylinositol 3-phosphate controls endosome morphology and selective cargo sorting. Proc. Natl Acad. Sci. USA 103, 15473–15478 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Varnai, P., Thyagarajan, B., Rohacs, T. & Balla, T. Rapidly inducible changes in phosphatidylinositol 4, 5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J. Cell Biol. 175, 377–382 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Parekh, D. B., Ziegler, W. & Parker, P. J. Multiple pathways control protein kinase C phosphorylation. EMBO J. 19, 496–503 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gao, T. & Newton, A. C. The turn motif is a phosphorylation switch that regulates the binding of Hsp to protein kinase, C. J. Biol. Chem. 277, 31585–31592 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Cameron, A. J., Procyk, K. J., Leitges, M. & Parker, P. J. PKC α protein but not kinase activity is critical for glioma cell proliferation and survival. Int. J. Cancer 123, 769–779 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Chou, M. M. et al. Regulation of protein kinase C ζ by PI 3-kinase and PDK-1. Curr. Biol. 8, 1069–1077 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Le Good, J. A. et al. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 281, 2042–2045 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Mora, A., Komander, D., van Aalten, D. M. & Alessi, D. R. PDK1, the master regulator of AGC kinase signal transduction. Semin. Cell Dev. Biol. 15, 161–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Facchinetti, V. et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase, C. EMBO J. 27, 1932–1943 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ikenoue, T., Inoki, K., Yang, Q., Zhou, X. & Guan, K. L. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 27, 1919–1931 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Grodsky, N. et al. Structure of the catalytic domain of human protein kinase C β II complexed with a bisindolylmaleimide inhibitor. Biochemistry 45, 13970–13981 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Rhee, S. G. Regulation of phosphoinositide-specific phospholipase, C. Annu. Rev. Biochem. 70, 281–312 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature Rev. Mol. Cell Biol. 9, 690–701 (2008).

    Article  CAS  Google Scholar 

  123. Kitagawa, M., Shibata, H., Toshimori, M., Mukai, H. & Ono, Y. The role of the unique motifs in the amino-terminal region of PKN on its enzymatic activity. Biochem. Biophys. Res. Commun. 220, 963–968 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Parker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Peter Parker's homepage

Glossary

Allosteric mechanism

A mechanism by which a protein is regulated by a change in its shape and activity after binding an effector molecule at a site other than its active site.

Phox/Bem 1 (PB1) domain

Protein module that can bind to target proteins through a PB1–PB1 domain interaction.

Antigen-presenting cell

A cell of the immune system (a macrophage, dendritic cell or B cell) that stimulates immune responses by displaying antigens on its surface to other cells of the immune system (T cells).

TH1

(T helper 1). A subset of CD4+ T helper cells that produce the cytokines interferon-γ, interleukin-2 (IL-2) and IL-12 and promote cell-mediated immunity.

TH2

(T helper 2). A subset of CD4+ T helper cells that produce cytokines such as interleukin-4 (IL-4),IL-5,IL-6,IL-10 and IL-13, leading to activation of humoral immune responses.

TH17

(T helper 17). A subset of CD4+ T helper cells that produce cytokines such as interleukin-17 (IL-17),IL-21 and IL-22. They are thought to be important in inflammatory and autoimmune diseases.

Supramolecular activation complex

Areas of the immunological synapse in which T cell receptors, integrins and other cell surface proteins have segregated into distinct areas.

Total internal reflection fluorescence

A microscope exploiting evanescent wave excitation of the thin region (100nm) at the contact area between a specimen and the glass coverslip (of distinct refractive index).

Anergy

The impaired or absent ability of an immune cell to respond to specific antigens.

Tight junction

Closely associated area of two cells, the membranes of which join to form a barrier to fluids and molecules.

Basolateral membrane

The layer of plasma membrane of epithelial cells that forms its basal (base) and lateral (side) surfaces.

Apical–basal polarity

The unequal distribution of proteins and other materials between the apical side (facing the exterior) and the basal side (facing the interior) in epithelial cells.

PDZ domain

A protein-interaction domain (also known as DHR or GLGF domain) that is often found in multi-domain scaffolding proteins and holds together signalling complexes.

Clathrin

A protein that forms a lattice-shaped coating on coated pits and coated vesicles during endocytosis.

Dynamin

A large GTPase involved in the scission of nascent vesicles from parent membranes.

Early endosome

Small irregularly shaped intracellular vesicle to which endocytosed molecules are initially delivered.

Focal adhesion

Large macromolecular assembly through which both mechanical force and regulatory signals are transmitted between the cell and the extracellular matrix.

Convergent extension

A process during gastrulation in which layers of cells converge and extend by a rearrangement of the cells of the ventral part of the epithelium towards the ventral midline.

Leading edge

The area of a motile cell that is closest to the direction of movement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosse, C., Linch, M., Kermorgant, S. et al. PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol 11, 103–112 (2010). https://doi.org/10.1038/nrm2847

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2847

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing