Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function

Key Points

  • Lysosomes are the primary catabolic compartments of eukaryotic cells. They degrade extracellular material that has been internalized by endocytosis and intracellular components that have been sequestered by autophagy.

  • Most lysosomal hydrolases acquire a mannose-6-phosphate (M6P) tag in the Golgi complex. This tag is recognized in the trans-Golgi network (TGN) by M6P receptors (M6PRs) that target the lysosomal hydrolases to the endo-lysosomal pathway. M6PR-independent pathways for the transport of lysosomal hydrolases do exist but, like the pathways for the transport of lysosomal membrane proteins (LMPs), they are mostly undetermined.

  • Recently, the LMP lysosome integral membrane protein 2 was found to be required for the M6PR-independent transport of the lysosomal hydrolase β-glucocerebrosidase to the lysosome. This finding indicates a novel role for LMPs in intracellular protein transport and links the lysosomal targeting of an LMP to a lysosomal hydrolase, albeit by an as yet unidentified pathway.

  • Recent studies provide evidence for both clathrin- and non-clathrin-mediated exits for LMPs from the TGN, which would allow for a timely and targeted delivery of LMPs to distinct endosomal intermediates. This is further supported by the presence of multiple sorting signals in the cytosolic tails of some LMPs, the observation that domains other than the cytosolic tails can be involved in lysosomal targeting and the occurrence of post-translational modifications that can provide fine-tuning of the sorting signals.

  • The significance of understanding LMP trafficking is further illustrated by the ongoing discovery of new and unexpected roles for LMPs in cellular physiology and of mutations in LMPs that lead to lysosomal dysfunction and disease. An important emerging theme is that the absence or presence of LMPs can essentially change the properties of the target compartment; for example, its acidity, fusogenicity, catabolic capacity, dynamics and drug resistance and the availability of cytoplasmic substrates.

  • Elucidating alternative pathways for the delivery of lysosomal proteins is a major challenge for future studies and is of key importance to expand our knowledge of lysosome biogenesis and to understand the pathologies that are associated with lysosomal dysfunctioning.

Abstract

Lysosomes are the primary catabolic compartments of eukaryotic cells. They degrade extracellular material that has been internalized by endocytosis and intracellular components that have been sequestered by autophagy. In addition, specialized cells contain lysosome-related organelles that store and secrete proteins for cell-type-specific functions. The functioning of a healthy cell is dependent on the proper targeting of newly synthesized lysosomal proteins. Accumulating evidence suggests that there are multiple lysosomal delivery pathways that together allow the regulated and sequential deposition of lysosomal components. The importance of lysosomal trafficking pathways is emphasized by recent findings that reveal new roles for lysosomal membrane proteins in cellular physiology and in an increasing number of diseases that are characterized by defects in lysosome biogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major functions of lysosomal membrane proteins.
Figure 2: Possible interactions between the biosynthetic and endocytic pathways.
Figure 3: Intra-endosomal distribution of lysosomal membrane proteins.
Figure 4: M6PR-dependent and -independent targeting of lysosomal hydrolases to the lysosome.

Similar content being viewed by others

References

  1. Dell'Angelica, E. C., Mullins, C., Caplan, S. & Bonifacino, J. S. Lysosome-related organelles. FASEB J. 14, 1265–1278 (2000).

    CAS  Google Scholar 

  2. Bonifacino, J. S. Insights into the biogenesis of lysosome-related organelles from the study of the Hermansky–Pudlak syndrome. Ann. NY Acad. Sci. 1038, 103–114 (2004).

    Article  PubMed  Google Scholar 

  3. Dell'Angelica, E. C. The building BLOC(k)s of lysosomes and related organelles. Curr. Opin. Cell Biol. 16, 458–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Conus, S. & Simon, H. U. Cathepsins: key modulators of cell death and inflammatory responses. Biochem. Pharmacol. 76, 1374–1382 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Lübke, T., Lobel, P. & Sleat, D. E. Proteomics of the lysosome. Biochim. Biophys. Acta 1793, 625–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Schroder, B. et al. Integral and associated lysosomal membrane proteins. Traffic 8, 1676–1686 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Callahan, J. W., Bagshaw, R. D. & Mahuran, D. J. The integral membrane of lysosomes: its proteins and their roles in disease. J. Proteomics 72, 23–33 (2009). References 6 and 7 present new proteomic experiments that reveal a greater than expected number of LMPs of largely unknown function.

    Article  CAS  PubMed  Google Scholar 

  8. Eskelinen, E. L., Tanaka, Y. & Saftig, P. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 13, 137–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Kornfeld, S. & Mellman, I. The biogenesis of lysosomes. Annu. Rev. Cell Biol. 5, 483–525 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Figura, K. V. & Hasilik, A. Lysosomal enzymes and their receptors. 55, 167–193 (1986).

  11. Ruivo, R., Anne, C., Sagne, C. & Gasnier, B. Molecular and cellular basis of lysosomal transmembrane protein dysfunction. Biochim. Biophys. Acta 1793, 636–649 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Sachse, M., Ramm, G., Strous, G. & Klumperman, J. Endosomes: multipurpose designs for integrating housekeeping and specialized tasks. Histochem. Cell Biol. 117, 91–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Stoorvogel, W., Strous, G. J., Geuze, H. J., Oorschot, V. & Schwartz, A. L. Late endosomes derive from early endosomes by maturation. Cell 65, 417–427 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Dunn, K. W. & Maxfield, F. R. Delivery of ligands from sorting endosomes to late endosomes occurs by maturation of sorting endosomes. J. Cell Biol. 117, 301–310 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Futter, C. E., Pearse, A., Hewlett, L. J. & Hopkins, C. R. Multivesicular endosomes containing internalized EGF–EGF receptor complexes mature and then fuse directly with lysosomes. J. Cell Biol. 132, 1011–1023 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. van Deurs, B., Holm, P. K., Kayser, L., Sandvig, K. & Hansen, S. H. Multivesicular bodies in HEp-2 cells are maturing endosomes. Eur. J. Cell Biol. 61, 208–224 (1993).

    CAS  PubMed  Google Scholar 

  17. Murphy, R. F. Maturation models for endosome and lysosome biogenesis. Trends Cell Biol. 1, 77–82 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Bright, N. A., Gratian, M. J. & Luzio, J. P. Endocytic delivery to lysosomes mediated by concurrent fusion and kissing events in living cells. Curr. Biol. 15, 360–365 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Gruenberg, J. & Stenmark, H. The biogenesis of multivesicular endosomes. Nature Rev. Mol. Cell Biol. 5, 317–323 (2004).

    Article  CAS  Google Scholar 

  20. Luzio, J. P., Pryor, P. R. & Bright, N. A. Lysosomes: fusion and function. Nature Rev. Mol. Cell Biol. 8, 622–632 (2007).

    Article  CAS  Google Scholar 

  21. Mari, M. et al. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 9, 380–393 (2008). Describes a new SNX1- andSNX2-dependent, clathrin-independent exit for M6PRs from EE vacuoles and provides detailed molecular and ultrastructural characterization of endosomal intermediates.

    Article  CAS  PubMed  Google Scholar 

  22. Klumperman, J. et al. Differences in the endosomal distributions of the two mannose 6-phosphate receptors. J. Cell Biol. 121, 997–1010 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Waguri, S. et al. Visualization of TGN to endosome trafficking through fluorescently labeled MPR and AP-1 in living cells. Mol. Biol. Cell 14, 142–155 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tooze, J. & Hollinshead, M. Tubular early endosomal networks in AtT20 and other cells. J. Cell Biol. 115, 635–653 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Stoorvogel, W., Oorschot, V. & Geuze, H. J. A novel class of clathrin-coated vesicles budding from endosomes. J. Cell Biol. 132, 21–33 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Peden, A. A. et al. Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins. J. Cell Biol. 164, 1065–1076 (2004). Functional analysis of AP3 function in the transport of LMPs out of TSEs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Meel, E. & Klumperman, J. Imaging and imagination: understanding the endo-lysosomal system. Histochem. Cell Biol. 129, 253–266 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bonifacino, J. S. & Rojas, R. Retrograde transport from endosomes to the trans-Golgi network. Nature Rev. Mol. Cell Biol. 7, 568–579 (2006).

    Article  CAS  Google Scholar 

  29. Draye, J. P., Quintart, J., Courtoy, P. J. & Baudhuin, P. Relations between plasma membrane and lysosomal membrane. 1. Fate of covalently labelled plasma membrane protein. Eur. J. Biochem. 170, 395–403 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Yamashiro, D. J., Tycko, B., Fluss, S. R. & Maxfield, F. R. Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell 37, 789–800 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Carlton, J. G. et al. Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport. J. Cell Sci. 118, 4527–4539 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Carlton, J. et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr. Biol. 14, 1791–1800 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Seaman, M. N. J. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111–122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seaman, M. N. Recycle your receptors with retromer. Trends Cell Biol. 15, 68–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Bonifacino, J. S. & Hurley, J. H. Retromer. Curr. Opin. Cell Biol. 20, 427–436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rojas, R., Kametaka, S., Haft, C. R. & Bonifacino, J. S. Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol. Cell. Biol. 27, 1112–1124 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Rojas, R. et al. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J. Cell Biol. 183, 513–526 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Arighi, C. N., Hartnell, L. M., Aguilar, R. C., Haft, C. R. & Bonifacino, J. S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johannes, L. & Popoff, V. Tracing the retrograde route in protein trafficking. Cell 135, 1175–1187 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Meyer, C. et al. μ1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J. 19, 2193–2203 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dell'Angelica, E. C., Klumperman, J., Stoorvogel, W. & Bonifacino, J. S. Association of the AP-3 adaptor complex with clathrin. Science 280, 431–434 (1998). First study to show AP3 localization on EE-associated recycling tubules.

    Article  CAS  PubMed  Google Scholar 

  43. Dell'Angelica, E. C., Shotelersuk, V., Aguilar, R. C., Gahl, W. A. & Bonifacino, J. S. Altered trafficking of lysosomal proteins in Hermansky–Pudlak syndrome due to mutations in the β3A subunit of the AP-3 adaptor. Mol. Cell 3, 11–21 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Huizing, M. & Gahl, W. A. Disorders of vesicles of lysosomal lineage: the Hermansky–Pudlak syndromes. Curr. Mol. Med. 2, 451–467 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Starcevic, M., Nazarian, R. & Dell'Angelica, E. C. The molecular machinery for the biogenesis of lysosome-related organelles: lessons from Hermansky–Pudlak syndrome. Semin. Cell Dev. Biol. 13, 271–278 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol. 5, 121–132 (2004).

    Article  CAS  Google Scholar 

  47. Saksena, S., Sun, J., Chu, T. & Emr, S. D. ESCRTing proteins in the endocytic pathway. Trends Biochem. Sci. 32, 561–573 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Seaman, M. N. Endosome protein sorting: motifs and machinery. Cell. Mol. Life Sci. 65, 2842–2858 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389–402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Malerod, L. & Stenmark, H. ESCRTing membrane deformation. Cell 136, 15–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Saksena, S., Wahlman, J., Teis, D., Johnson, A. E. & Emr, S. D. Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136, 97–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bache, K. G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol. 4, 394–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Urbe, S. et al. The UIM domain of Hrs couples receptor sorting to vesicle formation. J. Cell Sci. 116, 4169–4179 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Sachse, M., Urbe, S., Oorschot, V., Strous, G. J. & Klumperman, J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell 13, 1313–1328 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Raiborg, C., Wesche, J., Malerod, L. & Stenmark, H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J. Cell Sci. 119, 2414–2424 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Murk, J. L. et al. Endosomal compartmentalization in three dimensions: implications for membrane fusion. Proc. Natl Acad. Sci. USA 100, 13332–13337 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Futter, C. E., Collinson, L. M., Backer, J. M. & Hopkins, C. R. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J. Cell Biol. 155, 1251–1264 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sigismund, S. et al. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev. Cell 15, 209–219 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Pols, M. S. & Klumperman, J. Trafficking and function of the tetraspanin CD63. Exp. Cell Res. 315, 1584–1592 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Escola, J. M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273, 20121–20127 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008). First demonstration that the formation of ILVs containing CD63 that are destined for secretion as exosomes is ESCRT independent and requires ceramide.

    Article  CAS  PubMed  Google Scholar 

  65. Shin, J. S. et al. Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature 444, 115–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. van Niel, G. et al. Dendritic cells regulate exposure of MHC class II at their plasma membrane by oligoubiquitination. Immunity 25, 885–894 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Buschow, S. I. et al. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 14 Jul 2009 (doi:10.1111/j.1600-0854.2009.00963.x).

  68. Thery, C. et al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147, 599–610 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Woodman, P. G. & Futter, C. E. Multivesicular bodies: co-ordinated progression to maturity. Curr. Opin. Cell Biol. 20, 408–414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schroder, J. et al. Deficiency of the tetraspanin CD63 associated with kidney pathology but normal lysosomal function. Mol. Cell. Biol. 29, 1083–1094 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Kuronita, T. et al. A role for the lysosomal membrane protein LGP85 in the biogenesis and maintenance of endosomal and lysosomal morphology. J. Cell Sci. 115, 4117–4131 (2002). Shows that overexpression of LIMP2 causes an enlargement of EEs and lysosomes, probably in a RAB5-dependent manner, suggesting that LIMP2 participates in the organization of endosomal and lysosomal compartments.

    Article  CAS  PubMed  Google Scholar 

  72. Geuze, H. J. et al. Sorting of mannose 6-phosphate receptors and lysosomal membrane proteins in endocytic vesicles. J. Cell Biol. 107, 2491–2501 (1988).

    Article  CAS  PubMed  Google Scholar 

  73. Griffiths, G., Hoflack, B., Simons, K., Mellman, I. & Kornfeld, S. The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell 52, 329–341 (1988).

    Article  CAS  PubMed  Google Scholar 

  74. Braulke, T. & Bonifacino, J. S. Sorting of lysosomal proteins. Biochim. Biophys. Acta 1793, 605–614 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Diaz, E., Schimmoller, F. & Pfeffer, S. R. A novel Rab9 effector required for endosome-to-TGN transport. J. Cell Biol. 138, 283–290 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Amessou, M. et al. Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins. J. Cell Sci. 120, 1457–1468 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Crump, C. M. et al. PACS-1 binding to adaptors is required for acidic cluster motif-mediated protein traffic. EMBO J. 20, 2191–2201 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Saint-Pol, A. et al. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Dev. Cell 6, 525–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Perez-Victoria, F. J., Mardones, G. A. & Bonifacino, J. S. Requirement of the human GARP complex for mannose 6-phosphate-receptor-dependent sorting of cathepsin D to lysosomes. Mol. Biol. Cell 19, 2350–2362 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bulankina, A. V. et al. TIP47 functions in the biogenesis of lipid droplets. J. Cell Biol. 185, 641–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Diaz, E. & Pfeffer, S. R. TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93, 433–443 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Bakker, A. C., Webster, P., Jacob, W. A. & Andrews, N. W. Homotypic fusion between aggregated lysosomes triggered by elevated [Ca2+]i in fibroblasts. J. Cell Sci. 110, 2227–2238 (1997).

    CAS  PubMed  Google Scholar 

  83. Ward, D. M., Leslie, J. D. & Kaplan, J. Homotypic lysosome fusion in macrophages: analysis using an in vitro assay. J. Cell Biol. 139, 665–673 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mullock, B. M., Bright, N. A., Fearon, C. W., Gray, S. R. & Luzio, J. P. Fusion of lysosomes with late endosomes produces a hybrid organelle of intermediate density and is NSF dependent. J. Cell Biol. 140, 591–601 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sleat, D. E. et al. The human brain mannose 6-phosphate glycoproteome: a complex mixture composed of multiple isoforms of many soluble lysosomal proteins. Proteomics 5, 1520–1532 (2005).

    Article  PubMed  Google Scholar 

  86. Boman, A. L., Zhang, C., Zhu, X. & Kahn, R. A. A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol. Biol. Cell 11, 1241–1255 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dell'Angelica, E. C. et al. GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol. 149, 81–94 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hirst, J. et al. A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J. Cell Biol. 149, 67–80 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Doray, B., Ghosh, P., Griffith, J., Geuze, H. J. & Kornfeld, S. Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science 297, 1700–1703 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Puertollano, R., Aguilar, R. C., Gorshkova, I., Crouch, R. J. & Bonifacino, J. S. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 292, 1712–1716 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Puertollano, R. et al. Morphology and dynamics of clathrin/GGA1-coated carriers budding from the trans-Golgi network. Mol. Biol. Cell 14, 1545–1557 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Geuze, H. J., Slot, J. W., Strous, G. J., Hasilik, A. & von Figura, K. Possible pathways for lysosomal enzyme delivery. J. Cell Biol. 101, 2253–2262 (1985).

    Article  CAS  PubMed  Google Scholar 

  93. Polishchuk, R. S., San Pietro, E., Di Pentima, A., Tete, S. & Bonifacino, J. S. Ultrastructure of long-range transport carriers moving from the trans Golgi network to peripheral endosomes. Traffic 7, 1092–1103 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Bonifacino, J. S. & Lippincott-Schwartz, J. Coat proteins: shaping membrane transport. Nature Rev. Mol. Cell Biol. 4, 409–414 (2003).

    Article  CAS  Google Scholar 

  95. Hasilik, A., Waheed, A. & von Figura, K. Enzymatic phosphorylation of lysosomal enzymes in the presence of UDP-N-acetylglucosamine. Absence of the activity in I-cell fibroblasts. Biochem. Biophys. Res. Commun. 98, 761–767 (1981).

    Article  CAS  PubMed  Google Scholar 

  96. Waheed, A. et al. Deficiency of UDP-N-acetylglucosamine: lysosomal enzyme N-acetylglucosamine-1-phosphotransferase in organs of I-cell patients. Biochem. Biophys. Res. Commun. 105, 1052–1058 (1982).

    Article  CAS  PubMed  Google Scholar 

  97. Reitman, M. L., Varki, A. & Kornfeld, S. Fibroblasts from patients with I-cell disease and pseudo-Hurler polydystrophy are deficient in uridine 5′-diphosphate-N-acetylglucosamine: glycoprotein N-acetylglucosaminylphosphotransferase activity. J. Clin. Invest. 67, 1574–1579 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Little, L. et al. Properties of N-acetylglucosamine 1-phosphotransferase from human lymphoblasts. Biochem. J. 248, 151–159 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Owada, M. & Neufeld, E. F. Is there a mechanism for introducing acid hydrolases into liver lysosomes that is independent of mannose 6-phosphate recognition? Evidence from I-cell disease. Biochem. Biophys. Res. Commun. 105, 814–820 (1982).

    Article  CAS  PubMed  Google Scholar 

  100. Gelfman, C. M. et al. Mice lacking α/β subunits of GlcNAc-1-phosphotransferase exhibit growth retardation, retinal degeneration, and secretory cell lesions. Invest. Ophthalmol. Vis. Sci. 48, 5221–5228 (2007).

    Article  PubMed  Google Scholar 

  101. Dittmer, F. et al. Alternative mechanisms for trafficking of lysosomal enzymes in mannose 6-phosphate receptor-deficient mice are cell type-specific. J. Cell Sci. 112, 1591–1597 (1999). Shows that the lack of both M6PRs in mice leads to an I-cell-disease-like phenotype and that cathepsin D, although following different routes, is targeted independently of M6PRs in hepatocytes and thymocytes but not in fibroblasts.

    CAS  PubMed  Google Scholar 

  102. Allavena, P., Chieppa, M., Monti, P. & Piemonti, L. From pattern recognition receptor to regulator of homeostasis: the double-faced macrophage mannose receptor. Crit. Rev. Immunol. 24, 179–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Elvevold, K. et al. Liver sinusoidal endothelial cells depend on mannose receptor-mediated recruitment of lysosomal enzymes for normal degradation capacity. Hepatology 48, 2007–2015 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Canuel, M., Libin, Y. & Morales, C. R. The interactomics of sortilin: an ancient lysosomal receptor evolving new functions. Histol. Histopathol. 24, 481–492 (2009).

    CAS  PubMed  Google Scholar 

  105. Marcusson, E. G., Horazdovsky, B. F., Cereghino, J. L., Gharakhanian, E. & Emr, S. D. The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell 77, 579–586 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Hampe, W., Rezgaoui, M., Hermans-Borgmeyer, I. & Schaller, H. C. The genes for the human VPS10 domain-containing receptors are large and contain many small exons. Hum. Genet. 108, 529–536 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Willnow, T. E., Petersen, C. M. & Nykjaer, A. VPS10P-domain receptors — regulators of neuronal viability and function. Nature Rev. Neurosci. 9, 899–909 (2008).

    Article  CAS  Google Scholar 

  108. Ni, X. & Morales, C. R. The lysosomal trafficking of acid sphingomyelinase is mediated by sortilin and mannose 6-phosphate receptor. Traffic 7, 889–902 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Petersen, C. M. et al. Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. J. Biol. Chem. 272, 3599–3605 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Lefrancois, S., Zeng, J., Hassan, A. J., Canuel, M. & Morales, C. R. The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin. EMBO J. 22, 6430–6437 (2003). Provides evidence that direct trafficking of both prosaposin and sphingosin activator protein from the TGN to the lysosomal compartment occurs independently of M6PRs by a sortilin-mediated mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hiesberger, T. et al. Cellular uptake of saposin (SAP) precursor and lysosomal delivery by the low density lipoprotein receptor-related protein (LRP). EMBO J. 17, 4617–4625 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nielsen, M. S. et al. The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J. 20, 2180–2190 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lefrancois, S., Zeng, J., Hassan, A. J., Canuel, M. & Morales, C. R. The lysomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin. EMBO J. 23, 1680 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  114. Seaman, M. N. Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J. Cell Sci. 120, 2378–2389 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Canuel, M., Korkidakis, A., Konnyu, K. & Morales, C. R. Sortilin mediates the lysosomal targeting of cathepsins D and H. Biochem. Biophys. Res. Commun. 373, 292–297 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Quistgaard, E. M. et al. Ligands bind to Sortilin in the tunnel of a ten-bladed β-propeller domain. Nature Struct. Mol. Biol. 16, 96–98 (2009).

    Article  CAS  Google Scholar 

  117. Reczek, D. et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of β-glucocerebrosidase. Cell 131, 770–783 (2007). Demonstrates that LIMP2 functions as a transport chaperone for M6PR-independent transport of the lysosomal hydrolase βGC to lysosomes.

    Article  CAS  PubMed  Google Scholar 

  118. Gamp, A. C. et al. LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice. Hum. Mol. Genet. 12, 631–646 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Dvir, H. et al. X-ray structure of human acid-β-glucosidase, the defective enzyme in Gaucher disease. EMBO Rep. 4, 704–709 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kuronita, T. et al. The NH2-terminal transmembrane and lumenal domains of LGP85 are needed for the formation of enlarged endosomes/lysosomes. Traffic 6, 895–906 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Knipper, M. et al. Deafness in LIMP2-deficient mice due to early loss of the potassium channel KCNQ1/KCNE1 in marginal cells of the stria vascularis. J. Physiol. 576, 73–86 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Berkovic, S. F. et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am. J. Hum. Genet. 82, 673–684 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Balreira, A. et al. A nonsense mutation in the LIMP-2 gene associated with progressive myoclonic epilepsy and nephrotic syndrome. Hum. Mol. Genet. 17, 2238–2243 (2008). References 122 and 123 report the first discoveredhuman mutations in the βGC trafficking receptor LIMP2 that lead to central nervous system and kidney disease.

    Article  CAS  PubMed  Google Scholar 

  124. Schroen, B. et al. Lysosomal integral membrane protein 2 is a novel component of the cardiac intercalated disc and vital for load-induced cardiac myocyte hypertrophy. J. Exp. Med. 204, 1227–1235 (2007).

    Article  CAS  Google Scholar 

  125. Janvier, K. & Bonifacino, J. S. Role of the endocytic machinery in the sorting of lysosome-associated membrane proteins. Mol. Biol. Cell 16, 4231–4242 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Carlsson, S. R. & Fukuda, M. The lysosomal membrane glycoprotein lamp-1 is transported to lysosomes by two alternative pathways. Arch. Biochem. Biophys. 296, 630–639 (1992).

    Article  CAS  PubMed  Google Scholar 

  127. Groux-Degroote, S. et al. Glycolipid-dependent sorting of melanosomal from lysosomal membrane proteins by lumenal determinants. Traffic 9, 951–963 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Harter, C. & Mellman, I. Transport of the lysosomal membrane glycoprotein lgp120 (lgp-A) to lysosomes does not require appearance on the plasma membrane. J. Cell Biol. 117, 311–325 (1992).

    Article  CAS  PubMed  Google Scholar 

  129. Luzio, J. P. et al. Membrane dynamics and the biogenesis of lysosomes. Mol. Membr. Biol. 20, 141–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Vergarajauregui, S. & Puertollano, R. Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic 7, 337–353 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bonifacino, J. S. & Traub, L. M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Honing, S., Griffith, J., Geuze, H. J. & Hunziker, W. The tyrosine-based lysosomal targeting signal in lamp-1 mediates sorting into Golgi-derived clathrin-coated vesicles. EMBO J. 15, 5230–5239 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hunziker, W. & Geuze, H. J. Intracellular trafficking of lysosomal membrane proteins. Bioessays 18, 379–389 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. Pak, Y., Glowacka, W. K., Bruce, M. C., Pham, N. & Rotin, D. Transport of LAPTM5 to lysosomes requires association with the ubiquitin ligase Nedd4, but not LAPTM5 ubiquitination. J. Cell Biol. 175, 631–645 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Karlsson, K. & Carlsson, S. R. Sorting of lysosomal membrane glycoproteins lamp-1 and lamp-2 into vesicles distinct from mannose 6-phosphate receptor/γ -adaptin vesicles at the trans-Golgi network. J. Biol. Chem. 273, 18966–18973 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Kleijmeer, M. J., Morkowski, S., Griffith, J. M., Rudensky, A. Y. & Geuze, H. J. Major histocompatibility complex class II compartments in human and mouse B lymphoblasts represent conventional endocytic compartments. J. Cell Biol. 139, 639–649 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Glickman, J., Morton, P., Slot, J., Kornfeld, S. & Geuze, H. The biogenesis of the MHC class II compartment in human I-cell disease B lymphoblasts. J. Cell Biol. 132, 769–785 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Ramachandran, N. et al. VMA21 deficiency causes an autophagic myopathy by compromising V-ATPase activity and lysosomal acidification. Cell 137, 235–246 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Chang, T. Y., Chang, C. C., Ohgami, N. & Yamauchi, Y. Cholesterol sensing, trafficking, and esterification. Annu. Rev. Cell Dev. Biol. 22, 129–157 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Jahn, R. & Scheller, R. H. SNAREs — engines for membrane fusion. Nature Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  Google Scholar 

  141. Gordon, D. E., Mirz, M., Sahlender, D. A., Jakovleska, J. & Peden, A. A. Coiled-coil interactions are required for post-Golgi R-SNARE trafficking. EMBO Rep. 26Jun 2009 (doi:10.1038/embor.2009.96).

  142. Martinez-Arca, S. et al. A dual mechanism controlling the localization and function of exocytic v-SNAREs. Proc. Natl Acad. Sci. USA 100, 9011–9016 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pryor, P. R. et al. Molecular basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell 134, 817–827 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Theos, A. C. et al. A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev. Cell 10, 343–354 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gough, N. R. & Fambrough, D. M. Different steady state subcellular distributions of the three splice variants of lysosome-associated membrane protein LAMP-2 are determined largely by the COOH-terminal amino acid residue. J. Cell Biol. 137, 1161–1169 (1997). LAMP2 splice variants have different transmembrane domains and cytosolic tails. This study revealed that the different C-terminal tails of LAMP2 are crucial for the intracellular distribution of the LAMP2 variants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kannan, K. et al. Lysosome-associated membrane proteins h-LAMP1 (CD107a) and h-LAMP2 (CD107b) are activation-dependent cell surface glycoproteins in human peripheral blood mononuclear cells which mediate cell adhesion to vascular endothelium. Cell. Immunol. 171, 10–19 (1996).

    Article  CAS  PubMed  Google Scholar 

  147. Fukuda, M. Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. J. Biol. Chem. 266, 21327–21330 (1991).

    CAS  PubMed  Google Scholar 

  148. Fehrenbacher, N. et al. Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2. Cancer Res. 68, 6623–6633 (2008). Clear demonstration that malignant transformation of cells is associated with downregulation of LAMP proteins and a sensitization of cells to lysosomal cell death pathways induced by anti-cancer drugs.

    Article  CAS  PubMed  Google Scholar 

  149. Saitoh, O., Wang, W. C., Lotan, R. & Fukuda, M. Differential glycosylation and cell surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials. J. Biol. Chem. 267, 5700–5711 (1992).

    CAS  PubMed  Google Scholar 

  150. Huynh, K. K. et al. LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J. 26, 313–324 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Clark, R. H. et al. Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nature Immunol. 4, 1111–1120 (2003).

    Article  CAS  Google Scholar 

  152. Yogalingam, G. et al. Neuraminidase 1 is a negative regulator of lysosomal exocytosis. Dev. Cell 15, 74–86 (2008). Interesting observation that over-sialylated LAMP1 enhances lysosomal exocytosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Idone, V., Tam, C. & Andrews, N. W. Two-way traffic on the road to plasma membrane repair. Trends Cell Biol. 18, 552–559 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rao, S. K., Huynh, C., Proux-Gillardeaux, V., Galli, T. & Andrews, N. W. Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. J. Biol. Chem. 279, 20471–20479 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Arantes, R. M. & Andrews, N. W. A role for synaptotagmin VII-regulated exocytosis of lysosomes in neurite outgrowth from primary sympathetic neurons. J. Neurosci. 26, 4630–4637 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Braun, V. et al. TI-VAMP/VAMP7 is required for optimal phagocytosis of opsonised particles in macrophages. EMBO J. 23, 4166–4176 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Roy, D. et al. A process for controlling intracellular bacterial infections induced by membrane injury. Science 304, 1515–1518 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Tardieux, I. et al. Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 71, 1117–1130 (1992).

    Article  CAS  PubMed  Google Scholar 

  159. Reggiori, F. 1. Membrane origin for autophagy. Curr. Top. Dev. Biol. 74, 1–30 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tanaka, Y. et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406, 902–906 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Nishino, I. et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406, 906–910 (2000). First report demonstrating that null mutations within the LAMP2 gene lead to Danon disease and the accumulation of autophagic vacuoles in muscle cells.

    Article  CAS  PubMed  Google Scholar 

  162. Eskelinen, E. L. et al. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol. Biol. Cell 15, 3132–3145 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Binker, M. G. et al. Arrested maturation of Neisseria-containing phagosomes in the absence of the lysosome-associated membrane proteins, LAMP-1and LAMP-2. Cell. Microbiol. 9, 2153–2166 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Jager, S. et al. Role for Rab7 in maturation of late autophagic vacuoles. J. Cell Sci. 117, 4837–4848 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Beertsen, W. et al. Impaired phagosomal maturation in neutrophils leads to periodontitis in lysosomal-associated membrane protein-2 knockout mice. J. Immunol. 180, 475–482 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Cuervo, A. M. & Dice, J. F. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273, 501–503 (1996).

    Article  CAS  PubMed  Google Scholar 

  167. Zhou, D. et al. Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 22, 571–581 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Zhang, C. & Cuervo, A. M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nature Med. 14, 959–965 (2008). Interesting observation that transgenic upregulation of the CMA receptor LAMP2A in liver cells improves age-related loss of liver functions.

    Article  CAS  PubMed  Google Scholar 

  169. Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. & Sulzer, D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. De Matteis, M. A. & Luini, A. Exiting the Golgi complex. Nature Rev. Mol. Cell Biol. 9, 273–284 (2008).

    Article  CAS  Google Scholar 

  171. Sriram, V., Krishnan, K. S. & Mayor, S. Deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster. J. Cell Biol. 161, 593–607 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We want to thank our colleagues for their input and many discussions. We express our special thanks to M. van Peski, J. Schröder, M. Schwake, R. Scriwanek and V. Oorschot for help with preparation of the original figures, and H. Geuze, M. Pols and R. Galmes for their comments on the manuscript. J.K. is the recipient of VICI grant 918.56.611 of the Netherlands Organization for Scientific research (NWO). P.S. is the recipient of DFG grants GRK1459 and SA683/5-1 and of the Center of Excellence 'Inflammation at Interfaces' grant. Cells used in figure 3, part c, were courtesy of M. Schwake, Department of Biochemistry, Christian-Albrechts University, Kiel, Germany.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASES

OMIM

AMRF

Danon disease

Hermansky–Pudlak syndrome 2

I-cell disease

mucolipidosis type IV

sialidosis

XMEA

FURTHER INFORMATION

Judith Klumperman's homepage

Paul Saftig's homepage

Glossary

Lysosome-related organelle

(LRO). A cell-type-specific organelle belonging to a family that includes melanosomes, platelet-dense bodies and cytotoxic T cell granules. LROs contain subsets of lysosomal proteins in addition to cell-type-specific proteins.

Tetraspanin

A member of a conserved protein family with four transmembrane domains and two extracellular loops. Tetraspanins act as scaffolding proteins, anchoring multiple proteins to a specific area at the plasma membrane.

Trans-Golgi network

(TGN). A convoluted membrane compartment at the trans side of the Golgi complex that mediates sorting and transport of proteins to various cellular destinations.

Rab protein

A member of a family of small GTPases that, when associated with the cytosolic leaflet of the endosomal limiting membrane, can initiate the formation of functional microdomains.

HRS

(Hepatocyte growth factor-regulated tyrosine kinase substrate; also known as ESCRT0). A cytosolic protein that is involved in the recognition of ubiquitylated cargo at endosomes, which initiates the recruitment of the ESCRT complex.

Clathrin

A protein that forms a coat which has a major role in the formation of transport vesicles. The coat consists of multiple triskelions, which are composed of three clathrin heavy chains and three light chains.

Retromer

A heterotetrameric protein complex that associates with the cytosolic leaflet of the endosomal limiting membrane. The mammalian retromer consists of a sorting nexin dimer composed of a still-undefined combination of SNX1, SNX2, SNX5 or SNX6 and the cargo recognition trimer VPS26–VPS29–VPS35.

AP1

A member of the heterotetrameric family of adaptor proteins involved in membrane trafficking, which also includes AP2, AP3 and AP4.

ESCRT

(Endosomalsorting complexes required for transport). Endosomal sorting machinery consisting of four complexes ESCRT0, ESCRTI, ESCRTII and ESCRTIII plus several accessory components. ESCRT components recognize ubiquitylated cargoes, deform the endosomal membrane and catalyse the formation of ILVs containing the sorted cargo.

Exosome

A small vesicle that initially exists as an ILV in the lumen of LEs or MVBs. They are called exosomes once released, following fusion of LEs and MVBs with the plasma membrane. Exosomes are thought to have key roles in antigen presentation, cell-to-cell communication, the pathogenesis of retroviral infections and prion disease.

Dendritic cell

A potent antigen-presenting cell that is part of the mammalian immune system. Its main function is to process antigen material and present it, in the context of the MHC class II complex, on its surface to other cells of the immune system.

SNARE

(Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor). A member of a family of membrane-tethered coiled-coil proteins that regulate fusion reactions and target specificity in the vacuolar system. They can be divided into vesicle (v)-SNAREs and target (t)-SNAREs on the basis of their membrane localization.

GGA protein

(Golgi-localized, γ-ear-containing, Arf-binding protein). A member of a family of monomeric adaptor proteins. In mammals there are three different GGA proteins: GGA1, GGA2 and GGA3.

Autophagosome

A double-membrane vesicle that forms at an early stage of the autophagic pathway and can fuse with endosomes and lysosomes for degradation of its contents.

Lysosomal cell death

Apoptosis induced by permeabilization of the lysosomal membrane and the subsequent release of cathepsins into the cytosol. The mechanism of membrane permeabilization is not yet known.

Immunological synapse

The interface between an antigen-presenting cell and a lymphocyte, consisting of a cluster of T cell receptors and a ring of adhesion molecules.

Bacterial type III secretion system

A specialized, needle-like, multiprotein structure in Gram-negative bacteria that is involved in the direct secretion of proteins from the bacterial cell to the host.

Phagosome

A vacuole formed around a particle for example, a pathogenic microorganism absorbed by phagocytosis that can mature into a degradative compartment by fusion with lysosomes.

Autolysosome

A single-membrane vesicle that forms at a late stage of the autophagic pathway by fusion of autophagosomes with endosomes or lysosomes and that contains degradative enzymes obtained after fusion.

Periodontis

A common inflammatory disease of the supporting tissues of the teeth that leads to resorption of alveolar bone and eventually to tooth loss.

Chaperone-mediated autophagy

A direct pathway for transporting cytosolic proteins over the lysosomal limiting membrane and into the lysosome lumen for degradation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saftig, P., Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10, 623–635 (2009). https://doi.org/10.1038/nrm2745

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing