Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ABC transporters: the power to change

Key Points

  • ATP-binding cassette (ABC) transporters constitute a ubiquitous superfamily of integral membrane proteins that are responsible for the ATP-powered translocation of many substrates across membranes.

  • ABC transporters have a characteristic architecture that consists minimally of four domains: two ABC domains (or nucleotide-binding domains) with highly conserved sequence motifs and two transmembrane domains (TMDs). Additional domains can be fused to these core elements to confer regulatory functions, and a periplasmic binding protein is required for ligand delivery to prokaryotic importer members of this family.

  • Similarities in the structure of the ABC domains structure support a common mechanism by which ABC transporters, both importers and exporters, orchestrate a series of nucleotide- and substrate-dependent conformational changes that result in substrate translocation across the membrane through an 'alternating-access'-type model. As ABC domains are also integrated into non-transport systems, including proteins that are involved in DNA repair and chromosome maintenance, it is likely that a common set of ATP-dependent conformational changes are relevant to all of these processes.

  • The conformation of ABC transporters that is catalytically competent for nucleotide hydrolysis involves the binding of an ATP molecule between conserved sequence motifs at the interface between the two ABC domains. As a transporter cycles through the different stages of nucleotide binding and hydrolysis, the interface between the two ABC domains switches from the closed state, which is characteristic of ATP binding, to a more open conformation, which is associated with non-ATP states.

  • TMDs are structurally heterogeneous, and three distinct sets of folds have been recognized. Although the detailed folds vary, they all interact with the helical domains of the ABCs through 'coupling helices', which are located in the loops between membrane-spanning helices. These interactions connect the conformations of the TMDs to the nucleotide state of the ABC domains.

  • The activity of ABC transporters can be regulated at the level of protein function through the actions of domains that are fused to the ABCs and/or TMDs. Recent structural studies have established that trans-inhibition, in which the uptake of an extracellular substrate is inhibited by increasing intracellular concentrations of that species, can involve ligand binding to the carboxy-terminal domains of the ABCs that sterically separate these domains and prevent their association, which is required for ATP hydrolysis.

  • Although idealized kinetic models can be described that qualitatively highlight aspects of the transport mechanism, an important goal is to develop quantitative models that detail the kinetic and molecular mechanisms by which ABC transporters couple the binding and hydrolysis of ATP to substrate translocation.

Abstract

ATP-binding cassette (ABC) transporters constitute a ubiquitous superfamily of integral membrane proteins that are responsible for the ATP-powered translocation of many substrates across membranes. The highly conserved ABC domains of ABC transporters provide the nucleotide-dependent engine that drives transport. By contrast, the transmembrane domains that create the translocation pathway are more variable. Recent structural advances with prokaryotic ABC transporters have provided a qualitative molecular framework for deciphering the transport cycle. An important goal is to develop quantitative models that detail the kinetic and molecular mechanisms by which ABC transporters couple the binding and hydrolysis of ATP to substrate translocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular architecture of ABC transporters.
Figure 2: Structure and dimer interactions of an ABC subunit.
Figure 3: Polypeptide folds of a single transmembrane domain in ABC transporters.
Figure 4: Nucleotide–protein interactions in the active sites of various ATPases.
Figure 5: Relationships between dimeric ABC structures.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Monod, J. Recherches sur la Croissance des Cultures Bactériennes (Hermann, Editeurs des Sciences et des Arts, Paris, 1942).

    Google Scholar 

  2. Phillips, R. & Quake, S. R. The biological frontier of physics. Phys. Today 59, 38–43 (2006).

    Article  CAS  Google Scholar 

  3. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Busch, W. & Saier, M. H. Jr. The transporter classification (TC) system. Crit. Rev. Biochem. Mol. Biol. 27, 287–337 (2002).

    Article  Google Scholar 

  5. Stouthamer, A. H. The search for correlation between theoretical and experimental growth yields. Int. Rev. Biochem. 21, 1–47 (1979).

    CAS  Google Scholar 

  6. Neijsel, O. M., Teixeira de Mattos, M. J. & Tempest, D. W. in Escherichia coli and Salmonella: Cellular and Molecular Biology (ed. Neidhardt, F. C.) 1283–1692 (ASM, Washington DC, 1996).

    Google Scholar 

  7. Skou, J. C. The identification of the sodium–potassium pump (Nobel lecture). Angew. Chem. Int. Edn Eng. 37, 2320–2328 (1998).

    Article  CAS  Google Scholar 

  8. Higgins, C. F. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8, 67–113 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Ames, G. F., Mimura, C. S., Holbrook, S. R. & Shyamala, V. Traffic ATPases: a superfamily of transport proteins operating from Escherichia coli to humans. Adv. Enzymol. Relat. Areas Mol. Biol. 65, 1–47 (1992).

    CAS  PubMed  Google Scholar 

  10. Holland, I. B., Cole, S. P. C., Kuchler, K. & Higgins, C. F. (eds) ABC proteins: From Bacteria to Man (Academic, London, 2003).

    Google Scholar 

  11. Linton, K. J. & Higgins, C. F. The Escherichia coli ATP-binding cassette (ABC) proteins. Mol. Microbiol. 28, 5–13 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Dean, M., Rzhetsky, A. & Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11, 1156–1166 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Dean, M. & Annilo, T. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu. Rev. Genomics Hum. Genet. 6, 123–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Biemans-Oldehinkel, E., Deoven, M. K. & Poolman, B. ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett. 580, 1023–1035 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Ames, G. F. L. Bacterial periplasmic transport systems — structure, mechanism and evolution. Annu. Rev. Biochem. 55, 397–425 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Heppel, L. A. The effect of osmotic shock on release of bacterial proteins and on active transport. J. Gen. Physiol. 54, 95–113 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Locher, K. P., Lee, A. T. & Rees, D. C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098 (2002). The first crystal structure of an intact ABC transporter, the vitamin B12 importer BtuCD.

    Article  CAS  PubMed  Google Scholar 

  18. Dawson, R. J. P. & Locher, K. P. Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185 (2006). The first crystal structure of an ABC exporter, the bacterial multidrug transporter Sav1866.

    Article  CAS  PubMed  Google Scholar 

  19. Dawson, R. J. P. & Locher, K. P. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett. 581, 935–938 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Pinkett, H. W., Lee, A. T., Lum, P., Locher, K. P. & Rees, D. C. An inward-facing conformation of a putative metal-chelate type ABC transporter. Science 315, 373–377 (2007). The crystal structure of a BtuCD homologue exhibiting an inward-facing conformation.

    Article  CAS  PubMed  Google Scholar 

  21. Hvorup, R. N. et al. Asymmetry in the structure of the ABC transporter binding protein complex BtuCD–BtuF. Science 317, 1387–1390 (2007). The crystal structure of BtuCD complexed to the binding protein BtuF adopts an asymmetric conformation around the translocation pathway.

    Article  CAS  PubMed  Google Scholar 

  22. Hollenstein, K., Frei, D. C. & Locher, K. P. Structure of an ABC transporter in complex with its binding protein. Nature 446, 213–216 (2007). The first structure of a complex between an ABC transporter, ModBC, and its associated binding protein, ModA.

    Article  CAS  PubMed  Google Scholar 

  23. Oldham, M. L., Khare, D., Quiocho, F. A., Davidson, A. L. & Chen, J. Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–522 (2007). The structure of the maltose ABC transporter–binding protein complex in the ATP-bound state with a maltose trapped in its translocation pathway.

    Article  CAS  PubMed  Google Scholar 

  24. Ward, A., Reyes, C. L., Yu, J., Roth, C. B. & Chang, G. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc. Natl Acad. Sci. USA 104, 19005–19010 (2007). Structures of the bacterial multidrug transporter homologue MsbA in different conformational states.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gerber, S., Comellas-Bigler, M., Goetz, B. A. & Locher, K. P. Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 321, 246–250 (2008). The binding of molybdate and tungstate to regulatory domains of the ABC subunits stabilizes an inward-facing, ATPase-inactive conformation of a ModBC transporter that underllies the phenomenon of trans -inhibition.

    Article  CAS  PubMed  Google Scholar 

  26. Kadaba, N. S., Kaiser, J. T., Johnson, E., Lee, A. & Rees, D. C. The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science 321, 250–253 (2008). The binding of Met to regulatory domains of the ABC subunits stabilizes an inward-facing, ATPase-inactive conformation of a MetNI transporter underlying the phenomenon of trans -inhibition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hollenstein, K., Dawson, R. J. P. & Locher, K. P. Structure and mechanism of ABC transporter proteins. Curr. Opin. Struct. Biol. 17, 412–418 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Linton, K. J. Structure and function of ABC transporters. Physiology (Bethesda) 22, 122–130 (2007).

    CAS  Google Scholar 

  29. Davidson, A. L., Dassa, E., Orelle, C. & Chen, J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72, 317–364 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Davidson, A. L. & Maloney, P. C. ABC transporters: how small molecules do a big job. Trends Microbiol. 15, 448–455 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Dawson, R. J. P., Hollenstein, K. & Locher, K. P. Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol. Microbiol. 65, 250–257 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Oldham, M. L., Davidson, A. L. & Chen, J. Structural insights into ABC transporter mechanism. Curr. Opin. Struct. Biol. 18, 726–733 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Locher, K. P. Structure and mechanism of ATP-binding cassette transporters. Phil. Trans. R. Soc. Lond. B 364, 239–245 (2008).

    Article  Google Scholar 

  34. Schmitt, L., Benabdelhak, H., Blight, M. A., Holland, I. B. & Stubbs, M. T. Crystal structure of the nucleotide-binding domain of the ABC-transporter haemolysin B: identification of a variable region within ABC helical domains. J. Mol. Biol. 330, 333–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Karpowich, N. et al. Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure 9, 571–586 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Jones, P. M. & George, A. M. Subunit interactions in ABC transporters: towards a functional architecture. FEMS Microbiol. Lett. 179, 187–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Hopfner, K.-P. et al. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101, 789–800 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Smith, P. C. et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 10, 139–149 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saurin, W., Koster, W. & Dassa, E. Bacterial binding protein-dependent permeases — characterization of distinctive signatures for functionally related integral cytoplasmic membrane proteins. Mol. Microbiol. 12, 993–1004 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Mourez, M., Hofnung, N. & Dassa, E. Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits. EMBO J. 16, 3066–3077 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jones, P. M. & George, A. M. Mechanism of ABC transporters: a molecular dynamics simulation of a well characterized nucleotide-binding subunit. Proc. Natl Acad. Sci. USA 99, 12639–12644 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dassa, E. & Bouige, E. The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res. Microbiol. 152, 211–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Steward, J. B. & Hermodson, M. A. Topology of RbsC, the membrane component of the Escherichia coli ribose transporter. J. Bacteriol. 185, 5234–5239 (2003).

    Article  Google Scholar 

  44. Fukami-Kobayashi, K., Tateno, Y. & Nishikawa, K. Domain dislocation: a change of core structure in periplasmic binding proteins in their evolutionary history. J. Mol. Biol. 286, 279–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Quiocho, F. A. & Ledvina, P. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variations of common themes. Mol. Microbiol. 20, 17–25 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Wilkinson, A. J. & Verschueren, K. H. G. in ABC Proteins: From Bacteria to Man (eds Holland, I. B. et al.) 647 (Academic, London, 2003).

    Google Scholar 

  47. Widdas, W. F. Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J. Physiol. 118, 23–39 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jardetsky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966).

    Article  Google Scholar 

  49. Poolman, B. et al. Functional analysis of detergent solubilized and membrane-reconstituted ABC transporters. Methods Enzymol. 400, 429–459 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Patzlaff, J. S., van der Heide, T. & Poolman, B. The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J. Biol. Chem. 278, 29546–29551 (2003). A careful measurement of the ATP-to-translocated ligand ratio for the tightly coupled OpuA transporter.

    Article  CAS  PubMed  Google Scholar 

  51. Davidson, A. L. & Nikaido, H. Overproduction, solubilization, and reconstitution of the maltose transport system from Escherichia coli. J. Biol. Chem. 265, 4254–4260 (1990).

    CAS  PubMed  Google Scholar 

  52. Chen, J., Sharma, S., Quiocho, F. A. & Davidson, A. L. Trapping the transition state of an ATP-binding cassette transporter: evidence for a concerted mechanism of maltose transport. Proc. Natl Acad. Sci. USA 98, 1525–1530 (2001). ATP–vanadate is used to trap a complex between the maltose transporter and the binding protein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Borths, E. L., Poolman, B., Hvorup, R. N., Locher, K. P. & Rees, D. C. In vitro functional characterization of BtuCD-F, the Escherichia coli ABC transporters for vitamin B12 uptake. Biochemistry 44, 16301–16309 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Nikaido, K. & Ames, G. F. L. One intact ATP-binding subunit is sufficient to support ATP hydrolysis and translocation in an ABC transporter, the histidine permease. J. Biol. Chem. 274, 26727–26735 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the α- and β-subunits of ATP–synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maegley, K. A., Admiraal, S. J. & Herschlag, D. Ras-catalyzed hydrolysis of GTP: a new perspective from model studies. Proc. Natl Acad. Sci. USA 93, 8160–8166 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Matte, A., Tari, L. W. & Delbaere, L. T. J. How do kinases transfer phosphoryl groups? Structure 6, 413–419 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Geourjon, C. et al. A common mechanism for ATP hydrolysis in ABC transporter and helicase superfamilies. Trends Biochem. Sci. 25, 539–544 (2001).

    Article  Google Scholar 

  59. Moody, J. E., Millen., L., Binns, D., Hunt, J. F. & Thomas, P. J. Cooperative, ATP-dependent association of the nucleotide binding casettes during the catalytic cycle of ATP-binding cassette transporters. J. Biol. Chem. 277, 21111–21114 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Zaitseva, J. et al. H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. EMBO J. 24, 1901–1910 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Menz, R. I., Walker, J. E. & Leslie, A. G. W. Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106, 331–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Schindelin, H., Kisker, C., Schlessman, J. L., Howard, J. B. & Rees, D. C. Structure of ADP–AlF4-stabilized nitrogenase complex and its implications for signal transduction. Nature 387, 370–376 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Leipe, D. D., Koonin, E. V. & Aravind, L. Evolution and classification of P-loop kinases and related proteins. J. Mol. Biol. 333, 781–815 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Erzberger, J. P. & Berger, J. M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 93–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Scheffzek, K. et al. The Ras–RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Enemark, E. J. & Joshua-Tor, L. On helicases and other motor proteins. Curr. Opin. Struct. Biol. 18, 243–257 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wittinghofer, A. Signaling mechanistics: aluminum fluoride for molecule of the year. Curr. Biol. 7, R682–R685 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Rees, D. C. & Howard, J. B. Structural bioenergetics and energy transduction mechanisms. J. Mol. Biol. 293, 343–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, J., Lu, G., Lin, J., Davidson, A. L. & Quiocho, F. A. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol. Cell 12, 651–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Orelle, C., Ayvaz, T., Everly, R. M., Klug, C. S. & Davidson, A. L. Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter. Proc. Natl Acad. Sci. USA 105, 12837–12842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Goetz, B. A., Perozo, E. & Locher, K. P. Distinct gate conformations of the ABC transporter BtuCD revealed by electron spin resonance spectroscopy and chemical cross-linking. FEBS Lett. 583, 266–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Kadner, R. J. Regulation of methionine transport activity in Escherichia coli. J. Bacteriol. 122, 110–119 (1975). An exquisite in vivo analysis of the trans -inhibition of Met transport activity by intracellular Met.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jacquet, E. et al. ATP hydrolysis and pristinamycin IIA inhibition of the Staphylococcus aureus Vga(A), a dual ABC protein involved in streptogramin A resistance. J. Biol. Chem. 283, 25332–25339 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Hopfner, K. P. & Tainer, J. A. Rad50/SMC proteins and ABC transporters: unifying concepts from high-resolution structures. Curr. Opin. Struct. Biol. 13, 249–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Ambudkar, S. V., Kimchi-Sarfaty, C., Sauna, Z. E. & Gottesman, M. M. P-glycoprotein: from genomics to mechanism. Oncogene 22, 7468–7485 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Higgins, C. F. Multiple molecular mechanisms for multidrug resistance transporters. Nature 446, 749–757 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  78. Merritt, E. A. & Murphy, M. E. P. Raster3D Version 2.0 — a program for photorealistic molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 50, 869–873 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schmid, B. et al. Biochemical and structural characterization of the crosslinked complex of nitrogenase: comparison to the ADP–AlF4-stabilized structure. Biochemistry 41, 15557–15565 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A.T. Lee and J.B. Howard for discussions and their long-term contributions to our research in this area. The support of the Fulbright Foundation and Jane Coffin Childs Memorial Funds for Medical Research (O.L.) and National Institutes of Health grant GM45162 (D.C.R) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas C. Rees.

Supplementary information

Related links

Related links

DATABASES

Protein Data Bank

1H8E

1L7V

1M34

1Q12

2HYD

2ONJ

2ONK

2NQ2

2QI9

2R6G

3B5W

3B5X

3B5Z

3B60

3D31

3DHW

FURTHER INFORMATION

Douglas C. Rees's homepage

MolScript

Raster3D

Glossary

ABC

(ATP-binding cassette). A set of conserved sequence motifs that defines an eponymous family of ATPases. ABC is often used interchangeably with nucleotide-binding domain (NBD).

BtuCD

The vitamin B12 uptake system that is composed of the integral membrane protein subunit BtuC and the ATP-binding cassette subunit BtuD.

Sav1866

A bacterial ATP-binding cassette exporter from Staphylococcus aureus that is homologous to eukaryotic multidrug resistance transporters.

MalFGK2

A maltose transporter, which is composed of two homologous integral membrane subunits — MalF and MalG — and two copies of the ATP-binding cassette subunit MalK.

F1-ATPase

A stable, water-soluble subassembly of the membrane-bound ATP synthase, of which the active site for ATP synthesis and hydrolysis is located at the interface between homologous α- and β-subunits.

Nitrogenase

The enzyme system that catalyses the ATP-dependent reduction of dinitrogen to ammonia during the process of biological nitrogen fixation. The nitrogenase Fe-protein contains the binding site for ATP.

G protein

One of a family of GTP-binding proteins that are involved in signal transduction, in which GTP binding and hydrolysis and subsequent nucleotide exchange drive a series of conformational changes that are used in signalling cascades.

AAA+ ATPase

(ATPases associated with diverse cellular activities). A large family of structurally conserved ATPases in which assembly of the ATPase active site requires subunit oligomerization.

MetNI

A Met transporter, which is composed of the integral membrane protein MetI and the ATP-binding cassette subunit MetN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rees, D., Johnson, E. & Lewinson, O. ABC transporters: the power to change. Nat Rev Mol Cell Biol 10, 218–227 (2009). https://doi.org/10.1038/nrm2646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2646

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing