Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Regulatory roles of natural antisense transcripts

Abstract

Mammalian genomes encode numerous natural antisense transcripts, but the function of these transcripts is not well understood. Functional validation studies indicate that antisense transcripts are not a uniform group of regulatory RNAs but instead belong to multiple categories with some common features. Recent evidence indicates that antisense transcripts are frequently functional and use diverse transcriptional and post-transcriptional gene regulatory mechanisms to carry out a wide variety of biological roles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulation of transcription.
Figure 2: Induction of chromatin and DNA epigenetic changes by natural antisense transcripts.
Figure 3: Nuclear and cytoplasmic sense–antisense RNA pairing.

Similar content being viewed by others

References

  1. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    Article  Google Scholar 

  2. Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308, 1149–1154 (2005).

    Article  CAS  Google Scholar 

  3. Zhang, Y., Liu, X. S., Liu, Q. R. & Wei, L. Genome-wide in silico identification and analysis of cis natural antisense transcripts (cis-NATs) in ten species. Nucleic Acids Res. 34, 3465–3475 (2006).

    Article  CAS  Google Scholar 

  4. Rosok, O. & Sioud, M. Systematic identification of sense–antisense transcripts in mammalian cells. Nature Biotech. 22, 104–108 (2004).

    Article  CAS  Google Scholar 

  5. Ge, X., Wu, Q., Jung, Y. C., Chen, J. & Wang, S. M. A large quantity of novel human antisense transcripts detected by LongSAGE. Bioinformatics 22, 2475–2479 (2006).

    Article  CAS  Google Scholar 

  6. Ge, X., Rubinstein, W. S., Jung, Y. C. & Wu, Q. Genome-wide analysis of antisense transcription with Affymetrix exon array. BMC Genomics 9, 27 (2008).

    Article  Google Scholar 

  7. He, Y., Vogelstein, B., Velculescu, V. E., Papadopoulos, N. & Kinzler, K. W. The antisense transcriptomes of human cells. Science 322, 1855–1857 (2008).

    Article  CAS  Google Scholar 

  8. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  Google Scholar 

  9. Seila, A. C. et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).

    Article  CAS  Google Scholar 

  10. Preker, P. et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science 322, 1851–1854 (2008).

    Article  CAS  Google Scholar 

  11. Finocchiaro, G. et al. Localizing hotspots of antisense transcription. Nucleic Acids Res. 35, 1488–1500 (2007).

    Article  CAS  Google Scholar 

  12. Sun, M., Hurst, L. D., Carmichael, G. G. & Chen, J. Evidence for a preferential targeting of 3′-UTRs by cis-encoded natural antisense transcripts. Nucleic Acids Res. 33, 5533–5543 (2005).

    Article  CAS  Google Scholar 

  13. Okada, Y. et al. Comparative expression analysis uncovers novel features of endogenous antisense transcription. Hum. Mol. Genet. 17, 1631–1640 (2008).

    Article  CAS  Google Scholar 

  14. Wahlestedt, C. Natural antisense and noncoding RNA transcripts as potential drug targets. Drug Discov. Today 11, 503–508 (2006).

    Article  CAS  Google Scholar 

  15. Shearwin, K. E., Callen, B. P. & Egan, J. B. Transcriptional interference — a crash course. Trends Genet. 21, 339–345 (2005).

    Article  CAS  Google Scholar 

  16. Crampton, N., Bonass, W. A., Kirkham, J., Rivetti, C. & Thomson, N. H. Collision events between RNA polymerases in convergent transcription studied by atomic force microscopy. Nucleic Acids Res. 34, 5416–5425 (2006).

    Article  CAS  Google Scholar 

  17. Prescott, E. M. & Proudfoot, N. J. Transcriptional collision between convergent genes in budding yeast. Proc. Natl Acad. Sci. USA 99, 8796–8801 (2002).

    Article  CAS  Google Scholar 

  18. Osato, N., Suzuki, Y., Ikeo, K. & Gojobori, T. Transcriptional interferences in cis natural antisense transcripts of humans and mice. Genetics 176, 1299–1306 (2007).

    Article  CAS  Google Scholar 

  19. Sastry, S. S. & Hoffman, P. L. The influence of RNA and DNA template structures during transcript elongation by RNA polymerases. Biochem. Biophys. Res. Commun. 211, 106–114 (1995).

    Article  CAS  Google Scholar 

  20. Larijani, M. & Martin, A. Single-stranded DNA structure and positional context of the target cytidine determine the enzymatic efficiency of AID. Mol. Cell. Biol. 27, 8038–8048 (2007).

    Article  CAS  Google Scholar 

  21. Perlot, T., Li, G. & Alt, F. W. Antisense transcripts from immunoglobulin heavy-chain locus V(D)J and switch regions. Proc. Natl Acad. Sci. USA 105, 3843–3848 (2008).

    Article  CAS  Google Scholar 

  22. Ronai, D. et al. Detection of chromatin-associated single-stranded DNA in regions targeted for somatic hypermutation. J. Exp. Med. 204, 181–190 (2007).

    Article  CAS  Google Scholar 

  23. Bolland, D. J. et al. Antisense intergenic transcription in V(D)J recombination. Nature Immunol. 5, 630–637 (2004).

    Article  CAS  Google Scholar 

  24. Bolland, D. J. et al. Antisense intergenic transcription precedes Igh D-to-J recombination and is controlled by the intronic enhancer Eμ. Mol. Cell. Biol. 27, 5523–5533 (2007).

    Article  CAS  Google Scholar 

  25. Roa, S., Kuang, F. L. & Scharff, M. D. Does antisense make sense of AID targeting? Proc. Natl Acad. Sci. USA 105, 3661–3662 (2008).

    Article  CAS  Google Scholar 

  26. Tufarelli, C. et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nature Genet. 34, 157–165 (2003).

    Article  CAS  Google Scholar 

  27. Yu, W. et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202–206 (2008).

    Article  CAS  Google Scholar 

  28. Kanduri, C. Functional insights into long antisense noncoding RNA Kcnq1ot1 mediated bidirectional silencing. RNA Biol. 5, 208–211 (2008).

    Article  CAS  Google Scholar 

  29. Ohhata, T., Hoki, Y., Sasaki, H. & Sado, T. Crucial role of antisense transcription across the Xist promoter in Tsix-mediated Xist chromatin modification. Development 135, 227–235 (2008).

    Article  CAS  Google Scholar 

  30. Bernstein, E. & Allis, C. D. RNA meets chromatin. Genes Dev. 19, 1635–1655 (2005).

    Article  CAS  Google Scholar 

  31. Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    Article  CAS  Google Scholar 

  32. Mohammad, F. et al. Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol. Cell. Biol. 28, 3713–3728 (2008).

    Article  CAS  Google Scholar 

  33. Imamura, T. et al. Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochem. Biophys. Res. Commun. 322, 593–600 (2004).

    Article  CAS  Google Scholar 

  34. Morris, K. V., Santoso, S., Turner, A. M., Pastori, C. & Hawkins, P. G. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet. 4, e1000258 (2008).

    Article  Google Scholar 

  35. Schwartz, J. C. et al. Antisense transcripts are targets for activating small RNAs. Nature Struct. Mol. Biol. 15, 842–848 (2008).

    Article  CAS  Google Scholar 

  36. Borel, C. et al. Mapping of small RNAs in the human ENCODE regions. Am. J. Hum. Genet. 82, 971–981 (2008).

    Article  CAS  Google Scholar 

  37. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).

    Article  CAS  Google Scholar 

  38. Goldman, S. R., Ebright, R. H. & Nickels, B. E. Direct detection of abortive RNA transcripts in vivo. Science 324, 927–928 (2009).

    Article  CAS  Google Scholar 

  39. Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810–813 (2002).

    Article  CAS  Google Scholar 

  40. Tomari, Y. & Zamore, P. D. Perspective: machines for RNAi. Genes Dev. 19, 517–529 (2005).

    Article  CAS  Google Scholar 

  41. Hastings, M. L., Milcarek, C., Martincic, K., Peterson, M. L. & Munroe, S. H. Expression of the thyroid hormone receptor gene, erbAα, in B lymphocytes: alternative mRNA processing is independent of differentiation but correlates with antisense RNA levels. Nucleic Acids Res. 25, 4296–4300 (1997).

    Article  CAS  Google Scholar 

  42. Faghihi, M. A. et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase. Nature Med. 14, 723–730 (2008).

    Article  CAS  Google Scholar 

  43. Peters, N. T., Rohrbach, J. A., Zalewski, B. A., Byrkett, C. M. & Vaughn, J. C. RNA editing and regulation of Drosophila 4f-rnp expression by sas-10 antisense readthrough mRNA transcripts. RNA 9, 698–710 (2003).

    Article  CAS  Google Scholar 

  44. Ohman, M. A-to-I editing challenger or ally to the microRNA process. Biochimie 89, 1171–1176 (2007).

    Google Scholar 

  45. Matsui, K. et al. Natural antisense transcript stabilizes inducible nitric oxide synthase messenger RNA in rat hepatocytes. Hepatology 47, 686–697 (2008).

    Article  CAS  Google Scholar 

  46. Uchida, T. et al. Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1α and HIF-2α expression in lung epithelial cells: implication of natural antisense HIF-1α. J. Biol. Chem. 279, 14871–14878 (2004).

    Article  CAS  Google Scholar 

  47. Hatzoglou, A. et al. Natural antisense RNA inhibits the expression of BCMA, a tumour necrosis factor receptor homologue. BMC Mol. Biol. 3, 4 (2002).

    Article  Google Scholar 

  48. Ebralidze, A. K. et al. PU.1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element. Genes Dev. 22, 2085–2092 (2008).

    Article  CAS  Google Scholar 

  49. Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R. & Zhu, J. K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123, 1279–1291 (2005).

    Article  CAS  Google Scholar 

  50. Zubko, E. & Meyer, P. A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation. Plant J. 52, 1131–1139 (2007).

    Article  CAS  Google Scholar 

  51. Katiyar-Agarwal, S., Gao, S., Vivian-Smith, A. & Jin, H. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev. 21, 3123–3134 (2007).

    Article  CAS  Google Scholar 

  52. Jin, H., Vacic, V., Girke, T., Lonardi, S. & Zhu, J. K. Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. BMC Mol. Biol. 9, 6 (2008).

    Article  Google Scholar 

  53. Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).

    Article  CAS  Google Scholar 

  54. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–543 (2008).

    Article  CAS  Google Scholar 

  55. Kawaji, H. et al. Hidden layers of human small RNAs. BMC Genomics 9, 157 (2008).

    Article  Google Scholar 

  56. Yang, N. & Kazazian, H. H. Jr. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nature Struct. Mol. Biol. 13, 763–771 (2006).

    Article  CAS  Google Scholar 

  57. Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732–1743 (2006).

    Article  CAS  Google Scholar 

  58. Aravin, A. A., Hannon, G. J. & Brennecke, J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318, 761–764 (2007).

    Article  CAS  Google Scholar 

  59. Klattenhoff, C. & Theurkauf, W. Biogenesis and germline functions of piRNAs. Development 135, 3–9 (2008).

    Article  CAS  Google Scholar 

  60. Okamura, K., Balla, S., Martin, R., Liu, N. & Lai, E. C. Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nature Struct. Mol. Biol. 15, 998 (2008).

    Article  CAS  Google Scholar 

  61. Czech, B. et al. An endogenous small interfering RNA pathway in Drosophila. Nature 453, 798–802 (2008).

    Article  CAS  Google Scholar 

  62. Faghihi, M. A. & Wahlestedt, C. RNA interference is not involved in natural antisense mediated regulation of gene expression in mammals. Genome Biol. 7, R38 (2006).

    Article  Google Scholar 

  63. Janowski, B. A. et al. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nature Chem. Biol. 3, 166–173 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. P. van der Brug, B. H. Miller, J. P. Silva and S. P. Brothers for insightful comments and careful reading of the manuscript. Discussions with Y. Hayashizaki, G. St-Laurent III and other colleagues within the FANTOM Transcriptomics consortium have also been highly valuable to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claes Wahlestedt.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Claes Wahlestedt's homepage

ENCODE

FANTOM consortium

Natural antisense transcripts platform

Glossary

AU-rich element

(ARE). A region in an RNA transcript with frequent A and U nucleotides, such as AUUUA, that targets the RNA for degradation.

Dicer

An RNase III family endonuclease that processes dsRNA and pre-miRNAs into siRNAs and miRNAs, respectively.

ENCODE

(ENCyclopedia Of DNA Elements). A publicly funded project that aims to find functional elements in the human genome.

MicroRNA

(miRNA). Small (20–25 nucleotides) ssRNA that is thought to regulate the expression of other genes, either through inhibiting protein translation or through degrading a target mRNA transcript, by a process that is similar to RNAi.

Piwi-interacting RNA

A small (25–35 nucleotides) RNA species that is processed from precursor ssRNA, independently of Dicer, and forms a complex with the Piwi protein. piRNAs are probably involved in transposon silencing and stem cell function.

RISC

(RNA-induced silencing complex). A multi-protein complex that incorporates one strand of siRNA and uses it to recognize complementary target mRNA for degradation.

RITS

(RNA-induced transcriptional silencing complex). A multi-protein complex — for example, in fission yeast — that incorporates short RNA molecules, such as siRNAs, and triggers downregulation of transcription of a particular gene or genomic region. This is usually accomplished by the modification of histone tails, which target the genomic region for heterochromatin formation.

Small interfering RNAs

(siRNA). Short (21–23 nucleotides) RNA molecule that is processed from a long dsRNA. siRNAs are functional components of the RISC, and they typically target mRNAs by binding perfectly complementary sequences in the mRNA and causing their degradation.

Transcription unit

A group of expressed sequence tags or mRNAs, usually with alternative splice patterns, that share exonic overlap of at least 1 nucleotide and are in the same chromosomal orientation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faghihi, M., Wahlestedt, C. Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10, 637–643 (2009). https://doi.org/10.1038/nrm2738

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing