Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sensors and regulators of intracellular pH

Key Points

  • In eukaryotic cells, the steady-state pH of intracellular compartments varies greatly, is tightly controlled and is an important determinant of their function.

  • In general, the cytoplasm tends to acidify as a result of catabolism and a negative membrane potential that drives the accumulation of H+ through cation channels and the loss of basic HCO3 through anion channels. Countering this acidification are intrinsic buffers (ionizable groups on amino acids, phosphates and other molecules) and HCO3, which have a finite capacity, as well as distinct plasma membrane pH-regulatory transporters (for example, Na+–H+ exchangers and bicarbonate transporters) that finely control pH to keep it close to neutral — a level that is optimal for many protein interactions and cellular processes.

  • Some organelles, including the nucleus, endoplasmic reticulum and peroxisomes, seem to lack intrinsic pH-regulatory systems and instead seem highly permeable to H+ (or acid equivalents). Hence, these compartments readily equilibrate their luminal pH to levels found in the cytoplasm.

  • Organelles of the secretory and endocytic pathways are distinguished by their luminal acidity (pH 6.7–4.7), which is attained through the concerted actions of vacuolar H+–ATPases, 2 Cl/1 H+ and Na+–H+ or K+–H+ exchangers. Progressive acidification of organelles along the secretory pathway is important for proper post-translational processing, sorting and transport of newly synthesized proteins. Likewise, graded acidification of vesicles along the endocytic pathway is essential for the recycling and/or degradation of internalized membrane proteins, fluid-phase solutes and entry of various microbial organisms.

  • By contrast, the mitochondrial matrix is quite alkaline (pH 8.0) owing to H+ extrusion across the inner membrane by components of the electron transport chain. Together with the electrical potential (inside negative) generated by the electrogenic proton extrusion process, the transmembrane pH gradient constitutes a proton-motive force that is harnessed by the inner membrane H+-ATP synthase (F1F0-ATPase) to generate ATP from ADP and inorganic phosphate.

  • Many cellular processes are exquisitely sensitive to changes in the surrounding pH. Fluctuations in the H+ concentration in some cases act as a general permissive factor, whereas in other cases they act directly as a regulatory signal.

Abstract

Protons dictate the charge and structure of macromolecules and are used as energy currency by eukaryotic cells. The unique function of individual organelles therefore depends on the establishment and stringent maintenance of a distinct pH. This, in turn, requires a means to sense the prevailing pH and to respond to deviations from the norm with effective mechanisms to transport, produce or consume proton equivalents. A dynamic, finely tuned balance between proton-extruding and proton-importing processes underlies pH homeostasis not only in the cytosol, but in other cellular compartments as well.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: pH of the different subcellular compartments.
Figure 2: Ion carriers that regulate cytoplasmic pH.
Figure 3: pH regulation in secretory and endocytic compartments.
Figure 4: Mitochondrial pH regulation.
Figure 5: Role of protons in signal transduction.

References

  1. 1

    Whitten, S. T., Garcia-Moreno, E. B. & Hilser, V. J. Local conformational fluctuations can modulate the coupling between proton binding and global structural transitions in proteins. Proc. Natl Acad. Sci. USA 102, 4282–4287 (2005).

    CAS  PubMed  Google Scholar 

  2. 2

    Roos, A. & Boron, W. F. Intracellular pH. Physiol. Rev. 61, 296–434 (1981).

    CAS  PubMed  Google Scholar 

  3. 3

    Sperelakis, N. Cell Physiology Source Book (Academic Press, San Diego, 1997).

    Google Scholar 

  4. 4

    Missner, A. et al. Carbon dioxide transport through membranes. J. Biol. Chem. 283, 25340–25347 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Grinstein, S., Furuya, W. & Biggar, W. D. Cytoplasmic pH regulation in normal and abnormal neutrophils. Role of superoxide generation and Na+/H+ exchange. J. Biol. Chem. 261, 512–514 (1986).

    CAS  PubMed  Google Scholar 

  6. 6

    Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nature Rev. Mol. Cell Biol. 8, 917–929 (2007).

    CAS  Google Scholar 

  7. 7

    Shin, J. M., Munson, K., Vagin, O. & Sachs, G. The gastric HK-ATPase: structure, function, and inhibition. Pflugers Arch. 457, 609–622 (2009).

    CAS  PubMed  Google Scholar 

  8. 8

    Brown, D., Paunescu, T. G., Breton, S. & Marshansky, V. Regulation of the V-ATPase in kidney epithelial cells: dual role in acid-base homeostasis and vesicle trafficking. J. Exp. Biol. 212, 1762–1772 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Brett, C. L., Donowitz, M. & Rao, R. Evolutionary origins of eukaryotic sodium/proton exchangers. Am. J. Physiol., Cell Physiol. 288, C223–C239 (2005).

    CAS  PubMed  Google Scholar 

  10. 10

    Orlowski, J. & Grinstein, S. Emerging roles of alkali cation/proton exchangers in organellar homeostasis. Curr. Opin. Cell Biol. 19, 483–492 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Grinstein, S. et al. Focal localization of the NHE-1 isoform of the Na+/H+ antiport: Assessment of effects on intracellular pH. EMBO J. 12, 5209–5218 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Biemesderfer, D. et al. NHE3: a Na+/H+ exchanger isoform of renal brush border. Am. J. Physiol. 265, F736–F742 (1993).

    CAS  PubMed  Google Scholar 

  13. 13

    Biemesderfer, D., Reilly, R. F., Exner, M., Igarashi, P. & Aronson, P. S. Immunocytochemical characterization of Na+-H+ exchanger isoform NHE-1 in rabbit kidney. Am. J. Physiol. 263, F833–F840 (1992).

    CAS  PubMed  Google Scholar 

  14. 14

    Petrecca, K., Atanasiu, R., Grinstein, S., Orlowski, J. & Shrier, A. Subcellular localization of the Na+/H+ exchanger NHE1 in rat myocardium. Am. J. Physiol., Heart Circ. Physiol. 276, H709–H717 (1999).

    CAS  Google Scholar 

  15. 15

    Peti-Peterdi, J. et al. Macula densa Na+/H+ exchange activities mediated by apical NHE2 and basolateral NHE4 isoforms. Am. J. Physiol. 278, F452–F463 (2000).

    CAS  Google Scholar 

  16. 16

    Aronson, P. S. Kinetic properties of the plasma membrane Na-H exchanger. Annu. Rev. Physiol. 47, 545–560 (1985).

    CAS  PubMed  Google Scholar 

  17. 17

    Fuster, D., Moe, O. W. & Hilgemann, D. W. Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry. J. Gen. Physiol. 132, 465–480 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Paris, S. & Pouysségur, J. Growth factors activate the Na+/H+ antiporter in quiescent fibroblasts by increasing its affinity for intracellular H+ J. Biol. Chem. 259, 10989–10994 (1984).

    CAS  PubMed  Google Scholar 

  19. 19

    Otsu, K., Kinsella, J. L., Koh, E. & Froehlich, J. P. Proton dependence of the partial reactions of the sodium-proton exchanger in renal brush border membranes. J. Biol. Chem. 267, 8089–8096 (1992).

    CAS  PubMed  Google Scholar 

  20. 20

    Olkhova, E., Hunte, C., Screpanti, E., Padan, E. & Michel, H. Multiconformation continuum electrostatics analysis of the NhaA Na+/H+ antiporter of Escherichia coli with functional implications. Proc. Natl Acad. Sci. USA 103, 2629–2634 (2006). The first in a series of detailed structural and mechanistic studies from this laboratory that define an electrostatic amino acid network, in which a Na+–H+ antiporter that links pH sensing with the cation binding site is crucial for pH activation of the transporter.

    CAS  PubMed  Google Scholar 

  21. 21

    Olkhova, E., Kozachkov, L., Padan, E. & Michel, H. Combined computational and biochemical study reveals the importance of electrostatic interactions between the “pH sensor” and the cation binding site of the sodium/proton antiporter NhaA of Escherichia coli. Proteins 76, 548–559 (2009).

    CAS  PubMed  Google Scholar 

  22. 22

    Olkhova, E., Padan, E. & Michel, H. The influence of protonation states on the dynamics of the NhaA antiporter from Escherichia coli. Biophys. J. 92, 3784–3791 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Hisamitsu, T., Yamada, K., Nakamura, T. Y. & Wakabayashi, S. Functional importance of charged residues within the putative intracellular loops in pH regulation by Na+/ H+ exchanger NHE1. FEBS J. 274, 4326–4335 (2007).

    CAS  PubMed  Google Scholar 

  24. 24

    Wakabayashi, S., Hisamitsu, T., Pang, T. & Shigekawa, M. Mutations of Arg440 and Gly455/Gly456 oppositely change pH sensing of Na+/H+ exchanger 1. J. Biol. Chem. 278, 11828–11835 (2003).

    CAS  PubMed  Google Scholar 

  25. 25

    Wakabayashi, S., Hisamitsu, T., Pang, T. & Shigekawa, M. Kinetic dissection of two distinct proton binding sites in Na+/H+ exchangers by measurement of reverse mode reaction. J. Biol. Chem. 278, 43580–43585 (2003).

    CAS  PubMed  Google Scholar 

  26. 26

    Lacroix, J., Poet, M., Maehrel, C. & Counillon, L. A mechanism for the activation of the Na/H exchanger NHE-1 by cytoplasmic acidification and mitogens. EMBO Rep. 5, 91–96 (2004).

    CAS  PubMed  Google Scholar 

  27. 27

    Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    CAS  PubMed  Google Scholar 

  28. 28

    Cuello, F., Snabaitis, A. K., Cohen, M. S., Taunton, J. & Avkiran, M. Evidence for direct regulation of myocardial Na+/H+ exchanger isoform 1 phosphorylation and activity by 90-kDa ribosomal S6 kinase (RSK): effects of the novel and specific RSK inhibitor fmk on responses to α1-adrenergic stimulation. Mol. Pharmacol. 71, 799–806 (2007).

    CAS  PubMed  Google Scholar 

  29. 29

    Khaled, A. R. et al. Trophic factor withdrawal: p38 mitogen-activated protein kinase activates NHE1, which induces intracellular alkalinization. Mol. Cell. Biol. 21, 7545–7557 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Malo, M. E., Li, L. & Fliegel, L. Mitogen-activated protein kinase-dependent activation of the Na+/H+ exchanger is mediated through phosphorylation of amino acids Ser770 and Ser771. J. Biol. Chem. 282, 6292–6299 (2007).

    CAS  PubMed  Google Scholar 

  31. 31

    Takahashi, E. et al. p90 RSK is a serum-stimulated Na+/H+ exchanger isoform-1 kinase. Regulatory phosphorylation of serine 703 of Na+/H+ exchanger isoform-1. J. Biol. Chem. 274, 20206–20214 (1999).

    CAS  PubMed  Google Scholar 

  32. 32

    Tominaga, T., Ishizaki, T., Narumiya, S. & Barber, D. L. p160ROCK mediates RhoA activation of Na-H exchange. EMBO J. 17, 4712–4722 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Yan, W. H., Nehrke, K., Choi, J. & Barber, D. L. The Nck-interacting kinase (NIK) phosphorylates the Na+-H+ exchanger NHE1 and regulates NHE1 activation by platelet-derived growth factor. J. Biol. Chem. 276, 31349–31356 (2001).

    CAS  PubMed  Google Scholar 

  34. 34

    Aharonovitz, O. et al. Intracellular pH regulation by Na+/H+ exchange requires phosphatidylinositol 4, 5-bisphosphate. J. Cell Biol. 150, 213–224 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Bertrand, B., Wakabayashi, S., Ikeda, T., Pouysségur, J. & Shigekawa, M. The Na+/H+ exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. Identification and characterization of calmodulin-binding sites. J. Biol. Chem. 269, 13703–13709 (1994).

    CAS  PubMed  Google Scholar 

  36. 36

    Denker, S. P., Huang, D. C., Orlowski, J., Furthmayr, H. & Barber, D. L. Direct binding of the Na-H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation. Mol. Cell 6, 1425–1436 (2000).

    CAS  PubMed  Google Scholar 

  37. 37

    Inoue, H. et al. Calcineurin homologous protein isoform 2 (CHP2), Na+/H+ exchangers-binding protein, is expressed in intestinal epithelium. Biol. Pharm. Bull. 26, 148–155 (2003).

    CAS  PubMed  Google Scholar 

  38. 38

    Lehoux, S., Abe, J., Florian, J. A. & Berk, B. C. 14-3-3 binding to Na+/H+ exchanger isoform-1 is associated with serum-dependent activation of Na+/H+ exchange. J. Biol. Chem. 276, 15794–15800 (2001).

    CAS  PubMed  Google Scholar 

  39. 39

    Li, X., Liu, Y., Alvarez, B. V., Casey, J. R. & Fliegel, L. A novel carbonic anhydrase II binding site regulates NHE1 activity. Biochemistry 45, 2414–2424 (2006).

    CAS  PubMed  Google Scholar 

  40. 40

    Lin, X. & Barber, D. L. A calcineurin homologous protein inhibits GTPase-stimulated Na-H exchange. Proc. Nat. Acad. Sci. USA 93, 12631–12636 (1996).

    CAS  PubMed  Google Scholar 

  41. 41

    Mailander, J., Muller-Esterl, W. & Dedio, J. Human homolog of mouse tescalcin associates with Na+/H+ exchanger type-1. FEBS Lett. 507, 331–335 (2001).

    CAS  PubMed  Google Scholar 

  42. 42

    Pang, T., Su, X., Wakabayashi, S. & Shigekawa, M. Calcineurin homologous protein as an essential cofactor for Na+/H+ exchangers. J. Biol. Chem. 276, 17367–17372 (2001).

    CAS  PubMed  Google Scholar 

  43. 43

    Pang, T., Wakabayashi, S. & Shigekawa, M. Expression of calcineurin B homologous protein 2 protects serum deprivation-induced cell death by serum-independent activation of Na+/H+ exchanger. J. Biol. Chem. 277, 43771–43777 (2002). Identified the first bona fide , essential regulator of NHEs.

    CAS  PubMed  Google Scholar 

  44. 44

    Meima, M. E., Mackley, J. R. & Barber, D. L. Beyond ion translocation: structural functions of the sodium-hydrogen exchanger isoform-1. Curr. Opin. Nephrol. Hypertens. 16, 365–372 (2007).

    CAS  PubMed  Google Scholar 

  45. 45

    Denker, S. P. & Barber, D. L. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J. Cell Biol. 159, 1087–1096 (2002). A seminal study, highlighting both a structural and a functional role for NHE1 in establishing polarity and directed migration of fibroblastic cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Stock, C. & Schwab, A. Role of the Na/H exchanger NHE1 in cell migration. Acta Physiol (Oxf.) 187, 149–157 (2006).

    CAS  Google Scholar 

  47. 47

    Hayashi, H. et al. Na+/H+ exchange and pH regulation in the control of neutrophil chemokinesis and chemotaxis. Am. J. Physiol., Cell Physiol. 294, C526–C534 (2008).

    CAS  PubMed  Google Scholar 

  48. 48

    Patel, H. & Barber, D. L. A developmentally regulated Na-H exchanger in Dictyostelium discoideum is necessary for cell polarity during chemotaxis. J. Cell Biol. 169, 321–329 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Kapus, A., Grinstein, S., Wasan, S., Kandasamy, R. A. & Orlowski, J. Functional characterization of three isoforms of the Na+/H+ exchanger stably expressed in Chinese hamster ovary cells: ATP dependence, osmotic sensitivity and role in cell proliferation. J. Biol. Chem. 269, 23544–23552 (1994).

    CAS  PubMed  Google Scholar 

  50. 50

    Pouysségur, J., Sardet, C., Franchi, A., L'Allemain, G. & Paris, S. A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc. Natl Acad. Sci. USA 81, 4833–4837 (1984). A classic paper identifying a crucial role for NHE1 in linking the regulation of intracellular pH to cell proliferation.

    PubMed  Google Scholar 

  51. 51

    Putney, L. K. & Barber, D. L. Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition. J. Biol. Chem. 278, 44645–44649 (2003).

    CAS  PubMed  Google Scholar 

  52. 52

    Halestrap, A. & Meredith, D. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 477, 619–628 (2004).

    Google Scholar 

  53. 53

    Vandenberg, J. I., Metcalfe, J. C. & Grace, A. A. Mechanisms of pHi recovery after global ischemia in the perfused heart. Circ. Res. 72, 993–1003 (1993). Dissects the molecular mechanisms of pH regulation that are present in the intact heart.

    CAS  PubMed  Google Scholar 

  54. 54

    Musa-Aziz, R., Chen, L. M., Pelletier, M. F. & Boron, W. F. Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc. Natl Acad. Sci. USA 106, 5406–5411 (2009).

    CAS  PubMed  Google Scholar 

  55. 55

    Yang, B. et al. Carbon dioxide permeability of aquaporin-1 measured in erythrocytes and lung of aquaporin-1 null mice and in reconstituted proteoliposomes. J. Biol. Chem. 275, 2686–2692 (2000).

    CAS  PubMed  Google Scholar 

  56. 56

    Cordat, E. & Casey, J. R. Bicarbonate transport in cell physiology and disease. Biochem. J. 417, 423–439 (2009).

    CAS  PubMed  Google Scholar 

  57. 57

    Gross, E. et al. The stoichiometry of the electrogenic sodium bicarbonate cotransporter NBC1 is cell-type dependent. J. Physiol. 531, 597–603 (2001). Provides evidence that the coupling stoichiometry for Na+–HCO 3 co-transport changes in a cell-type dependent manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Romero, M. F., Hediger, M. A., Boulpaep, E. L. & Boron, W. F. Expression cloning and characterization of a renal electrogenic Na+/HCO3 cotransporter. Nature 387, 409–413 (1997). Reports on the first identification of a Na+–HCO 3 co-transporter gene, using an expression cloning approach.

    CAS  PubMed  Google Scholar 

  59. 59

    Alper, S. L. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J. Exp. Biol. 212, 1672–1683 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Sterling, D. & Casey, J. R. Transport activity of AE3 chloride/bicarbonate anion-exchange proteins and their regulation by intracellular pH. Biochem. J. 344, 221–229 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Humphreys, B. D., Jiang, L., Chernova, M. N. & Alper, S. L. Functional characterization and regulation by pH of murine AE2 anion exchanger expressed in Xenopus oocytes. Am. J. Physiol., Cell Physiol. 267, C1295–C1307 (1994).

    CAS  Google Scholar 

  62. 62

    Gawenis, L. R. et al. Mice with a targeted disruption of the AE2 Cl/HCO3 exchanger are achlorhydric. J. Biol. Chem. 279, 30531–30539 (2004).

    CAS  PubMed  Google Scholar 

  63. 63

    Hug, M. J., Tamada, T. & Bridges, R. J. CFTR and bicarbonate secretion by epithelial cells. News Physiol. Sci. 18, 38–42 (2003).

    CAS  PubMed  Google Scholar 

  64. 64

    Ko, S. B. et al. A molecular mechanism for aberrant CFTR-dependent HCO3 transport in cystic fibrosis. EMBO J. 21, 5662–5672 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Mason, M. J., Smith, J. D., Garcia-Soto, J. J. & Grinstein, S. Internal pH-sensitive site couples Cl-HCO3- exchange to Na+-H+ antiport in lymphocytes. Am. J. Physiol. 256, C428–C433 (1989).

    CAS  PubMed  Google Scholar 

  66. 66

    Melvin, J. E., Park, K., Richardson, L., Schultheis, P. J. & Shull, G. E. Mouse down-regulated in adenoma (DRA) is an intestinal Cl/HCO3 exchanger and is up-regulated in colon of mice lacking the NHE3 Na+/H+ exchanger. J. Biol. Chem. 274, 22855–22861 (1999).

    CAS  PubMed  Google Scholar 

  67. 67

    Hoglund, P. et al. Mutations of the Down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nature Genet. 14, 316–319 (1996).

    CAS  PubMed  Google Scholar 

  68. 68

    Goldfarb, D. S. in Nuclear Transport (ed. Kehlenbach, R.) (Landes Bioscience, Austin, 2009).

    Google Scholar 

  69. 69

    Paroutis, P., Touret, N. & Grinstein, S. The pH of the secretory pathway: measurement, determinants, and regulation. Physiology (Bethesda) 19, 207–215 (2004).

    CAS  Google Scholar 

  70. 70

    Kane, P. M. The long physiological reach of the yeast vacuolar H+-ATPase. J. Bioenerg. Biomembr. 39, 415–421 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Cipriano, D. J. et al. Structure and regulation of the vacuolar ATPases. Biochim. Biophys. Acta 1777, 599–604 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Barasch, J. & al-Awqati, Q. Defective acidification of the biosynthetic pathway in cystic fibrosis. J. Cell Sci. Suppl. 17, 229–233 (1993).

    CAS  PubMed  Google Scholar 

  73. 73

    Seksek, O., Biwersi, J. & Verkman, A. S. Evidence against defective trans-Golgi acidification in cystic fibrosis. J. Biol. Chem. 271, 15542–15548 (1996).

    CAS  PubMed  Google Scholar 

  74. 74

    Schapiro, F. B. & Grinstein, S. Determinants of the pH of the Golgi complex. J. Biol. Chem. 275, 21025–21032 (2000).

    CAS  PubMed  Google Scholar 

  75. 75

    Numata, M. & Orlowski, J. Molecular cloning and characterization of a novel (Na+, K+)/H+ exchanger localized to the trans-Golgi network. J. Biol. Chem. 276, 17387–17394 (2001).

    CAS  PubMed  Google Scholar 

  76. 76

    Ruetz, S., Lindsey, A. E., Ward, C. L. & Kopito, R. R. Functional activation of plasma membrane anion exchangers occurs in a pre-Golgi compartment. J. Cell Biol. 121, 37–48 (1993).

    CAS  PubMed  Google Scholar 

  77. 77

    Shull, G. E. et al. Physiological functions of plasma membrane and intracellular Ca2+ pumps revealed by analysis of null mutants. Ann. N. Y. Acad. Sci. 986, 453–460 (2003).

    CAS  Google Scholar 

  78. 78

    Wu, M. M. et al. Mechanisms of pH regulation in the regulated secretory pathway. J. Biol. Chem. 276, 33027–33035 (2001).

    CAS  PubMed  Google Scholar 

  79. 79

    Weisz, O. A. Organelle acidification and disease. Traffic 4, 57–64 (2003).

    CAS  PubMed  Google Scholar 

  80. 80

    Jentsch, T. J. CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit. Rev. Biochem. Mol. Biol. 43, 3–36 (2008).

    CAS  PubMed  Google Scholar 

  81. 81

    Di, A. et al. CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nature Cell Biol. 8, 933–944 (2006).

    CAS  PubMed  Google Scholar 

  82. 82

    Abad, M. F., Di Benedetto, G., Magalhaes, P. J., Filippin, L. & Pozzan, T. Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J. Biol. Chem. 279, 11521–11529 (2004).

    CAS  PubMed  Google Scholar 

  83. 83

    Llopis, J., McCaffery, J. M., Miyawaki, A., Farquhar, M. G. & Tsien, R. Y. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl Acad. Sci. USA 95, 6803–6808 (1998).

    CAS  PubMed  Google Scholar 

  84. 84

    Brierley, G. P., Baysal, K. & Jung, D. W. Cation transport systems in mitochondria: Na+ and K+ uniports and exchangers. J. Bioenerg. Biomembr. 26, 519–526 (1994).

    CAS  PubMed  Google Scholar 

  85. 85

    Crompton, M. & Heid, I. The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur. J. Biochem. 91, 599–608 (1978).

    CAS  PubMed  Google Scholar 

  86. 86

    Garlid, K. D., Sun, X., Paucek, P. & Woldegiorgis, G. Mitochondrial cation transport systems. Methods Enzymol. 260, 331–348 (1995).

    CAS  PubMed  Google Scholar 

  87. 87

    Gunter, T. E., Gunter, K. K., Sheu, S. S. & Gavin, C. E. Mitochondrial calcium transport: physiological and pathological relevance. Am. J. Physiol. 267, C313–C339 (1994).

    CAS  PubMed  Google Scholar 

  88. 88

    McCormack, J. G., Halestrap, A. P. & Denton, R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70, 391–425 (1990).

    CAS  PubMed  Google Scholar 

  89. 89

    Moreno-Sanchez, R. Inhibition of oxidative phosphorylation by a Ca2+ -induced diminution of the adenine nucleotide translocator. Biochim. Biophys. Acta 724, 278–285 (1983).

    CAS  PubMed  Google Scholar 

  90. 90

    Yamada, E. W. & Huzel, N. J. Calcium-binding ATPase inhibitor protein of bovine heart mitochondria. Role in ATP synthesis and effect of Ca2+. Biochemistry 28, 9714–9718 (1989).

    CAS  PubMed  Google Scholar 

  91. 91

    Hajnoczky, G., Robb-Gaspers, L. D., Seitz, M. B. & Thomas, A. P. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82, 415–424 (1995).

    CAS  PubMed Central  Google Scholar 

  92. 92

    Matsuyama, S., Llopis, J., Deveraux, Q. L., Tsien, R. Y. & Reed, J. C. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nature Cell Biol. 2, 318–325 (2000). This paper identifies disruptions in mitochondrial and cytoplasmic pH homeostasis as important early events in mitochondrial-dependent apoptosis.

    CAS  PubMed  Google Scholar 

  93. 93

    Matsuyama, S., Xu, Q., Velours, J. & Reed, J. C. The mitochondrial F0 F1 -ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. Mol. Cell 1, 327–336 (1998).

    CAS  PubMed  Google Scholar 

  94. 94

    Nicholls, D. et al. Apoptosis and the laws of thermodynamics. Nature Cell Biol. 2, E172–E173 (2000).

    CAS  PubMed  Google Scholar 

  95. 95

    Thangaraju, M., Sharma, K., Liu, D., Shen, S. H. & Srikant, C. B. Interdependent regulation of intracellular acidification and SHP-1 in apoptosis. Cancer Res. 59, 1649–1654 (1999).

    CAS  PubMed  Google Scholar 

  96. 96

    Lupescu, A. et al. Inhibition of Na+/H+ exchanger activity by parvovirus B19 protein NS1. Cell Physiol. Biochem. 23, 211–220 (2009).

    CAS  PubMed  Google Scholar 

  97. 97

    Schneider, D. et al. Intracellular acidification by inhibition of the Na+/H+-exchanger leads to caspase-independent death of cerebellar granule neurons resembling paraptosis. Cell Death Differ. 11, 760–770 (2004).

    CAS  PubMed  Google Scholar 

  98. 98

    Hoepfner, D., Schildknegt, D., Braakman, I., Philippsen, P. & Tabak, H. F. Contribution of the endoplasmic reticulum to peroxisome formation. Cell 122, 85–95 (2005).

    CAS  PubMed  Google Scholar 

  99. 99

    Titorenko, V. I. & Rachubinski, R. A. Spatiotemporal dynamics of the ER-derived peroxisomal endomembrane system. Int. Rev. Cell. Mol. Biol. 272, 191–244 (2009).

    CAS  PubMed  Google Scholar 

  100. 100

    Reddy, J. K. & Mannaerts, G. P. Peroxisomal lipid metabolism. Annu. Rev. Nutr. 14, 343–370 (1994).

    CAS  PubMed  Google Scholar 

  101. 101

    Dansen, T. B., Wirtz, K. W., Wanders, R. J. & Pap, E. H. Peroxisomes in human fibroblasts have a basic pH. Nature Cell Biol. 2, 51–53 (2000).

    CAS  PubMed  Google Scholar 

  102. 102

    Jankowski, A. et al. In situ measurements of the pH of mammalian peroxisomes using the fluorescent protein pHluorin. J. Biol. Chem. 276, 48748–48753 (2001).

    CAS  PubMed  Google Scholar 

  103. 103

    Drago, I., Giacomello, M., Pizzo, P. & Pozzan, T. Calcium dynamics in the peroxisomal lumen of living cells. J. Biol. Chem. 283, 14384–14390 (2008).

    CAS  PubMed  Google Scholar 

  104. 104

    Srivastava, J., Barber, D. L. & Jacobson, M. P. Intracellular pH sensors: design principles and functional significance. Physiology (Bethesda) 22, 30–39 (2007).

    CAS  Google Scholar 

  105. 105

    Pouysségur, J., Franchi, A., L'Allemain, G. & Paris, S. Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts. FEBS Lett. 190, 115–119 (1985).

    PubMed  Google Scholar 

  106. 106

    Schelling, J. R. & Abu Jawdeh, B. G. Regulation of cell survival by Na+/H+ exchanger-1. Am. J. Physiol., Renal Physiol. 295, F625–F632 (2008).

    CAS  Google Scholar 

  107. 107

    Bierman, A., Cragoe, E. J., Jr, de Laat, S. W. & Moolenaar, W. H. Bicarbonate determines cytoplasmic pH and suppresses mitogen-induced alkalinization in fibroblastic cells. J. Biol. Chem. 263, 15253–15256 (1988).

    CAS  PubMed  Google Scholar 

  108. 108

    Spitzer, K. W., Skolnick, R. L., Peercy, B. E., Keener, J. P. & Vaughan-Jones, R. D. Facilitation of intracellular H+ ion mobility by CO2/HCO3 in rabbit ventricular myocytes is regulated by carbonic anhydrase. J. Physiol. 541, 159–167 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Vaughan-Jones, R. D., Peercy, B. E., Keener, J. P. & Spitzer, K. W. Intrinsic H+ ion mobility in the rabbit ventricular myocyte. J. Physiol. 541, 139–158 (2002). Reveals the surprisingly slow rate of H+ diffusion in the cytosol.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Stewart, A. K., Boyd, C. A. & Vaughan-Jones, R. D. A novel role for carbonic anhydrase: cytoplasmic pH gradient dissipation in mouse small intestinal enterocytes. J. Physiol. 516, 209–217 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Stock, C. et al. pH nanoenvironment at the surface of single melanoma cells. Cell Physiol. Biochem. 20, 679–686 (2007).

    CAS  PubMed  Google Scholar 

  112. 112

    Stock, C. & Schwab, A. Protons make tumor cells move like clockwork. Pflugers Arch. 458, 981–992 (2009).

    CAS  PubMed  Google Scholar 

  113. 113

    Simons, M. et al. Electrochemical cues regulate assembly of the Frizzled/Dishevelled complex at the plasma membrane during planar epithelial polarization. Nature Cell Biol. 11, 286–294 (2009).

    CAS  PubMed  Google Scholar 

  114. 114

    Beg, A. A., Ernstrom, G. G., Nix, P., Davis, M. W. & Jorgensen, E. M. Protons act as a transmitter for muscle contraction in C. elegans. Cell 132, 149–160 (2008). Elegant studies of C. elegans indicate that H+ ions, secreted by an intestinal NHE, act on a proton-gated cation channel in muscle cells to signal muscle contraction, which provides evidence for a role of extracellular protons as a neurotransmitter.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Waldmann, R. et al. H+ -gated cation channels. Ann. N. Y. Acad. Sci. 868, 67–76 (1999).

    CAS  PubMed  Google Scholar 

  116. 116

    DeVries, S. H. Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 32, 1107–1117 (2001).

    CAS  PubMed  Google Scholar 

  117. 117

    Pastorekova, S., Parkkila, S., Pastorek, J. & Supuran, C. T. Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J. Enzyme Inhib. Med. Chem. 19, 199–229 (2004).

    CAS  PubMed  Google Scholar 

  118. 118

    Obara, M., Szeliga, M. & Albrecht, J. Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses. Neurochem. Int. 52, 905–919 (2008).

    CAS  PubMed  Google Scholar 

  119. 119

    Vaughan-Jones, R. D., Spitzer, K. W. & Swietach, P. Intracellular pH regulation in heart. J. Mol. Cell Cardiol. 46, 318–331 (2008).

    PubMed  Google Scholar 

  120. 120

    Hara-Chikuma, M., Wang, Y., Guggino, S. E., Guggino, W. B. & Verkman, A. S. Impaired acidification in early endosomes of ClC-5 deficient proximal tubule. Biochem. Biophys. Res. Commun. 329, 941–946 (2005).

    CAS  PubMed  Google Scholar 

  121. 121

    Piwon, N., Gunther, W., Schwake, M., Bosl, M. R. & Jentsch, T. J. ClC-5 Cl -channel disruption impairs endocytosis in a mouse model for Dent's disease. Nature 408, 369–373 (2000).

    CAS  PubMed  Google Scholar 

  122. 122

    Kornak, U. et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104, 205–215 (2001).

    CAS  PubMed  Google Scholar 

  123. 123

    Kasper, D. et al. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J. 24, 1079–1091 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Poet, M. et al. Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6. Proc. Natl Acad. Sci. USA 103, 13854–13859 (2006).

    PubMed  Google Scholar 

  125. 125

    Kornak, U. et al. Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2. Nature Genet. 40, 32–34 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Original work from the authors' laboratories is supported by the Heart and Stroke Foundation of Canada, the Kidney Foundation and the Canadian Institutes of Health Research. S.G holds the Pitblado Chair in Cell Biology. J.R.C is a scientist of the Alberta Heritage Foundation for Medical Research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergio Grinstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

OMIM

cutis laxa

Dent disease

wrinkly skin syndrome

FURTHER INFORMATION

Joseph R. Casey's homepage

Sergio Grinstein's homepage

John Orlowski's homepage

Glossary

Proton-motive force

H+). The driving force for proton (or equivalent) movement, consisting of the proton concentration gradient and the transmembrane electrical potential.

pH buffering capacity

A measure of the ability of a solution to withstand changes in pH. It is defined as β = dn/dpH, where n is the number of acid or base equivalents that need to be added to alter pH.

pKa

The acid dissociation constant. A quantitative measure of the tendency of an acid to dissociate in solution. It is calculated as pKa = −log10Ka, where Ka = [A][H+]/[HA] and [A], [H+] and [HA] are the concentration of the dissociated acid, protons and the undissociated (protonated) acid, respectively.

Na+–K+-ATPase

A ubiquitous plasmalemmal enzyme that uses ATP to extrude 3 Na+ ions in exchange for 2 K+ ions. Also known as the Na+–K+-pump or simply the Na-pump.

Hill coefficient

A measure of the cooperativity of a binding process. It is calculated by applying the Hill equation, which relates the fraction of filled ligand-binding sites to the ligand concentration.

Aquaporin water channel

One of a family of proteins that facilitate the passage of water across biological membranes.

Phagosome

A vacuole that forms inside cells following the engulfment of large (≥0.5 μm) particles by a receptor-mediated, actin-driven process.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Casey, J., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11, 50–61 (2010). https://doi.org/10.1038/nrm2820

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing