Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Polycomb gene silencing: knowns and unknowns

Key Points

  • Polycomb group (PcG) proteins constitute a conserved gene silencing system with widespread roles in multicellular development, stem cell biology and cancer.

  • Gene silencing is carried out by Polycomb repressive complex 1 (PRC1) and PRC2, which each consist of families of related complexes.

  • An enzyme function associated with the PRC1 family is histone H2A ubiquitylation on K119, and a function of the PRC2 family is histone H3 methylation on K27. Specific PRC1 and PRC2 variants are also implicated in polynucleosome compaction.

  • Targeting of PcG complexes is mediated by trans-acting recruiters and cis-acting Polycomb response elements. In Drosophila melanogaster, several DNA-binding proteins, including the zinc finger protein Pleiohomeotic, serve as recruiters. PcG targeting is not well understood in mammals, in which recruiters and response elements are less well defined.

  • Recent evidence implicates long non-coding RNAs in PcG recruitment to mammalian Hox loci, the inactive X-chromosome and paternally imprinted genes.

  • Trimethylated H3K27 contributes to PRC1 interaction with local nucleosomes, but there are probably other molecular determinants of PRC1 association with chromatin.

  • Multiple versions of PRC1 family complexes, with related but non-identical subunit compositions, exist in both D. melanogaster and mammalian cells. Histone H2A ubiquitylation might be mediated by a subset of these PRC1 family complexes, and additional family members might supply other chromatin-modifying functions.

  • Transcriptional elongation is emerging as an attractive candidate for a step that is affected in PcG silencing. Both histone H2A ubiquitylation and polynucleosome compaction could contribute to barriers that impede RNA polymerase II movement. This possibility correlates with recent genome-wide studies that reveal paused RNA polymerase on 30% of mammalian genes.

Abstract

Polycomb proteins form chromatin-modifying complexes that implement transcriptional silencing in higher eukaryotes. Hundreds of genes are silenced by Polycomb proteins, including dozens of genes that encode crucial developmental regulators in organisms ranging from plants to humans. Two main families of complexes, called Polycomb repressive complex 1 (PRC1) and PRC2, are targeted to repressed regions. Recent studies have advanced our understanding of these complexes, including their potential mechanisms of gene silencing, the roles of chromatin modifications, their means of delivery to target genes and the functional distinctions among variant complexes. Emerging concepts include the existence of a Polycomb barrier to transcription elongation and the involvement of non-coding RNAs in the targeting of Polycomb complexes. These findings have an impact on the epigenetic programming of gene expression in many biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recruitment of PcG complexes to target genes.
Figure 2: PRC2 composition in flies and humans.
Figure 3: Potential roles for H3K27me3 in PcG function.
Figure 4: PRC1 family complexes.
Figure 5: Transcription elongation by the PRC1 family.

Similar content being viewed by others

References

  1. Baylin, S. B. & Schuebel, K. E. Genomic biology: the epigenomic era opens. Nature 448, 548–549 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dunn, R. K. & Kingston, R. E. Gene regulation in the postgenomic era: technology takes the wheel. Mol. Cell 28, 708–714 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Mendenhall, E. M. & Bernstein, B. E. Chromatin state maps: new technologies, new insights. Curr. Opin. Genet. Dev. 18, 109–115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. Struhl, G. A gene product required for correct initiation of segmental determination in Drosophila. Nature 293, 36–41 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Jurgens, G. A group of genes controlling spatial expression of the bithorax complex in Drosophila. Nature 316, 153–155 (1985).

    Article  Google Scholar 

  8. Breen, T. R. & Duncan, I. M. Maternal expression of genes that regulate the bithorax complex of Drosophila melanogaster. Dev. Biol. 118, 442–456 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Zink, B. & Paro, R. In vivo binding pattern of a trans-regulator of homoeotic genes in Drosophila melanogaster. Nature 337, 468–471 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. DeCamillis, M., Cheng, N., Pierre, D. & Brock, H. W. The polyhomeotic gene of Drosophila encodes a chromatin protein that shares polytene chromosome-binding sites with Polycomb. Genes Dev. 6, 223–232 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Schwartz, Y. B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nature Genet. 38, 700–705 (2006). Presents genome-wide distributions of PRC1 and PRC2 subunits and H3K27me3 marks in cultured fly cells. It shows that PcG components coincide at target genes including those that function in most major developmental pathways. High-resolution mapping shows discrete peaks of PRC1 and PRC2 at presumptive PREs, whereas H3K27me3 tends to be more broadly distributed.

    Article  CAS  PubMed  Google Scholar 

  12. Negre, N. et al. Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biol. 4, e170 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Tolhuis, B. et al. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nature Genet. 38, 694–699 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Oktaba, K. et al. Dynamic regulation by polycomb group protein complexes controls pattern formation and the cell cycle in Drosophila. Dev. Cell 15, 877–889 (2008). Describes genome-wide distributions of PHO and its partner SFMBT in fly embryos and larval imaginal discs. Along with references 15, 16 and 49, this work provides evidence that PHO is a key PcG recruiter. This study also describes biological functions of PcG in controlling newly identified target genes.

    Article  CAS  PubMed  Google Scholar 

  15. Kwong, C. et al. Stability and dynamics of polycomb target sites in Drosophila development. PLoS Genet. 4, e1000178 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Schuettengruber, B. et al. Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos. PLoS Biol. 7, e13 (2009). Presents genome-wide distributions of several PcG and TrxG components in fly embryos, including PRC1 subunits, H3K27me3 marks and four candidate PcG recruiters.

    Article  PubMed  CAS  Google Scholar 

  17. Kirmizis, A. et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev. 18, 1592–1605 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006). Describes genome-wide distributions of PRC1 and PRC2 subunits and H3K27me3 marks in mouse ES cells. PcG target genes, which are enriched for transcription factors and signalling components in most major developmental pathways, are de-repressed on the loss of the PRC2 subunit EED. This study also suggests that PRC1 recruitment to many PcG target genes depends on PRC2.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006). Describes genome-wide distributions of PRC2 subunits and H3K27me3 marks in human ES cells. PcG target genes are upregulated during ES cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Squazzo, S. L. et al. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res. 16, 890–900 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rajasekhar, V. K. & Begemann, M. Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells 25, 2498–2510 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pietersen, A. M. & van Lohuizen, M. Stem cell regulation by polycomb repressors: postponing commitment. Curr. Opin. Cell Biol. 20, 201–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Ng, J. H., Heng, J. C., Loh, Y. H. & Ng, H. H. Transcriptional and epigenetic regulations of embryonic stem cells. Mutat. Res. 647, 52–58 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nature Rev. Cancer 6, 846–856 (2006).

    Article  CAS  Google Scholar 

  27. Ting, A. H., McGarvey, K. M. & Baylin, S. B. The cancer epigenome — components and functional correlates. Genes Dev. 20, 3215–3231 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Simon, J. A. & Lange, C. A. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat. Res. 647, 21–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Pien, S. & Grossniklaus, U. Polycomb group and trithorax group proteins in Arabidopsis. Biochim. Biophys. Acta 1769, 375–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Schwartz, Y. B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nature Rev. Genet. 8, 9–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Whitcomb, S. J., Basu, A., Allis, C. D. & Bernstein, E. Polycomb Group proteins: an evolutionary perspective. Trends Genet. 23, 494–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Wutz, A. Xist function: bridging chromatin and stem cells. Trends Genet. 23, 457–464 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Payer, B. & Lee, J. T. X chromosome dosage compensation: how mammals keep the balance. Annu. Rev. Genet. 42, 733–772 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Wu, H. A. & Bernstein, E. Partners in imprinting: noncoding RNA and polycomb group proteins. Dev. Cell 15, 637–638 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Sha, K. A mechanistic view of genomic imprinting. Annu. Rev. Genomics Hum. Genet. 9, 197–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by Polycomb and Trithorax proteins. Cell 128, 735–745 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Simon, J. A. & Tamkun, J. W. Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. Curr. Opin. Genet. Dev. 12, 210–218 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Shilatifard, A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr. Opin. Cell Biol. 20, 341–348 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ruthenburg, A. J., Allis, C. D. & Wysocka, J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Muller, J. & Kassis, J. A. Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr. Opin. Genet. Dev. 16, 476–484 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. Ringrose, L. & Paro, R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134, 223–232 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Brown, J. L., Mucci, D., Whiteley, M., Dirksen, M. L. & Kassis, J. A. The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol. Cell 1, 1057–1064 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Mihaly, J., Mishra, R. K. & Karch, F. A conserved sequence motif in Polycomb-response elements. Mol. Cell 1, 1065–1066 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Fritsch, C., Brown, J. L., Kassis, J. A. & Muller, J. The DNA-binding polycomb group protein pleiohomeotic mediates silencing of a Drosophila homeotic gene. Development 126, 3905–3913 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Shimell, M. J., Peterson, A. J., Burr, J., Simon, J. A. & O'Connor, M. B. Functional analysis of repressor binding sites in the iab-2 regulatory region of the abdominal-A homeotic gene. Dev. Biol. 218, 38–52 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Brown, J. L., Fritsch, C., Mueller, J. & Kassis, J. A. The Drosophila pho-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development 130, 285–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, L. et al. Hierarchical recruitment of polycomb group silencing complexes. Mol. Cell 14, 637–646 (2004). Shows that PHO is required in cultured fly cells and larval wing discs for the targeting of PRC1 and PRC2 to the Hox gene UBX .

    Article  CAS  PubMed  Google Scholar 

  50. Klymenko, T. et al. A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev. 20, 1110–1122 (2006). Defines a heterodimeric complex from fly embryos that contains the PHO DNA-binding protein and a novel PcG repressor, SFMBT. SFMBT has methyl-Lys binding activity that prefers mono- or di-methylated versions of H3K9 and H4K20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dejardin, J. et al. Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature 434, 533–538 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Ringrose, L., Rehmsmeier, M., Dura, J. M. & Paro, R. Genome-wide prediction of Polycomb/Trithorax response elements in Drosophila melanogaster. Dev. Cell 5, 759–771 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Kozma, G., Bender, W. & Sipos, L. Replacement of a Drosophila Polycomb response element core, and in situ analysis of its DNA motifs. Mol. Genet. Genomics 279, 595–603 (2008). Uses a gene conversion method to analyse elements of a Hox gene PRE in its normal genomic context at the bithorax complex. This study provides evidence that both PHO and GAF are needed for silencing by this PRE.

    Article  CAS  PubMed  Google Scholar 

  54. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ku, M. et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 4, e1000242 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Thomas, M. J. & Seto, E. Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? Gene 236, 197–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Caretti, G., Di Padova, M., Micales, B., Lyons, G. E. & Sartorelli, V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev. 18, 2627–2638 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Endoh, M. et al. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development 135, 1513–1524 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007). A non-coding RNA is found in a HOXC cluster, the depletion of which, surprisingly, alters H3K27 methylation at the HOXD locus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nature Genet. 30, 167–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008). A region of the Xist locus encodes an RNA called repA that interacts with PRC2. Depletion of repA decreases H3K27 methylation across the locus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Terranova, R. et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev. Cell 15, 668–679 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Grimaud, C. et al. RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124, 957–971 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Kim, D. H., Villeneuve, L. M., Morris, K. V. & Rossi, J. J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nature Struct. Mol. Biol. 13, 793–797 (2006).

    Article  CAS  Google Scholar 

  66. Fedorova, E. et al. The nuclear organization of Polycomb/Trithorax group response elements in larval tissues of Drosophila melanogaster. Chromosome Res. 16, 649–673 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Hekimoglu, B. & Ringrose, L. Non-coding RNAs in Polycomb/Trithorax regulation. RNA Biol. 6, 129–137 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Muller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Ebert, A. et al. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev. 18, 2973–2983 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ketel, C. S. et al. Subunit contributions to histone methyltransferase activities of fly and worm polycomb group complexes. Mol. Cell. Biol. 25, 6857–6868 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nekrasov, M., Wild, B. & Muller, J. Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep. 6, 348–353 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cao, R. & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED–EZH2 complex. Mol. Cell 15, 57–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E. & Helin, K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23, 4061–4071 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tie, F., Stratton, C. A., Kurzhals, R. L. & Harte, P. J. The N terminus of Drosophila ESC binds directly to histone H3 and is required for E(Z)-dependent trimethylation of H3 lysine 27. Mol. Cell. Biol. 27, 2014–2026 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Song, J. J., Garlick, J. D. & Kingston, R. E. Structural basis of histone H4 recognition by p55. Genes Dev. 22, 1313–1318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Joshi, P. et al. Dominant alleles identify SET domain residues required for histone methyltransferase of Polycomb repressive complex 2. J. Biol. Chem. 283, 27757–27766 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Han, Z. et al. Structural basis of EZH2 recognition by EED. Structure 15, 1306–1315 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Kuzmichev, A., Jenuwein, T., Tempst, P. & Reinberg, D. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell 14, 183–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Kuzmichev, A. et al. Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc. Natl Acad. Sci. USA 102, 1859–1864 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Trojer, P. et al. Dynamic histone H1 isotype 4 methylation and demethylation by histone lysine methyltransferase G9a/KMT1C and the Jumonji domain-containing JMJD2/KDM4 proteins. J. Biol. Chem. 284, 8395–8405 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bracken, A. P. et al. EZH2 is downstream of the pRB–E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Margueron, R. et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell 32, 503–518 (2008). This study, together with reference 87, shows that EZH2 is primarily found in proliferating tissues and PRC2–EZH2 is a robust H3K27 methyltransferase, whereas EZH1 predominates in non-proliferative tissues, and PRC2–EZH1 has weak methyltransferase activity and a robust ability to compact chromatin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shen, X. et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 32, 491–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, L. et al. Alternative ESC and ESC-like subunits of a Polycomb group histone methyltransferase complex are differentially deployed during Drosophila development. Mol. Cell. Biol. 26, 2637–2647 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kurzhals, R. L., Tie, F., Stratton, C. A. & Harte, P. J. Drosophila ESC-like can substitute for ESC and becomes required for Polycomb silencing if ESC is absent. Dev. Biol. 313, 293–306 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Ohno, K., McCabe, D., Czermin, B., Imhof, A. & Pirrotta, V. ESC, ESCL and their roles in Polycomb group mechanisms. Mech. Dev. 125, 527–541 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Sarma, K., Margueron, R., Ivanov, A., Pirrotta, V. & Reinberg, D. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol. Cell. Biol. 28, 2718–2731 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Savla, U., Benes, J., Zhang, J. & Jones, R. S. Recruitment of Drosophila Polycomb-group proteins by Polycomblike, a component of a novel protein complex in larvae. Development 135, 813–817 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Nekrasov, M. et al. Pcl–PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. EMBO J. 26, 4078–4088 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cao, R. et al. Role of hPHF1 in H3K27 methylation and Hox gene silencing. Mol. Cell. Biol. 28, 1862–1872 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Soto, M. C., Chou, T. B. & Bender, W. Comparison of germline mosaics of genes in the Polycomb group of Drosophila melanogaster. Genetics 140, 231–243 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 17, 1870–1881 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Min., J., Zhang, Y. & Xu, R. M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 17, 1823–1828 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cao, R., Tsukada, Y. & Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell 20, 845–854 (2005). Shows that the RING1 and BMI1 proteins are central to the ubiquitylation of histone H2A in mammals.

    Article  CAS  PubMed  Google Scholar 

  99. Mohd-Sarip, A. et al. Architecture of a Polycomb nucleoprotein complex. Mol. Cell 24, 91–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Schoeftner, S. et al. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J. 25, 3110–3122 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pasini, D., Bracken, A. P., Hansen, J. B., Capillo, M. & Helin, K. The Polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell. Biol. 27, 3769–3779 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vincenz, C. & Kerppola, T. K. Different Polycomb group CBX family proteins associate with distinct regions of chromatin using nonhomologous protein sequences. Proc. Natl Acad. Sci. USA 105, 16572–16577 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee, M. G. et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318, 447–450 (2007). Defines human UTX as a demethylase for H3K27me2 and H3K27me3. UTX knockdown increases H3K27 methylation at Hox target genes and this correlates with increased recruitment of PRC1 and histone H2A ubiquitylation.

    Article  CAS  PubMed  Google Scholar 

  104. Mujtaba, S. et al. Epigenetic transcriptional repression of cellular genes by a viral SET protein. Nature Cell Biol. 10, 1114–1122 (2008). Exploits a heterologous, virally encoded H3K27-specific methyltransferase, vSET, to test the consequences of H3K27 methylation in mammalian cells. EZH2 knockdown removes the H3K27me3 mark and PRC1 from a target Hox gene, and causes it to be desilenced, whereas vSET activity can restore these PcG components and silencing.

    Article  CAS  PubMed  Google Scholar 

  105. Pasini, D. et al. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-repressive complex 2. Genes Dev. 22, 1345–1355 (2008). Shows that PRC2 can interact with and recruit a histone H3K4 demethylase, RBP2, to target genes in mouse ES cells. This identifies a PRC2 function distinct from its originally defined H3K27 methyltransferase activity and implicates PRC2 in coordinating multiple histone modifications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schwartz, Y. B. & Pirrotta, V. Polycomb complexes and epigenetic states. Curr. Opin. Cell Biol. 20, 266–273 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Karakuzu, O., Wang, D. P. & Cameron, S. MIG-32 and SPAT-3A are PRC1 homologs that control neuronal migration in Caenorhabditis elegans. Development 136, 943–953 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Francis, N. J. & Kingston, R. E. Mechanisms of transcriptional memory. Nature Rev. Mol. Cell Biol. 2, 409–421 (2001).

    Article  CAS  Google Scholar 

  109. Levine, S. S., King, I. F. & Kingston, R. E. Division of labor in Polycomb group repression. Trends Biochem. Sci. 29, 478–485 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Muller, J. & Verrijzer, P. Biochemical mechanisms of gene regulation by Polycomb group protein complexes. Curr. Opin. Genet. Dev. 19, 150–158 (2009).

    Article  PubMed  CAS  Google Scholar 

  111. Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98, 37–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Francis, N. J., Saurin, A. J., Shao, Z. & Kingston, R. E. Reconstitution of a functional core Polycomb repressive complex. Mol. Cell 8, 545–556 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Mohd-Sarip, A., Cleard, F., Mishra, R. K., Karch, F. & Verrijzer, C. P. Synergistic recognition of an epigenetic DNA element by Pleiohomeotic and a Polycomb core complex. Genes Dev. 19, 1755–1760 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Levine, S. S. et al. The core of the Polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol. Cell. Biol. 22, 6070–6078 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lavigne, M., Francis, N. J., King, I. F. G. & Kingston, R. E. Propagation of silencing: recruitment and repression of naive chromatin in trans by Polycomb repressed chromatin. Mol. Cell 13, 415–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Francis, N. J., Kingston, R. E. & Woodcock, C. L. Chromatin compaction by a Polycomb group protein complex. Science 306, 1574–1577 (2004). Uses electron microscopy to show that the core subunits of PRC1 compact nucleosomal DNA.

    Article  CAS  PubMed  Google Scholar 

  117. King, I. F. et al. Analysis of a Polycomb group protein defines regions that link repressive activity on nucleosomal templates to in vivo function. Mol. Cell. Biol. 25, 6578–6591 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004). Shows that a complex with similarities to PRC1 ubiquitylates histone H2A in a RING1-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  119. Li, Z. et al. Structure of a Bmi-1–Ring1B Polycomb group ubiquitin ligase complex. J. Biol. Chem. 281, 20643–20649 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Buchwald, G. et al. Structure and E3-ligase activity of the Ring–Ring complex of polycomb proteins Bmi1 and Ring1b. EMBO J. 25, 2465–2474 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Stock, J. K. et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nature Cell Biol. 9, 1428–1435 (2007). Shows that elongation of RNA polymerase is impaired in a manner that depends on PRC1 components and that correlates with the presence of ubiquitylated H2A.

    Article  CAS  PubMed  Google Scholar 

  122. Lagarou, A. et al. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing. Genes Dev. 22, 2799–2810 (2008). Shows that D. melanogaster KDM2 associates with PRC1 components and promotes H2A ubiquitylation in vitro .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gearhart, M. D., Corcoran, C. M., Wamstad, J. A. & Bardwell, V. J. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol. Cell. Biol. 26, 6880–6889 (2006). Identifies a mammalian complex called BCOR, which is distinct from PRC1 but contains PRC1 components as well as components involved in histone modification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sanchez, C. et al. Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Mol. Cell Proteomics 6, 820–834 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Wu, X. et al. Cooperation between EZH2, NSPc1-mediated histone H2A ubiquitination and Dnmt1 in HOX gene silencing. Nucleic Acids Res. 36, 3590–3599 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bender, L. B., Cao, R., Zhang, Y. & Strome, S. The MES-2/MES-3/MES-6 complex and regulation of histone H3 methylation in C. elegans. Curr. Biol. 14, 1639–1643 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Capowski, E. E., Martin, P., Garvin, C. & Strome, S. Identification of grandchildless loci whose products are required for normal germ-line development in the nematode Caenorhabditis elegans. Genetics 129, 1061–1072 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fong, Y., Bender, L., Wang, W. & Strome, S. Regulation of the different chromatin states of autosomes and X chromosomes in the germ line of C. elegans. Science 296, 2235–2238 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ross, J. M. & Zarkower, D. Polycomb group regulation of Hox gene expression in C. elegans. Dev. Cell 4, 891–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Breiling, A., Turner, B. M., Bianchi, M. E. & Orlando, V. General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412, 651–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Dellino, G. I. et al. Polycomb silencing blocks transcription initiation. Mol. Cell 13, 887–893 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Papp, B. & Muller, J. Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev. 20, 2041–2054 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Saurin, A. J., Shao, Z., Erdjument-Bromage, H., Tempst, P. & Kingston, R. E. A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 412, 655–660 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Chopra, V. S., Hong, J. W. & Levine, M. Regulation of Hox gene activity by transcriptional elongation in Drosophila. Curr. Biol. 19, 688–693 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Seila, A. C. et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Srinivasan, S. et al. The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA Polymerase II. Development 132, 1623–1635 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Srinivasan, S., Dorighi, K. M. & Tamkun, J. W. Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II. PLoS Genet. 4, e1000217 (2008). Shows that depletion of the TrxG protein Kismet decreases elongation efficiency and causes an increase in H3K27 methylation on target genes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Petruk, S. et al. Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 127, 1209–1221 (2006). Describes silencing of a fly Hox gene by a non-coding RNA acting in cis . Also provides evidence that a TrxG complex, TAC1, influences transcription elongation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Smith, S. T. et al. Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex. Nature Cell Biol. 6, 162–167 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Zhou, W. et al. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol. Cell 29, 69–80 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Orphanides, G., Wu, W. H., Lane, W. S., Hampsey, M. & Reinberg, D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400, 284–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Saunders, A. et al. Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo. Science 301, 1094–1096 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Lorch, Y., LaPointe, J. W. & Kornberg, R. D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49, 203–210 (1987).

    Article  CAS  PubMed  Google Scholar 

  146. Bondarenko, V. A. et al. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. Mol. Cell 24, 469–479 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nature Cell Biol. 10, 1291–1300 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Francis, N. J., Follmer, N. E., Simon, M. D., Aghia, G. & Butler, J. D. Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro. Cell 137, 110–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cleard, F., Moshkin, Y., Karch, F. & Maeda, R. K. Probing long-distance regulatory interactions in the Drosophila melanogaster bithorax complex using Dam identification. Nature Genet. 38, 931–935 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Lanzuolo, C., Roure, V., Dekker, J., Bantignies, F. & Orlando, V. Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nature Cell Biol. 9, 1167–1174 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Tiwari, V. K., Cope, L., McGarvey, K. M., Ohm, J. E. & Baylin, S. B. A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations. Genome Res. 18, 1171–1179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tiwari, V. K. et al. PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol. 6, 2911–2927 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Trojer, P. & Reinberg, D. Facultative heterochromatin: is there a distinctive molecular signature? Mol. Cell 28, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Huang, J. & Berger, S. L. The emerging field of dynamic lysine methylation of non-histone proteins. Curr. Opin. Genet. Dev. 18, 152–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Yu, J. et al. A Polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res. 67, 10657–10663 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genet. 40, 499–507 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A–ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Yoo, C. B. & Jones, P. A. Epigenetic therapy of cancer: past, present and future. Nature Rev. Drug Discov. 5, 37–50 (2006).

    Article  CAS  Google Scholar 

  160. Kennison, J. A. & Tamkun, J. W. Dosage-dependent modifiers of Polycomb and Antennapedia mutations in Drosophila. Proc. Natl Acad. Sci. USA 85, 8136–8140 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Nakamura, T. et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell 10, 1119–1128 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Milne, T. A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107–1117 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Petruk, S. et al. Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene. Science 294, 1331–1334 (2001).

    Article  CAS  PubMed  Google Scholar 

  164. Tamkun, J. W. et al. Brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68, 561–572 (1992).

    Article  CAS  PubMed  Google Scholar 

  165. Daubresse, G. et al. The Drosophila kismet gene is related to chromatin-remodeling factors and is required for both segmentation and segment identity. Development 126, 1175–1187 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Smith, E. R. et al. Drosophila UTX is a histone H3 Lys27 demethylase that colocalizes with the elongating form of RNA polymerase II. Mol. Cell. Biol. 28, 1041–1046 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Carrera, I., Janody, F., Leeds, N., Duveau, F. & Treisman, J. E. Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13. Proc. Natl Acad. Sci. USA 105, 6644–6649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Armstrong, J. A. et al. The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J. 21, 5245–5254 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Poux, S., Horard, B., Sigrist, C. J. & Pirrotta, V. The Drosophila Trithorax protein is a coactivator required to prevent re-establishment of Polycomb silencing. Development 129, 2483–2493 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Klymenko, T. & Muller, J. The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins. EMBO Rep. 5, 373–377 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dietrich, N. et al. Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A–ARF locus. EMBO J. 26, 1637–1648 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

InterPro

SET domain

FURTHER INFORMATION

Robert E. Kingston's homepage

Jeffrey A. Simon's homepage

Glossary

Chromatin immunoprecipitation

(ChIP). A technique by which direct or indirect protein–DNA interactions in chromatin can be studied using antibodies against specific chromosomal proteins.

X-chromosome inactivation

The process in female mammals by which gene expression from one of the pair of X chromosomes is silenced so that the overall level of X chromosome expression matches that from the single X chromosome that is present in males. It involves non-coding regulatory RNA and a range of epigenetic mechanisms operating on the inactivated chromosome, including changes in DNA methylation and histone modifications.

Imprinting

A genetic mechanism by which genes are selectively expressed from the maternal or paternal chromosomes.

RNA interference

(RNAi). The process by which double-stranded RNA specifically silences the expression of genes by causing degradation of their cognate mRNAs.

SET domain

(Su(var)3-9, Enhancer of Zeste, Trithorax). A sequence motif found in many chromatin-associated proteins, including members of both the PcG and TrxG families. The SET domain forms an active site that catalyses histone methylation on Lys residues.

Chromodomain

A sequence motif found in many chromatin-associated proteins, including Polycomb. It forms a binding pocket for histones methylated on Lys residues.

Paralogue

A sequence, or gene, that has originated from a common ancestral sequence, or gene, by a duplication event.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, J., Kingston, R. Mechanisms of Polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10, 697–708 (2009). https://doi.org/10.1038/nrm2763

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2763

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing